Mineral Index

Total Page:16

File Type:pdf, Size:1020Kb

Mineral Index Mineral Index Nomenclature follows M. H. Hey (Chemical Index of Minerals, British Museum, Natural History; 1955, Appendix, 1963). For unnamed compounds see the appropriate chapters, and their supple­ mentary bibliographies. Pages that give data are listed in italics, and those that carry spectra are in bold type. Acanthite 117 Aplome (polyadelphite) 298 Actinolite 318, 321,322, 326, 327 Apophyllite 164, 165, 352, 359 Adamite (adamine) 399 Aragonite 129, 133, 240, 242, 243, 245, 246, Adularia 367,369 273,277 Aegirine 326 Arcanite 425, 439 Aeschynite 413 Ardealite 419, 439 Afwillite 158, 165, 168,452 Ardennite 299 Akaganeite 172 Arfvedsonite 323, 327 Akermanite 101,299 Argentojarosite 433, 437 Aksaite 220 Arrojadite 420 Alamosite 326 Arsenolite 197 Albite 90, 96, 98, 367, 369, 370 Artinite 264,265,266 Alite 298, 447 Ascharite: see szajbelyite Allactite 399 Astrolite 358 Allanite 299, 376, 377, 378 Atelestite 403 Allophane 358 Augelite 404 Alluaudite 420 Aurichalcite 268 Almandine 291, 297, 298 Autunite 408 Alstonite 258 Axinite 374, 376 Alum 433,437,439 Azurite 268 Aluminite 431 Alumohydrocalcite 271 Babingtonite 326 Alunite 433, 439 Baddeleyite 197 Alunogen 430,439 Bandylite 216,217 Amarantite 430 Baotite 326 Amblygonite 407, 420 Barrandite 400 Amesite 342,343,347,348 Barysilite 299 Ammonioborite 221,223 Baryte 133, 427, 437, 439 Amosite 327 Barytocalcite 258 Analcime 164, 165, 368, 371,372, 373 Bassanite 427, 437, 439 Anatase 60, 194, 196 Bastnasite 272 Andalusite 292, 298 Batisite 326 Andersonite 273 Bavenite 377, 378 Andradite 291, 297, 298 Bayerite 145, 147 Anglesite 133, 427, 439 Bayldonite 405 Anhydrite 130, 133, 427, 437, 439 Behoite 145, 148, 172, 379,467,468,469 Ankerite 253 Beidellite 335, 338,349, 350, 357, 358 Annabergite 133, 399 Benitoite 326 Annite 336, 345, 346 Benstonite 258 Anorthite 96, 367, 369 Beraunite 404 (hexagonal) 370 Berlinite 400, 419 Anthophyllite 312, 320, 322, 326, 327 Bertrandite 377,378, 379 Antigorite 342, 343, 347, 348 Beryl 308, 309, 326, 377 Antlerite 430, 439 Beryllonite 377, 378,407 Apatite 132, 133,274, 388, 390, 391, 414, 419 Berzeliite 408 Aphthitalite 431,439 Beudantite 433 527 34 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3750410/9780903056533_backmatter.pdf by guest on 02 October 2021 528 MINERAL INDEX Bieberite 429, 439 Cerianite 197 Biotite 334, 335, 336, 337, 345, 346, 355, 356, Cerite 299 357,358 Cerolite 358 Birnessite 197 Cerussite 240, 242, 245 Bismutite 117 Chabazite 373 Bismutoferrite 298 Chalcanthite 429, 439 Bixbyite 196 Chalcocyanite 428, 439 Blende (sphalerite) 90, 117, 133, 134 Chalcomenite 426 Blodite 432, 439 Chalcophyllite 434, 439 Boehmite 145,147,148,150,172,356 Chalcopyrite 90 «-Boracite 221 Chevkinite 299 Borax 221 Chinglusuite 359 Borcarite 218 Chiolite 116 Botryogen 435, 439 Chkalovite 377 Boulangerite 117 Chlorargyrite 116 Boussingaultite 439 Chlorite 342, 343, 347, 348, 355, 358 Brackebuschite 392 Chloritoid 359 Braunite 298 Chondrodite 290, 298 Brewsterite 374 Chromatite 440 Britholite 298 Chromite 195, 196 Brochantite 430, 439 Chrysoberyl 196 Bromargyrite 116 Chrysocolla 359 Bromellite 196 Chrysoprase earth 358 Bronzite 327 Chrysotile 342, 343, 347, 348, 478, 479, 480 Brookite 194, 196 Churchite (weinschenkite) 401, 403 Brownmillerite 196 Cinnabar 117 Brucite 138, 142,143,470,473,475 Claudetite 197 Brunsvigite 342 Clinoenstatite 326 Brushite 392, 393, 395, 419 Clinoptilolite 373 Bunsenite 184, 185, 197 Clinozoisite 299 Burkeite 273, 439 Clintonite 336,351,357,358 Bustamite 326 Coalingite 271 Biltschliite 256, 257 Cobaltocalcite 239, 340 Bystrornite 412 Coesite 369, 486 Colemanite 213, 219, 221 Collinsite 392 Cabrerite 399 Columbite (niobite) 413 Calciochondrodite 298, 452, 453 Cookeite 358 Calcite 90, 129, 133, 229, 232, 233, 234, 235, Copiapite 435, 439 237,238,239,240,254,273,277 Coquimbite 430, 439 Calcite II 246,248 Cordierite 90, 99, lOO, 308, 309, 310, 326, Calcite III 246, 248 466 Caledonite 434 Cornetite 387 Calomel 116 Coronadite 197 Cancrinite 367, 371, 372 Corundum 90, 93, 186, 188, 189, 190, 196 Carletonite 359 Corvusite 172 Carminite 133 Cotunnite 116 Carnotite 408 Coulsonite 196 Carpholite 326 Crandallite 402, 404 Carphosiderite 430 Cristobalite 368,369 Caryinite 399 Crocidolite 307,314,317,322,324,326, 327 Cassiterite 183, 186, 196, 197 Crocoite 426, 440 Catapleiite 326 Cronstedtite 358 Celadonite 335, 338, 339, 349, 350, 351, 356, Crossite 323 357, 358, 434 Cryolite 116 Celestine 133, 427, 439 Cummingtonite 318, 320,322,326,327 Celsian (hexagonal) 370 Cuprite 197 Cerargyrite 116 Cuspidine 299 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3750410/9780903056533_backmatter.pdf by guest on 02 October 2021 MINERAL INDEX 529 Dahllite 274 Fayalite 288, 289, 298 Danalite 377, 378 Feldspars 96, 298, 367 Danburite 374, 375, 376 Ferberite 133, 435, 440 Daphnite 342 Fergusonite 130 Datolite 218, 375, 376 Ferrinatrite 434, 439 Davyne 371,372 Ferriphlogopite 346 Dawsonite 270, 271 Ferruccite 116 Dellaite 452 Fersmite 413 Descloizite 133, 392, 419 Fibroferrite 430, 439 Deweylite 348, 358 Fichtelite 118 Diamond 133, 134 Fireclays 335,341,358 Diaspore 145, 147, 148, 150, 151, 172 Fluoborite 212 Diatomite 369 Fluorapatite 132, 390 Dickite 335, 340, 358 Fluorite 116 Dietrichite 434, 435 Fluorphlogopite 337,346 Dimorphite 117 Forsterite 289, 290, 298, 480 Diopside 298, 326 Foshagite 453, 454 Dioptase 326 Fowlerite 327 Dolerophane 430, 439 Francolite 274 Dolomite 90, 91, 129, 133,236,253,254,277 Franklinite 192, 197 Dravite 376 Friedelite 359 Dufrenite 404 Dufrenoysite 117 Gadolinite 376, 378 Dumortierite 374, 375, 376 Gahnite 192, 196 Dypingite 264 Galaxite 196 Dzhallindite 145 Galena 117 Ganomalite 299 Eastonite 335, 345, 346 Garnets 133, 298, 459 Eitelite 256, 257, 277 Garnierite 358 Eleonorite (beraunite) 404 Gaspeite 239 Ellestadite 298 Gaylussite 270 Elpidite 327 Gearksutite 172 Enstatite 90, 327,480 Gedrite 318, 320, 327 Ephesite 336,351, 357 Gehlenite 101, 299 Epididymite 164, 165, 376,377,379 Geikielite 90, 93 Epidote 298, 299 Genthite 348, 358 Epsomite 429, 439 Gibbsite 145, 149, 150, 151, 355 cx-Ericaite 221 Gillespite 359 Erythrite (erythrin) 399 Ginorite 221,222 Eskolaite 189, 190, 196 Gismondine 373 Ettringite 434, 438, 439, 459, 460 Glaserite see aphthitalite Euchroite 399 Glauberite 432, 433, 439 Euclase 378,379 Glaucochroite 298 Eucolite 326 Glauconite 339, 358 «-Eucryptite 367 Glaucophane 314,323,324,325,326,327 ,B-Eucryptite 371 Gmelinite 374 Eudialyte 326 Goethite 147, 172, 354, 355 Eudidymite 376, 379 Goslarite 429, 439 Eulytine 298 Gowerite 220, 222 Euxenite 413 Graftonite 392,419 Ewaldite 258 Grandidierite 375, 376 Ezcurrite 221 Graphite 133 Gratonite 117 Fabianite 221 Greenalite 358 Fairchildite 256 Greenockite 117 Fassaite 327 Grimaldiite 154, 155 Faujasite 164, 373,374 Grossular 280,291,297,298 Fauserite 439 Groutite 145 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3750410/9780903056533_backmatter.pdf by guest on 02 October 2021 530 MINERAL INDEX Grunerite 318,320, 326 Hydroniccite 138 Gunningite 429, 439 Hydrotalcite 271 Gypsum 130, 133, 165, 166, 403, 427, 437, 439 Hydroxycancrinite 367 Gyrolite 456 HydroxysodaIite 372 Hydrozincite 268 Hagendorfite 408 Hypersthene 327 Halite 116 Halloysite 341, 353, 355, 358 Ice 104, 162 Halotrichite 434, 435 Idocrase (vesuvianite) 299 Halurgite 222 Ikaite 264 Hambergite 133, 214 Ilesite 439 Hanksite 273, 431 Ilmenite 91, 194, 197 Hardystonite 296, 299 Ilmenorutile 413 Harkerite 222, 224 Ilvaite 296, 299 Harmotome 373,374 ImogoIite 358 Hastingsite 314 Inderborite 222 Hausmannite 196 Inderite 219, 222 Hauyne 372 Indialite 99 Hectorite 334, 335, 337, 345, 352 Inesite 327 Hedenbergite 327 Inyoite 219,223 Heidornite 222 Iodargyrite 116 Hellandite 298 Ivaarite 291,298 Helvine 377, 378 Hematite 189, 190, 194, 197 Hemimorphite 296, 298 Jacobsite 197 Hercynite 196 Jadeite 327 Herderite 378, 392 Jarosite 433, 439 Hetaerolite 197 Jennite 453 Heterogenite 154, 155 Joaquinite 299 Heteromorphite 117 Johannite 434, 439 Heterosite 400 Johannsenite 327 Heulandite 373, 374 Jordanite 117 Hiddenite 327 Hieratite 116 Kainite 439 Hilgardite 223 Kaliborite 223 Hillebrandite 453, 454 Kalicinite 152,260,261 Hisingerite 359 Kalinite 439 Hohmannite 430 Kalkibeborosilite 376 Hollandite 197 Kaolinite 335, 338, 340, 341, 349, 350, 353, Holmquistite 322, 325 355, 356, 358, 467, 468, 469, 476, 477 Homilite 376 Karelianite 196 Hornblende 318, 321, 322, 327 Kentrolite 298 Howlite 375 Kernite 223 Hsianghualite 377, 379 Kerstenite 427, 440 Hubnerite 435, 440 Kieserite 429, 439 Humboldtine 118 Kilchoanite 299,452,453 Humite 290, 298 Knebelite 298 Hummerite 409 Koenenite 172 Huntite 253, 255, 278 Kornerupine 374, 375, 376 Hurlbutite 378, 392 Kotoite 206,212 Huttonite 298 Kottigite 399 Hyalophane 369 Kribergite 402 Hydrobiotite 355 Krohnkite 432, 433, 439 Hydroboracite 222 Kunzite 327 Hydrocerussite 268 Kurchatovite 216 Hydrocyanite 428, 439 Kurnakovite 222, 223 Hydrogarnet 459 Kutnahorite 253 Hydromagnesite 264, 265, 266 Kyanite 292, 298 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3750410/9780903056533_backmatter.pdf by guest on 02 October 2021 MINERAL INDEX 531 Labuntsovite 299 Mercallite 426 Langbeinite 431,432,439 Merwinite 298 Langite 430, 439 Metahalloysite 341, 358 Lansfordite 264 Metahewettite 409 Larderellite 221,223 Metakaolinite 356, 357, 476, 477 Larnite 298, 447 Metavariscite (clinovariscite) 402, 414, 419 Laumontite 367,373,374 Metavoltine 434 Lavenite 299 Metazeunerite 408 Lawsonite 299 Meyerhofferite 219,220,221,223
Recommended publications
  • Crystal Structure of Hillebrandite: a Natural Analogue of Calcium Silicate Hydrate (CSH) Phases in Portland Cement
    American Mineralogist, Volume 80, pages 841-844, 1995 Crystal structure of hillebrandite: A natural analogue of calcium silicate hydrate (CSH) phases in Portland cement YONGSHAN DAI Garber Research Center, Harbison-Walker Refractories, 1001 Pittsburgh-McKeesport Boulevard, West Miffilin, Pennsylvania 15122, U.S.A. JEFFREY E. POST Departmentof MineralSciences,SmithsonianInstitution,Washington,DC 20560,U.S.A. ABSTRACT The crystal structure of hillebrandite, Ca2Si03(OH)2, was solved and refined in space group Cmc21, a = 3.6389, b = 16.311, c = 11.829 A, to R = 0.041 using single-crystal X-ray data. The structure consists of a three-dimensional network of Ca-O polyhedra that accommodates wollastonite-type Si-O tetrahedral chains. Each of the wollastonite-type chains is an average of two symmetrically equivalent chains related by the mirror plane perpen- dicular to a. In a given structural channel of the Ca-O polyhedral network, only one chain orientation can be occupied to give reasonable Si-O distances. The 03 and 04 sites cor- responding to each vacant Si2 site are occupied by OH groups to achieve charge balance. The wollastonite-type Si-O tetrahedral chains in the hillebrandite structure resemble those reported for many calcium silicate hydrate (CSH) phases. INTRODUCTION brandite and comment upon the structural relationships Hillebrandite, Ca2Si03(OH)2, is one natural member of hillebrandite with other CSH phases. of the CaO-Si02-H20 ternary system, which includes nu- merous natural and synthetic calcium silicate hydrate EXPERIMENTAL METHODS (CSH) phases, most with a common unit-cell axis of about After an exhaustive examination of many hillebrandite 3.64 or 2 x 3.64 A and a fibrous crystal habit along this samples, a fragment ofa specimen (NMNH 95767-7) from axis.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • X-Ray Rietveld and 57Fe Mössbauer Study of Babingtonite from Kouragahana, Shimane Peninsula, Japan
    Journal of MineralogicalBabingtonite and from Petrological Kouragahana, Sciences, Shimane Volume Peninsula, 108, pageJapan 121─ 130, 2013 121 X-ray Rietveld and 57Fe Mössbauer study of babingtonite from Kouragahana, Shimane Peninsula, Japan * * ** Masahide AKASAKA , Takehiko KIMURA and Mariko NAGASHIMA *Department of Geoscience, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan **Department of Earth Science, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan Babingtonite from Kouragahana, Shimane Peninsula, Japan, was investigated using electron microprobe, X-ray Rietveld, and 57Fe Mössbauer spectral analyses to characterize its chemical compositions, crystal structure, oxi- dation state of Fe, and distribution of Fe between two crystallographically independent octahedral Fe1 and Fe2 sites. _ The_ Kouragahana babingtonite occurs as single parallelohedrons with {100}, {001}, {001}, {111}, {110}, and {101} and sometimes shows penetration twinning. Both normal and sector-zoned crystals occur. Babing- tonite crystals with sector zoning consist of sectors relatively enriched in Fe and of sectors enriched in Mg, Mn, and Al. Babingtonite also shows compositional zoning with higher Fe2+ and Al core and higher Fe3+ and Mn 2+ rim. The average Fe content of the babingtonite without sector zoning is similar to the Fe -rich sector of the sector-zoned babingtonite. The chemical formula based on the average composition of all analytical data (n = 2+ 3+ - 193) is [Na0.01(2)Ca2.01(2)] [Mg0.11(4)Mn0.09(3)Fe0.76(7)Fe_ 0.93(5)Ti0.01(1)Al0.06(5)]Si5.01(4)O14(OH). X ray Rietveld refinement was carried out using a model of space group P1.
    [Show full text]
  • Trolleite Al4(PO4)3(OH)3 C 2001-2005 Mineral Data Publishing, Version 1
    Trolleite Al4(PO4)3(OH)3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Lamellar, massive, to 3 cm. Physical Properties: Cleavage: In two directions, indistinct. Fracture: Even to conchoidal. Hardness = 8.5 D(meas.) = 3.10 D(calc.) = 3.08 Optical Properties: Translucent. Color: Pale green to bright blue. Luster: Vitreous. Optical Class: Biaxial (–). Dispersion: r> v,weak. α = 1.619 β = 1.639 γ = 1.643 2V(meas.) = 49◦ Cell Data: Space Group: I2/c. a = 18.894(5) b = 7.161(1) c = 7.162(2) β =99.99(2)◦ Z=4 X-ray Powder Pattern: Champion mine, California, USA. 3.208 (100), 3.095 (90), 3.075 (50), 2.519 (45), 3.336 (40), 6.667 (35), 1.983 (35) Chemistry: (1) (2) (3) P2O5 46.72 48.00 47.97 Al2O3 43.26 43.87 45.94 Fe2O3 2.75 0.34 CaO 0.97 0.02 H2O 6.23 [7.77] 6.09 Total 99.93 [100.00] 100.00 (1) V¨astan˚amine, Sweden. (2) H¨okens˚as, Sweden; by electron microprobe, total Fe as Fe2O3, H2O by difference. (3) Al4(PO4)3(OH)3. Occurrence: In amphibolite-grade metamorphic rocks. Association: Berlinite, attakolite, augelite, lazulite (V¨astan˚amine, Sweden); scorzalite, augelite, vis´eite(Champion mine, California, USA); montebrasite, scorzalite, bertossaite, brazilianite, apatite, gatumbaite, samuelsonite, wyllieite (Buranga pegmatite, Rwanda). Distribution: In Sweden, from the V¨astan˚amine, near N¨asum,Sk˚ane; at H˚alsj¨oberg, V¨armland;from H¨okens˚as,V¨asterg¨otland.In the Buranga pegmatite, Rwanda.
    [Show full text]
  • Geochemical Modeling of Iron and Aluminum Precipitation During Mixing and Neutralization of Acid Mine Drainage
    minerals Article Geochemical Modeling of Iron and Aluminum Precipitation during Mixing and Neutralization of Acid Mine Drainage Darrell Kirk Nordstrom U.S. Geological Survey, Boulder, CO 80303, USA; [email protected] Received: 21 May 2020; Accepted: 14 June 2020; Published: 17 June 2020 Abstract: Geochemical modeling of precipitation reactions in the complex matrix of acid mine drainage is fundamental to understanding natural attenuation, lime treatment, and treatment procedures that separate constituents for potential reuse or recycling. The three main dissolved constituents in acid mine drainage are iron, aluminum, and sulfate. During the neutralization of acid mine drainage (AMD) by mixing with clean tributaries or by titration with a base such as sodium hydroxide or slaked lime, Ca(OH)2, iron precipitates at pH values of 2–3 if oxidized and aluminum precipitates at pH values of 4–5 and both processes buffer the pH during precipitation. Mixing processes were simulated using the ion-association model in the PHREEQC code. The results are sensitive to the solubility product constant (Ksp) used for the precipitating phases. A field example with data on discharge and water composition of AMD before and after mixing along with massive precipitation of an aluminum phase is simulated and shows that there is an optimal Ksp to give the best fit to the measured data. Best fit is defined when the predicted water composition after mixing and precipitation matches most closely the measured water chemistry. Slight adjustment to the proportion of stream discharges does not give a better fit. Keywords: geochemical modeling; acid mine drainage; iron and aluminum precipitation; schwertmannite; basaluminite 1.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Mirabilite Na2so4 • 10H2O C 2001-2005 Mineral Data Publishing, Version 1
    Mirabilite Na2SO4 • 10H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals short to long prismatic, with complex form development, also crude, to 10 cm, in interlocking masses; crystalline, granular to compact massive, commonly as efflorescences. Twinning: Rare on {001} or {100}. Physical Properties: Cleavage: On {100}, perfect; on {010} and {001}, good to fair. Fracture: Conchoidal. Hardness = 1.5–2.5 D(meas.) = 1.464 D(calc.) = 1.467 Quickly dehydrates to th´enarditein dry air; very soluble in H2O, taste cool, then saline and bitter. Optical Properties: Transparent to opaque. Color: Colorless to white; colorless in transmitted light. Streak: White. Luster: Vitreous. Optical Class: Biaxial (–). Orientation: X = b; Z ∧ c =31◦. Dispersion: r< v,strong, crossed. α = 1.391–1.394 β = 1.394–1.396 γ = 1.396–1.398 2V(meas.) = 75◦560 Cell Data: Space Group: P 21/c (synthetic). a = 11.512(3) b = 10.370(3) c = 12.847(2) β = 107.789(10)◦ Z=4 X-ray Powder Pattern: Synthetic. (ICDD 11-647). 5.49 (100), 3.21 (75), 3.26 (60), 3.11 (60), 4.77 (45), 3.83 (40), 2.516 (35) Chemistry: (1) (2) SO3 25.16 24.85 Na2O 18.67 19.24 H2O 55.28 55.91 Total 99.11 100.00 • (1) Kirkby Thore, Westmoreland, England. (2) Na2SO4 10H2O. Occurrence: Typically in salt pans, playas, and saline lakes, where deposition may be seasonal, and bedded deposits formed therefrom; rarely in caves and lava tubes; in volcanic fumaroles; a product of hydrothermal sericitic alteration; a post-mining precipitate.
    [Show full text]
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • Iron.Rich Amesite from the Lake Asbestos Mine. Black
    Canodian Mineralogist Yol.22, pp. 43742 (1984) IRON.RICHAMESITE FROM THE LAKE ASBESTOS MINE. BLACKLAKE. OUEBEC MEHMET YEYZT TANER,* AND ROGER LAURENT DAporternentde Gdologie,Universitd Loval, Qudbec,Qudbec GIK 7P4 ABSTRACT o 90.02(1l)', P W.42(12)',1 89.96(8)'.A notreconnais- sance,c'est la premibrefois qu'on ddcritune am6site riche Iron-rich amesite is found in a metasomatically altered enfer. Elles'ct form€ependant l'altdration hydrothermale granite sheet20 to 40 cm thick emplacedin serpentinite of du granitedans la serpentinite,dans les m€mes conditions the Thetford Mi[es ophiolite complex at the Lake Asbestos debasses pression et temperaturequi ont prdsid6d la for- mine (z16o01'N,11"22' W) ntheQuebec Appalachians.The mation de la rodingite dansle granite et de I'amiante- amesiteis associatedsdth 4lodingife 6semblage(grossu- chrysotiledans la serpentinite. lar + calcite t diopside t clinozoisite) that has replaced the primary minerals of the granite. The Quebec amesite Mots-clds:am6site, rodingite, granite, complexeophio- occurs as subhedral grains 2@ to 6@ pm.in diameter that litique, Thetford Mines, Qu6bec. have a tabular habit. It is optically positive with a small 2V, a 1.612,1 1.630,(t -'o = 0.018).Its structuralfor- INTRoDUc"iloN mula, calculated from electron-microprobe data, is: (Mg1.1Fe6.eA1s.e)(Alo.esil.df Os(OH)r.2. X-ray powder- Amesite is a raxehydrated aluminosilicate of mag- diffraction yield data dvalues that are systematicallygreater nesium in which some ferrous iron usually is found than those of amesitefrom Chester, Massachusetts,prob- replacingmapesium. The extent of this replacement ably becauseof the partial replacement of Mg by Fe.
    [Show full text]
  • Salt Crystallization in Porous Construction Materials I Estimation of Crystallization Pressure
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by EPrints Complutense Salt crystallization in porous construction materials I Estimation of crystallization pressure A. La Iglesiaa,*, V. Gonzalezb, V. L6pez-Acevedoc, C. Viedmac , Inslituto de Geologia Economica del CSIC, Facultad de Ciencias Ge% gicas, UCM, E·280411 Madrid. Spain b Deparlamento de Quimica, ETSI, Agronomos, UPM, E·28IJ40 Madrid, Spain , Deparlamenlo de Cristalografia y Mineralogia, Facultad de Ciencias Ge% gicas, UCM. E·28040 Madrid, Spain Abstract The crystallization process of soluble salts inside the natural and artificial porous materials partially immersed in different saline solutions has been studied, This procedure is used to simulate the conditions of exposure to salt weathering in which foundations and lower walls of building structures are within the zone of capillary rise of saline ground water. Crystallization pressures that can develop in the samples, which are a function of the pore size and salt-solution interfacial tension, have been calculated and are compared with experimental values of the materials tensile strength. since both these parameters allow the prediction of porous materials behaviour against salt weathering. Keywords: Salt weathering; Porous media; Salt crystallization; Crystallization pressure 1. Introduction The problem of crystallization pressure of salt was first studied by Correns [6J, who presented The crystallization process of soluble salts in a workable equation based on the Riecke principle porous materials can generate pressures inside the from which the pressure generated P versus salt pores sufficient to exceed the elastic limit of the supersaturation may be calculated: material, causing its breakage.
    [Show full text]
  • Llallagua Tin Ore Deposit (Bolivia)
    resources Article Speculations Linking Monazite Compositions to Origin: Llallagua Tin Ore Deposit (Bolivia) Elizabeth J. Catlos * and Nathan R. Miller Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, 1 University Sta. C9000, EPS 1.130, Austin, TX 78712, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-512-471-4762 Received: 3 May 2017; Accepted: 25 July 2017; Published: 29 July 2017 Abstract: Monazite [(Ce,Th)PO4] from the Llallagua tin ore deposit in Bolivia is characterized by low radiogenic element contents. Previously reported field evidence and mineral associations suggest the mineral formed via direct precipitation from hydrothermal fluids. Monazite compositions thus may provide insight into characteristics of the fluids from which it formed. Chemical compositions of three Llallagua monazite grains were obtained using Electron Probe Microanalysis (EPMA, n = 64) and laser ablation mass spectrometry (LA-ICP-MS, n = 56). The mineral has higher amounts of U (123 ± 17 ppm) than Th (39 ± 20 ppm) (LA-ICP-MS, ±1σ). Grains have the highest amounts of fluorine ever reported for monazite (0.88 ± 0.10 wt %, EPMA, ±1σ), and F-rich fluids are effective mobilizers of rare earth elements (REEs), Y, and Th. The monazite has high Eu contents and positive Eu anomalies, consistent with formation in a highly-reducing back-arc environment. We speculate that F, Ca, Si and REE may have been supplied via dissolution of pre-existing fluorapatite. Llallagua monazite oscillatory zoning is controlled by an interplay of low (P + Ca + Si + Y) and high atomic number (REE) elements.
    [Show full text]