Part 1 Lithium

Total Page:16

File Type:pdf, Size:1020Kb

Part 1 Lithium Part 1 Lithium GEOLOGY Lithium is a comparatively rare element, although it is found in many rocks and some brines, but always in very low concentrations. The average amount in the earth’s upper crust has been estimated to be about 20 ppm by Vine (1980), although others have quoted values as low as 7 ppm (Bach et al., 1967; igneous rocks 6 ppm, sedimentary rocks 11.5 ppm) and as high as 60 ppm (Deberitz, 1993; 27th in rank of elemental abundance). Even with these small numbers, however, there are a fairly large number of both lithium mineral and brine deposits, but only comparatively a few of them are of actual or potential commercial value. Many are very small, others are too low in grade or located in remote areas, or too expensive to recover and process. Some of the better-known deposits are roughly located in Fig. 1.1, and esti- mates of the lithium reserves of various deposits (or countries) are listed in Table 1.1. The deposits have been formed because of lithium’s higher solubility than most other cations, so it sometimes has concentrated in flowing and cooling magma and/or its accompanying aqueous fluids, as well as in evaporating brines. Thus, its minerals are generally found in the latter stages of alkaline magma flow, intrusion and crystallization, as occurs in pegmatite formations. There are about 145 minerals containing lithium as a major component (.200 with .0.002% Li2O), and about 25 contain over 2% Li2O (Deberitz, 1993). Forty-three of the better known of these minerals are listed in Table 1.2. The high-lithium brines usually have obtained most of their lithium from geothermal waters, with perhaps some of the lithium coming from surface leaching of volcanic ash, clays or other rocks. However, lithium is very difficult to leach from the lattice structure of all rocks and minerals, so little is dissolved unless the water is very hot. Experimental studies have shown that at ambient temperatures, only 55– 170 ppb dissolves from extended contact with granitic rocks, but at 275–6008C 0.25–2.4 ppm Li can be extracted in the same agitated, long contact-period (Dibble and Dickson, 1976). Analyses of cores into deep-ocean rift or subduction zones 1 2 Part 1 Lithium Figure 1.1 Location and reserve estimate of some of the world’s lithium deposits (Anstett et al., 1990; reserves: R1 proven, R2 probable). Geology 3 Table 1.1 Estimated Lithium Reserves of Various Lithium Deposits, 1000 mt Li Reserves Brines Salar de Uyuni 5000a Salar de Atacama 3000b(4300–4600) f Salar de Hombre Muerto 800c Clayton Valley 30.4a(115–382)g,h Zabuye Salt Lake, China 1000c Qinghai Lake, China 1000c Smackover oilfield brine 1000c Great Salt Lake 526c Searles Lake 31.6a Salton Sea 1000c Dead Sea 2000c Total 14,718 Ore deposits Africa (other) .0.3a Bikita, Zimbabwe 23b Mali 26d Manono-Kitotolo, Zaire 309a Namibia 9.8e Argentina 0.2a Australia (Greenbushes) 150b Austria 10a Brazil 3.3a Canada (total) 240.5a Bernic Lake, Manitoba 73a Ontario, Quebec 139a China 500d Portugal 10c Russia 130a United States (other) 44.3a North Carolina 71c a Anstett et al. (1990). b USGS (2002). c Garrett (1998). d Lloyd (1981). e Kesler (1960). f Ide and Kunasz (1989). g Kunasz (1994). h Dillard and McClean (1991). have shown that lithium is adsorbed on, rather than leached from near-surface rocks (up to 1.8 km in depth), and only significantly leached from deeper rocks at temperatures greater than 300–3508C. Based upon the isotopic analyses of lithium in the upper rocks there is some exchange by adsorption and simultaneous leaching in 4 Part 1 Lithium Table 1.2 Formula and Group of Some of the Lithium Minerals (Vine, 1980) Name and formula Mineral group or series Amblygonite (Li,Na)AlPO4(F,OH) Amblygonite Bertossaite (Li,Na)2(Ca,Fe,Mn)Al4(PO4)4(OH,F)4 — Bikitaite LiAlSi2O6·H2O Zeolite (?) Bityite Ca(Al,Li)2[(Al,Be)2Si2(O,OH)10]·H2O Margarite Brannockite KLi3Sn2Si12O30 — Cookeite (Li,Al4)Si3AlO10(OH)8 Chlorite Cryolithionite Li3Na3Al2F12 — Eckermannite Na3(Mg,Li)4(Al,Fe)Si8O22(OH,F)2 Amphibole (asbestos) Elbaite Na(Li,Al)3Al6B3Si6O27(OH,F)4 Tourmaline Ephesite Na(LiAl2)(Al2Si2)O10(OH)2 Margarite Eucryptite LiAlSiO4 — Ferghanite LiH(UO2/OH)4(VO4)2·2H2O— 3þ 2þ Ferri-sicklerite (Li, Fe ,Mn )PO4 Sicklerite Gerstleyite (Na,Li)4As2Sb8S17·6H2O— Hectorite Na0.33(Mg,Li)3Si4O10(F,OH)2 Smectite 2þ 3þ Holmquistite Li2(Mg,Fe )3(Al,Fe )2Si8O22(OH)2 Amphibole Hsianghualite Ca3Li2Be3(SiO4)3F2 — Lepidolite K(Li,Al)3(Si,Al)4O10(F,OH)2 Mica Liberite Li2BeSiO4 — 2þ 2þ Lithiophilite Li(Mn ,Fe )PO4 Lithiophilite–triphylite Lithiophorite (Al, Li)MnO2(OH)2 — Lithiophosphate Li3PO4 — a Manandonite LiAl4(AlBSi2O10)(OH)3 Chlorite Montebrasite (Li, Na)Al(PO4)(OH,F) Amblygonite Nambulite LiNaMn8Si10O28(OH)2 — Natromontebrasite (Na, Li)Al(PO4)(OH,F) Amblygonite Palermoite (Li, Na)2(Sr,Ca)Al4(PO4)4(OH)4 Petalite LiAlSi4O10 — Polylithionite KLi2Al(Si4O10)(F,OH)2 Mica Rankamite (Na,K,Pb,Li)3(Ta,Nb,Al)11(O,OH)30 — Regularly interstratified montmorillonite-chlorite — 2þ 3þ Sicklerite Li(Mn ,Fe )PO4 — Sogdianite (K,Na)2Li2(Li,Fe,Al,Ti)2Zr2(Si2O5)6 — Spodumene LiAlSi2O6 Pyroxene Swinefordite Smectite Taeniolite KLiMg2Si4O10F2 Mica 3þ Tavorite LiFe PO4OH — Tosudite — 2þ 2þ Triphylite Li(Fe ,Mn )PO4 Triphylite–lithiophilite Virgilite — Zinnwaldite K(Li,Al,Fe)3(Al,Si)4O10(OH,F)2 Mica More recently determined lithium mineralsb Diomignite Li2(B4O6)O7?— Liddicoatite (end member of the group) CaLi2Al7B3Si6O27(OH)4 Tourmaline Chlorite, boron-bearing (end member) Li2Al5BSi2O14·4H2O Chlorite a Manandonite is listed by some as the same formula with 2H2O. b Garrett (1998). Geology 5 the temperature range of 50–3508C, but little net change (James et al., 2003; Chan et al., 2002b,c; You and Gieskes, 2001). Other rocks or higher temperature leaching conditions must allow a greater amount of lithium to be removed, since some geothermal springs have lithium values of 6–50 ppm, but in all cases the lithium concentration is still very low. When these dilute geothermal waters are concentrated by the evaporation occurring in arid climate, closed, reasonably impervious basins, comparatively strong lithium brines have resulted in a few large playa deposits. Many large medium-concentration lithium brines have also been formed in various oil or gas field waters, potash deposit end-liquors (seawater only contains about 0.17 ppm Li), and a number of miscellaneous sources such as the Salton Sea geothermal brine and end-liquors from various commercial solar pond operations. Brine Deposits As with minerals, many brines and waters contain some lithium, but as noted above it is usually found in extremely low concentrations. There are a few exceptions, but as of 2003 only three brine sources had become actual commercial operations, and each had comparatively high levels of lithium (although one only contained ,160 ppm Li), appreciable lithium reserves and good solar ponding conditions (the Salar de Atacama, Chile; Salar de Hombre Muerto, Argentina; and Clayton Valley, USA). Their brines were obtained from the porous strata under the surface of playas, and each appears to have lithium-containing hot springs as their principal source of the lithium. By-product lithium has also been recovered from Searles Lake, but its concentration in the lake brine is only 50–80 ppm Li. Because of the very dilute lithium concentration in even the best of brine deposits, they all owe their value to the availability of solar evaporation ponds to inexpensively further concentrate the lithium. Again, as an exception to this, Searles Lake used plant evaporation, but even with multiple products it became too expensive, so their lithium recovery has ceased. At the Salar de Hombre Muerto alumina-adsorption may be used to first fairly selectively separate the lithium from the other salts in the brine, but then solar evaporation would still be needed to concentrate the eluted dilute lithium solution. The projected reserves of lithium in the world’s few potential or actual commercial brine deposits has been roughly estimated as about 15 million metric tons of Li (Table 1.1), but the practical recovery of the lithium from many of these deposits would be very difficult. The more important lithium-brine deposits are separately discussed in the following sections. Clayton Valley (Silver Peak), Nevada This relatively small 83 km2 (O’Neill et al., 1969; 100 km2, Davis et al., 1986) dry lake (playa) is about 16 km long and 6.4 km wide, and has a drainage basin area of about 1300 km2 (Fig. 1.2). It is located in central Nevada about 87 km southwest of Tonopah, 274–282 km from Reno and Las Vegas, and 40 km east of the Nevada–California border. Its elevation is 1300 m, and in the porous strata under its 6 Part 1 Lithium Figure 1.2 Location map of Clayton Valley and its surrounding mountains (Davis et al., 1986). surface there is a fairly concentrated sodium chloride brine with comparatively high amounts of potassium and sulfate, but very little magnesium and other ions (Table 1.3). It also has a fairly high content of lithium in a brine pool with about a54km2 area and an average deposit depth of about 460 m. Originally the central area contained 100–800 ppm Li, and the discovery well at 229 m depth contained Table 1.3 p Various Analyses of the Clayton Valley Brine, wt.% (or ppm) Barret and O’Neill (1970) Davis (1986) p First wella Anon.
Recommended publications
  • Direct Preparation of Some Organolithium Compounds from Lithium and RX Compounds Katashi Oita Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1955 Direct preparation of some organolithium compounds from lithium and RX compounds Katashi Oita Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Oita, Katashi, "Direct preparation of some organolithium compounds from lithium and RX compounds " (1955). Retrospective Theses and Dissertations. 14262. https://lib.dr.iastate.edu/rtd/14262 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Design and Discovery of New Piezoelectric Materials Using Density Functional Theory
    DESIGN AND DISCOVERY OF NEW PIEZOELECTRIC MATERIALS USING DENSITY FUNCTIONAL THEORY by Sukriti Manna © Copyright by Sukriti Manna, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering). Golden, Colorado Date Signed: Sukriti Manna Signed: Dr. Cristian V. Ciobanu Thesis Advisor Signed: Dr. Vladan Stevanovi´c Thesis Advisor Golden, Colorado Date Signed: Dr. John Berger Professor and Head Department of Mechanical Engineering ii ABSTRACT Piezoelectric materials find applications in microelectromechanical systems (MEMS), such as surface acoustic wave (SAW) resonators, radio frequency (RF) filters, resonators, and energy harvesters. Using density functional theory calculations, the present study illus- trates the influence of alloying and co-alloying with different nitrides on piezoelectric and mechanical properties of an existing piezoelectric material such as aluminum nitride (AlN). Besides improving the performance of existing piezoelectric material, a high-throughput screening method is used to discover new piezoelectric materials. AlN has several beneficial properties such as high temperature stability, low dielectric permittivity, high hardness, large stiffness constant, high sound velocity, and complementary metal-oxide-semiconductor (CMOS) compatibility. This makes it widely accepted material in RF and resonant devices. However, it remains a challenge to enhance the piezoelectric modulus of AlN. The first part of this thesis establishes that the piezoelectric modulus of AlN could be improved by alloying with rocksalt transition metal nitrides such as scandium nitride (ScN), yttrium nitride (YN), and chromium nitride (CrN). As the content of the rocksalt end member in the alloy increases, the accompanying structural frustration enables a greater piezoelectric response.
    [Show full text]
  • Design, Synthesis and Evaluation of Diphenylamines As MEK5 Inhibitors Suravi Chakrabarty
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Fall 2014 Design, Synthesis and Evaluation of Diphenylamines as MEK5 Inhibitors Suravi Chakrabarty Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Chakrabarty, S. (2014). Design, Synthesis and Evaluation of Diphenylamines as MEK5 Inhibitors (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/388 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. DESIGN, SYNTHESIS AND EVALUATION OF DIPHENYLAMINES AS MEK5 INHIBITORS A Thesis Submitted to the Graduate School of Pharmaceutical Sciences Duquesne University In partial fulfillment of the requirements for the degree of Master of Science (Medicinal Chemistry) By Suravi Chakrabarty December 2014 Copyright by Suravi Chakrabarty 2014 DESIGN, SYNTHESIS AND EVALUATION OF DIPHENYLAMINES AS MEK5 INHIBITORS By Suravi Chakrabarty Approved August 7, 2014 ________________________________ ________________________________ Patrick Flaherty, Ph.D. Aleem Gangjee, Ph.D., Chair, Thesis Committee Professor of Medicinal Chemistry Associate Professor of Medicinal Mylan School of Pharmacy Chemistry Distinguished Professor Graduate School Pharmaceutical Sciences Graduate School Pharmaceutical Sciences Duquesne University Duquesne
    [Show full text]
  • Geochemical Alteration of Pyrochlore Group Minerals: Pyrochlore Subgroup
    American Mineralogist, Volume 80, pages 732-743, 1995 Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup GREGORY R. LUMPKIN Advanced Materials Program, Australian Nuclear Science and Technology Organization, Menai 2234, New South Wales, Australia RODNEY C. EWING Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A. ABSTRACT Primary alteration of uranpyrochlore from granitic pegmatites is characterized by the substitutions ADYD-+ ACaYO, ANaYF -+ ACaYO, and ANaYOI-I --+ ACaYO. Alteration oc- curred at ""450-650 °C and 2-4 kbar with fluid-phase compositions characterized by relatively low aNa+,high aeaH, and high pH. In contrast, primary alteration of pyrochlore from nepheline syenites and carbonatites follows a different tre:nd represented by the sub- stitutions ANaYF -+ ADYD and ACaYO -+ ADYD. In carbonatites, primary alteration of pyrochlore probably took place during and after replacement of diopside + forsterite + calcite by tremolite + dolomite :t ankerite at ""300-550 °C and 0-2 kbar under conditions of relatively low aHF, low aNa+,low aeaH, low pH, and elevated activities of Fe and Sr. Microscopic observations suggest that some altered pyrochlor1es are transitional between primary and secondary alteration. Alteration paths for these specimens scatter around the trend ANaYF -+ ADYD. Alteration probably occurred at 200-350 °C in the presence of a fluid phase similar in composition to the fluid present during primary alteration but with elevated activities of Ba and REEs. Mineral reactions in the system Na-Ca-Fe-Nb-O-H indicate that replacement of pyrochlore by fersmite and columbite occurred at similar conditions with fluid conpositions having relatively low aNa+,moderate aeaH, and mod- erate to high aFeH.Secondary alteration « 150 °C) is charactlerized by the substitutions ANaYF -+ ADYD,ACaYO -+ ADYD,and ACaXO -+ ADXDtogether with moderate to extreme hydration (10-15 wt% H20 or 2-3 molecules per formula unit).
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • The Anjahamiary Pegmatite, Fort Dauphin Area, Madagascar
    The Anjahamiary pegmatite, Fort Dauphin area, Madagascar Federico Pezzotta* & Marc Jobin** * Museo Civico di Storia Naturale, Corso Venezia 55, I-20121 Milano, Italy. ** SOMEMA, BP 6018, Antananarivo 101, Madagascar. E-mail:<[email protected]> 21 February, 2003 INTRODUCTION Madagascar is among the most important areas in the world for the production, mainly in the past, of tourmaline (elbaite and liddicoatite) gemstones and mineral specimens. A large literature database documents the presence of a number of pegmatites rich in elbaite and liddicoatite. The pegmatites are mainly concentrated in central Madagascar, in a region including, from north to south, the areas of Tsiroanomandidy, Itasy, Antsirabe-Betafo, Ambositra, Ambatofinandrahana, Mandosonoro, Ikalamavony, Fenoarivo and Fianarantsoa (e.g. Pezzotta, 2001). In general, outside this large area, elbaite-liddicoatite-bearing pegmatites are rare and only minor discoveries have been made in the past. Nevertheless, some recent work made by the Malagasy company SOMEMEA, discovered a great potential for elbaite-liddicoatite gemstones and mineral specimens in a large, unusual pegmatite (the Anjahamiary pegmatite), hosted in high- metamorphic terrains. The Anjahamiary pegmatite lies in the Fort Dauphin (Tôlanaro) area, close to the southern coast of Madagascar. This paper reports a general description of this locality, and some preliminary results of the analytical studies of the accessory minerals collected at the mine. Among the most important analytical results is the presence of gemmy blue liddicoatite crystals with a very high Ca content, indicating the presence in this tourmaline crystal of composition near the liddicoatite end-member. LOCATION AND ACCESS The Anjahamiary pegmatite is located about 70 km NW of the town of Fort Dauphin (Tôlanaro) (Fig.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • Reactions of Lithium Nitride with Some Unsaturated Organic Compounds. Perry S
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1963 Reactions of Lithium Nitride With Some Unsaturated Organic Compounds. Perry S. Mason Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mason, Perry S. Jr, "Reactions of Lithium Nitride With Some Unsaturated Organic Compounds." (1963). LSU Historical Dissertations and Theses. 898. https://digitalcommons.lsu.edu/gradschool_disstheses/898 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 64—5058 microfilmed exactly as received MASON, Jr., Perry S., 1938- REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS. Louisiana State University, Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requireiaents for the degree of Doctor of Philosophy in The Department of Chemistry by Perry S. Mason, Jr. B. S., Harding College, 1959 August, 1963 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]
  • Molecular Orbital Theory to Predict Bond Order • to Apply Molecular Orbital Theory to the Diatomic Homonuclear Molecule from the Elements in the Second Period
    Skills to Develop • To use molecular orbital theory to predict bond order • To apply Molecular Orbital Theory to the diatomic homonuclear molecule from the elements in the second period. None of the approaches we have described so far can adequately explain why some compounds are colored and others are not, why some substances with unpaired electrons are stable, and why others are effective semiconductors. These approaches also cannot describe the nature of resonance. Such limitations led to the development of a new approach to bonding in which electrons are not viewed as being localized between the nuclei of bonded atoms but are instead delocalized throughout the entire molecule. Just as with the valence bond theory, the approach we are about to discuss is based on a quantum mechanical model. Previously, we described the electrons in isolated atoms as having certain spatial distributions, called orbitals, each with a particular orbital energy. Just as the positions and energies of electrons in atoms can be described in terms of atomic orbitals (AOs), the positions and energies of electrons in molecules can be described in terms of molecular orbitals (MOs) A particular spatial distribution of electrons in a molecule that is associated with a particular orbital energy.—a spatial distribution of electrons in a molecule that is associated with a particular orbital energy. As the name suggests, molecular orbitals are not localized on a single atom but extend over the entire molecule. Consequently, the molecular orbital approach, called molecular orbital theory is a delocalized approach to bonding. Although the molecular orbital theory is computationally demanding, the principles on which it is based are similar to those we used to determine electron configurations for atoms.
    [Show full text]
  • Lii Foi - Ifil Rhkl = ---'--'---'---'--'-' = 0.15
    Mineral. Soc. Amer. Spec. Pap. 2, 111-115 (1969). JOESMITHITE: A NOVEL AMPHIBOLE CRYSTAL CHEMISTRY PAUL B. MOORE Department oj the Geophysical Sciences, University oj Chicago, Chicago, Illinois 60637 ABSTRACT Joesmithite, a 9.885 (15), b 17.875 (18), c 5.227 (5) A, B 105.67 (17)0, P2/a, is a beryllo-silicate clinoamphibole 3 with composition (Ca,Pb)Ca2(Mg,Fe'+,Fe +),[Si,Be20,,] (OH)2, Z = 2. One out of four tetrahedra in the asymmetric unit is occupied by beryllium, at the cross-linking site in one of the pyroxene chain sub-units. The A site is not centered but displaced 0.6 A along the two-fold rotor and toward the beryllate tetrahedron. It is suggested that a coupled relationship exists between A' (the off-centered A site) and Be, a condition ensuring reasonable charge balance around their mutual anions. The A' and Be atomic species lower the symmetry of the crystal: though joesmithite is topologically akin to the C-centered c1inoamphiboles, its chemical contents are somewhat different. The lower symmetry induced by these atomic species probably accounts for the unequal octahedral cation distribution, which was assessed by least-squares analysis of three-dimensional single-crystal X-ray data. INTRODUCTION TABLE 1. JOESMITHITE. CRYSTAL CELL Joesmithite, a new mineral discovered by the author three years ago, proved to be related to the clinoamphibole a 9.885(15) A b mineral group. This mineral has been previously reported 17.875(18) 5.227(5) in two papers, one which describes the species for the first (3 105.
    [Show full text]
  • Origin of Color in Cuprian Elbaite from Sflo Jos6 De Batalha, Paraiba, Brazil
    American Mineralogist, Volume 76, pages 1479-1484, I99I Origin of color in cuprian elbaite from Sflo Jos6 de Batalha, Paraiba, Brazil Gnoncn R. Rosslvr,tN Division of Geology and Planetary Sciences,l7O-25, California Institute of Technology, Pasadena,California 9l125, U.S.A Evrvrm.luel FnrrscH, J,lvrns E. Srncr.Bv GIA Research,Gemological Institute of America, 1660 Stewart Street,Santa Monica, California 90404-4088, U.S.A. Ansrn-q.cr Gem-quality elbaite from Paraiba, Brazil, containing up to 1.4 wt0i6Cu has been char- acterizedusing optical spectroscopyand crystal chemistry. The optical absorption spectra of Cu2t in these tourmalines consist of two bands with maxima in the 695- to 940-nm region that are more intense in the E I c direction. The vivid yellowish green to blue- greencolors of theseelbaite samplesarise primarily from Cu2*and are modified to violet- blue and violet hues by increasingabsorptions from Mn3*. IwrnooucrtoN in a small, decomposed granitic pegmatite (formerly quartz, The color of elbaite has hen extensively investigated. prospectedfor manganotantalite).The associated Most colors are determined by small amounts of transi- altered feldspar, and lepidolite have not been character- tion elements(Dietrich, 1985).In particular, blue to green ized. Most of the tourmalines occur as crystal fragments colors have been attributed to various processesinvolv- weighing less than a g.ram,although pieceslarge enough ing both Fe2*and Fe3*ions (Mattson and Rossman, 1987) to produce facetedgemstones up to 33 carats(6.6 g) have and Fe2*- Tia* chargetransfer (Mattson, as cited in Die- been found. In rare instances, small crystals are recov- trich, 1985, p.
    [Show full text]