Deformational and Metamorphic History of Campobello 7.5-Minute

Total Page:16

File Type:pdf, Size:1020Kb

Deformational and Metamorphic History of Campobello 7.5-Minute DEFORMATIONAL AND METAMORPHIC HISTORY OF CAMPOBELLO 7.5-MINUTE QUADRANGLE, TUGALOO TERRANE, INNER PIEDMONT, SOUTH CAROLINA CHAN SOO, Rhonda, WICKARD, Alyssa K., GARIHAN, John M., and RANSON, William A.; Earth and Environmental Sciences, Furman University, 3300 Poinsett Highway, Greenville, SC, 29613; [email protected] SCGS I. Introduction The hornblende metagabbro body is Polyphase folding in Campobello VI. Summary surrounded by Tallulah Falls gneiss, but the quadrangle contacts of the body are not exposed. Based Campobello 7.5-minute quadrangle (CQ) is Campobello quadrangle has experienced • The metamorphic peak is in the sillimanite on limited field data we tentatively suggest located on the Six Mile thrust sheet within five generations of folding resulting in zone of the upper amphibolite facies for the the hornblende metagabbro lies in the core the Tugaloo terrane of the Inner Piedmont. polyphase deformation. The Motlow Creek rocks in Campobello quadrangle. Localized of an F synform (see cross section D-D’). Geologic mapping of fifteen 7.5-minute 2 F1 isocline outlined by the schist unit retrograde fluids along faults trending If true, it is probably a fairly thin intrusive quadrangles in the Western Inner Piedmont located in the northeast of CQ has been N50 E metamorphosed rocks to greenschist body. In addition, the hornblende of South Carolina by Furman University deformed by the macroscopic Campobello facies, leading to chlorite replacement of metagabbro outcrop area between the North and the South Carolina Geological Survey F2 synform. Other F2 folds are seen as tight amphiboles. and Holly Springs faults may be a horst. personnel (1995-2010) has investigated the chevron folds found in schist and have • Campobello quadrangle has experienced polyphase fold deformation, faulting, and deformed F1 aligned sillimanite needles, as multiple deformational events resulting evident from hooks that are visible in metamorphic history of the region. Our Pavement exposures of Tallulah Falls gneiss along highly faulted and polyphase deformed chevron folded schist. F macroscopic mapping traces these structures into CQ. Holston Creek, 2 km south of Campobello, SC. H E 3 geologic units. Small isoclinal fold in biotite gneiss, Lyman quarry. Abundant foliation and fold attitude data was inclined to overturned folds trend northwest • The fold chronology consists of five fold collected from similar exposures in streams across and warp F1 and F2 folds. This can be seen generations. F mesoscopic and the map area. View to the south. F – Inclined to overturned macroscopic 1 2 clearly in the Campobello synform (F2), macroscopic isoclinal folds, F inclined to and mesoscopic F folds deform earlier 2 Calcic Amphiboles 2 Mg-Fe-Mn-Li Amphiboles which is cross folded by F3 folds. F2 and F3 overturned mesoscopic chevrons and 2+ Diagram Parameters: (Ca >= 1.50; (Na + K) < 0.50) Diagram Parameters: (Ca + NaB) < 1.00; (Mg, Fe , Mn, Li)B >= 1.00; LiB < 1.00 B A Ca < 0.50 folds. Orthorhombic A Slabbed coarse-grained Photomicrograph (FOV together create Type-2 interference folding. 1.0 1.0 macroscopic folds, F3 gently inclined to tremolite hornblende metagabbro 2mm) of recrystallized The final two generations of folding are 0.8 0.8 overturned mesoscopic and macroscopic anthophyllite gedrite actinolite magnesiohornblende tschermakite hornblende metagabbro. ) ) specimen with relict 2+ 2+ 0.6 0.6 mesoscopic F4 and F5, two generations of igneous texture (?) cut Hornblende (H) folds, and F4 and F5 gentle folds. 0.4 0.4 Mg/(Mg +Fe Mg/(Mg + Fe gentle folding that appear 90° to each other ferroactinolite ferrohornblende ferrotschermakite by thin amphibolite surrounds epidote (E) • The faulting chronology is (oldest- ferroanthophyllite ferrogedrite 0.2 0.2 dikes (?) (left and right grains in the center of in stream pavements creating Type-1 youngest): northeast, northerly, northwest, 0.0 0.0 8.0 7.5 7.0 6.5 6.0 8.0 7.5 7.0 6.5 6.0 5.5 margins). the image. interference folding. Si in formula Si in formula and east-northeast to northerly faults. Amphibole plots identifying the type of amphibole • Dominant fault trends are N35º-40ºW and Silicified cataclastic rocks based on electron microprobe analyses. The Faults in Campobello quadrangle N55º-75ºE and faults are assumed to be West side of Little Mountain (Collins Mountain). Microbreccia, cataclasite, and syntaxial anthophyllite occurs in an amphibole quartz The chronology of faulting in CQ is vertical. This prominent ridge in southeast Campobello feldspar gneiss, the actinolite occurs in a calc- quartz veins (“comb quartz”) form narrow quadrangle has 60 m relief and is the highest peak in northeast (oldest), northerly, northwest, and silicate, and the magnesiohornblende was zones of outcrop, boulders, and resistant the area. View to the east. identified within a hornblende metagabbro. east-northeast to easterly faults. Dominant float. Discontinuous cataclastic rock bodies fault sets consist of older and shorter N35 - References up to 1.3 km in length and trending N 60°- 40 W striking faults and younger but longer Tallulah Falls Formation schist 70°E adjacent to the Pax Mountain Fault N55 -75 E striking faults. Garihan, J.M., Orlando, K.A, Preddy, M.S. (Neoproterozozic) have been traced across the entire Overturned F2 synform in interlayered biotite quartz- feldspar gneiss and amphibolite, Motlow Creek. and Ranson, W.A., 1990, Kinematic Interlayered schist and schistose muscovite- Campobello quadrangle. On a ridge 1.6 km Zones of microbreccia boulders lie along History of Mesozoic Faults in biotite gneiss. northeast of Liberty Church, two main Hammer lies on the gently dipping upright fold limb; to the right, layers abruptly bend and are overturned the Pax Mountain fault and trend N30 - Northwestern South Carolina and zones of outcrops and boulders of in the background at the narrow ledge crossing the 60 E, with individual sets trending N30 E, Adjacent North Carolina: South The original stratigraphic order of microbreccia and comb quartz are 10m and creek. F2 fold hinge plunges to the upper left at N40 -50 E, N55 E and N60 E. In an Carolina Geology, V. 33, No.1, p. 19- 30°/N59°E metamorphic units in CQ is obscured by 25m long. In general, linear cataclastic rock exposure of microbreccia in a roadside 32. polyphase folding and faulting. Schists bodies are a few meters long and up to 3m ditch at GPS location 387668/3883602, Garihan, J. M., and W. A. Ranson, 1992, F – Inclined to overturned macroscopic now lie structurally above the Tallulah Falls high. 3 near Morrow Road and less than 10m north Structure of the Mesozoic Marietta- Formation gneiss. Schist and gneiss in the and mesoscopic F3 folds deform earlier and View to the northeast across peach orchards and of the trace of the Pax Mountain fault, Tryon graben, South Carolina and F folds. rolling pasture land typical of northern Campobello map unit have either biotite or muscovite or 2 extensional veins up to 1ft long were adjacent North Carolina, in M. J. quadrangle. Blue Ridge Front visible in the distance. both present. Common lithologies include oriented N25 E 68 NW, N50 E 60 NW, Bartholomew, D. W. Hyndman, D. W. View to northeast. Each year, South Carolina grows F and F – Upright gentle folds. Not known garnet (up to 5 mm)-mica schist; mica 4 5 and N55 E 82 NW. Northeast of this Mogk, and R. Mason (editors), more than 200 million pounds of peaches. The state from macroscopic map patterns schist interlayered with pegmatite; fine- microbreccia exposure and still less than Basement Tectonics 8: is the No. 2 peach producer in the nation, behind crystalline, limonitic-stained and beige- California. Georgia is No. 3. 10m from the Pax Mountain fault, the Characterization and Comparison of weathered, leucocratic, muscovite- orientation of syntaxial veins was measured Ancient and Mesozoic Continental sillimanite schist with sheared quartz Microbreccia body 12 m wide of Pax Mountain fault zone and enclosing leucocratic biotite quartz- as N50 E, E-W, and N40 -70 E. Two Margins: Proceedings of the Eight lenses, 1-3mm thick and 0.5-2cm long; and feldspar gneiss is exposed along Rt. 176 in separate, north-trending syntaxial quartz International Conference on Basement a fine-crystalline, darker limonitic stained, Campobello, SC. View to northeast. veins (0.5-1 km long) lie 2 km northeast of Tectonics, Kluwer Academic muscovite schist. Gowensville. Publishers, Dordrecht, p. 539-555. II. Rock Type Garihan, J.M., Preddy, M.S., and Ranson, With a decrease in modal mica and an W.A., 1993, Summary of Mid- Tallulah Falls Formation gneiss increase in quartz and feldspar, schist Mesozoic Brittle Faulting in the Inner (Neoproterozoic) grades into gneiss. The gneiss varieties Piedmont and Nearby Charlotte Belt Interlayered biotite quartz feldspar gneiss, include muscovite-biotite-garnet-quartz of the Carolinas: CGS Fieldguide. hornblende quartz feldspar gneiss, gneiss, with garnet comprising up to 40% of Pavement of biotite quartz feldspar gneiss along Garihan, J.M, and Ranson, W.A., 2010, amphibolite, amphibole quartz feldspar the rock composition and muscovite-biotite- SOUTHERN HEMISPHERE, EQUAL AREA STEREOPLOTS OF POLES TO FOLIATION. Geology and Hydrogeology of the Pax quartz-plagioclase (oligoclase) gneiss. Meadow Creek, displaying a Type I interference fold gneiss, calc-silicate gneiss, and garnet SURFACES ARE USED TO DETERMINE STATISTICAL FOLD HINGE ORIENTATIONS pattern due to polyphase deformation. The white Mountain / the Cliffs at Glassy / biotite quartz feldspar gneiss. The different (BETA) OF F AND F FOLDS tape measures mark the axial traces of two gentle Landrum area, Greenville and 2 3 synforms which trend northwest and northeast. Rose Diagram showing fault strike frequencies for rock types are interlayered within CQ. The Thin, criss-crossing microbreccia and “comb quartz” Spartanburg Counties, South Carolina, Q CQ gneiss unit underlies ca. 95% of the veins (striking N40 -80 E and N 18 W) are exposed 18th Annual David S.
Recommended publications
  • Faults and Ductile Shear Zones) from Selected Drill Cores P-07-227
    Oskarshamn site investigation – Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores site investigation – Structural characterization Oskarshamn P-07-227 Oskarshamn site investigation Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores and outcrops from the Laxemar area – Results from Phase 2 Giulio Viola, Guri Venvik Ganerød Geological Survey of Norway, Trondheim, Norway December 2007 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Tel +46 8 459 84 00 P-07-227 CM Gruppen AB, Bromma, 2008 ISSN 1651-4416 Tänd ett lager: SKB P-07-227 P, R eller TR. Oskarshamn site investigation Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores and outcrops from the Laxemar area – Results from Phase 2 Giulio Viola, Guri Venvik Ganerød Geological Survey of Norway, Trondheim, Norway December 2007 Keywords: Oskarshamn, AP PS 400-06-098, Structural geology, Shear zone, Fault, Fault rocks, Kinematics. This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. Data in SKB’s database can be changed for different reasons. Minor changes in SKB’s database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se. A pdf version of this document can be downloaded from www.skb.se. Abstract A study of predominantly brittle structures, i.e. brittle deformation zones, faults, fractures and associated fault rocks, was carried out on a number of drill cores and outcrops of the Laxemar area, Oskarshamn.
    [Show full text]
  • Grain Size Distributions of Fault Rocks: a Comparison Between Experimentally and Naturally Deformed Granitoids
    Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids. Nynke Keulen, Renée Heilbronner, Holger Stünitz, Anne-Marie Boullier, Hisao Ito To cite this version: Nynke Keulen, Renée Heilbronner, Holger Stünitz, Anne-Marie Boullier, Hisao Ito. Grain size distribu- tions of fault rocks: a comparison between experimentally and naturally deformed granitoids.. Journal of Structural Geology, Elsevier, 2007, 29, pp.1282-1300. 10.1016/j.jsg.2007.04.003. hal-00194259 HAL Id: hal-00194259 https://hal.archives-ouvertes.fr/hal-00194259 Submitted on 6 Dec 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript 1 27.03.2007 2 3 Grain size distributions of fault rocks: a comparison between experimentally and 4 naturally deformed granitoids. 5 6 Nynke Keulen1*, Renée Heilbronner1, Holger Stünitz1, Anne-Marie Boullier2, Hisao Ito3 7 8 1Geological Institute, University of Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland 9 2Université Joseph Fourier, Laboratoire de Géophysique Interne et Tectonophysique, 10 UMR CNRS 5559, Maison des Géosciences, BP 53, 38041 Grenoble Cedex 9, France 11 3Center for Deep Earth Exploration, Japan Agency for Marine-Earth Science and Technology 12 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan 13 14 *corresponding author: 15 [email protected] 16 tel.
    [Show full text]
  • Hydrogeological Properties of Fault Zones in a Karstified Carbonate Aquifer (Northern Calcareous Alps, Austria)
    Hydrogeol J DOI 10.1007/s10040-016-1388-9 PAPER Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria) H. Bauer1 & T. C. Schröckenfuchs 1 & K. Decker1 Received: 17 July 2015 /Accepted: 14 February 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract This study presents a comparative, field-based impermeable fault cores only very locally have the potential hydrogeological characterization of exhumed, inactive fault to create barriers. zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic Keywords Fractured rocks . Carbonate rocks . Fault zones . importance supplying 60 % of the drinking water of Austria’s Hydrogeological properties . Austria capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by Introduction a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and per- Fault zones in the upper crust produce permeability heteroge- meabilities >1,000 mD form high-permeability domains. With neities that have a large impact on subsurface fluid migration respect to fault-zone architecture and rock content, which is and storage patterns (e.g. Agosta et al. 2010, 2012; Caine et al. demonstrated to be different for dolostone and limestone, four 1996;Faulkneretal.2010;Jourdeetal.2002; Mitchell and types of faults are presented. Faults with single-stranded mi- Faulkner 2012; Shipton and Cowie 2003; Shipton et al. 2006; nor fault cores, faults with single-stranded permeable fault Wibberley and Shimamoto 2003; Wibberley et al.
    [Show full text]
  • Geometry and Deformation History of Mylonitic Rocks and Silicified Zones Along the Mesozoic Connecticut Valley Border Fault, Western Massachusetts
    ALUN MASS/AMHERST ‘ 31206600765055e fi A ed ‘ : . te a ‘ : Rea A) ll Od ir Ler yie 5 : ‘ 5 3 : $iifaedst! * ‘ 1 5 me ah a - aor peel segs oS rt shay nyt 1 . : Sybey see Patil Pr ae CEs a os ey ee , Ste ee nts yee ee Tp sl pa) seat D Bataade ee . {FM ave ay og : 5 jos atrs DeVere ns era See) ; Lyesverr POET d ’ i oy Verereiaihey ' . hous : Pathak heche u) PE oS Dalle ene ot a eae it) pica Cris MoM te ELA MLA die 3 LE GEE Ad Ch APTN ORE FEV EE AYO AY AE k par ‘ Date Mowe : : sere (no, phe ey Teast ahd ¢ ity a 23% .4% Ay ts eater ee) pa To Pe Ste ophgraeaiek sdpre aay arena ' Pig by ’ ‘ ‘ yee vere Sry on Fic $e x bdalld cet antec Feb Ata eno ae PUTSNT tet W ee SANTEE eT VOTRE ey J Gf, sees 5 ’ ; . ty : ‘ : 4 DSC LE ih DR Jat SOK AT CR Ra gir al Ao Id, eval tat WC SORES caer y Et poy asses ist dre sg ety" : hie Fis bi : u ; y erie } he 5 wie UPD SO ata th Puede? Lae an to Peres) Gee ems i ar aac rn a neha dyhatype aT aint Spark ey sap ea ee tial petty GUS hstghe Vecye peponeagon ererervet Tp aig paar ” gieteMewner F Phe : reba S : rypiech, : ‘ Oh oll lac ah lil tet nt octane stare? re ee eee a eee ry ' tas 7 : ep oy gk bil an i ‘ nea Ay ce iC ie : ' : : ae ' oe arch ire? es rk .
    [Show full text]
  • Title Repeated Seismic Slips Recorded in Ultracataclastic Veins Along Active
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Repeated seismic slips recorded in ultracataclastic veins along Title active faults of the Arima‒Takatsuki Tectonic Line, southwest Japan Author(s) Lin, Aiming; Yamashita, Katsuhiko; Tanaka, Makoto Citation Journal of Structural Geology (2013), 48: 3-13 Issue Date 2013-03 URL http://hdl.handle.net/2433/171146 Right © 2013 Elsevier Ltd. Type Journal Article Textversion author Kyoto University *Manuscript Click here to view linked References 1 Repeated seismic slips recorded in ultracataclastic veins along 2 active faults of the Arima–Takatsuki Tectonic Line, 3 southwest Japan 4 5 6 Aiming Lin1, 2*, Katsuhiko Yamashita2, and Makoto Tanaka3 7 8 1Department of Geophysics, Graduate School of Science 9 Kyoto University, Kyoto 606-8502, Japan 10 2Graduate School of Science and Technology 11 Shizuoka University, Shizuoka 422-8529, Japan 12 3Department of Geology and Mineralogy, Graduate School of Science 13 Kyoto University, Kyoto 606-8502, Japan 14 15 16 **************************** 17 *Corresponding address: 18 Dr. Aiming Lin 19 Department of Geophysics 20 Graduate School of Science 21 Kyoto University 22 Kyoto 606-8502, Japan 23 Fax: 81-54-238-4792 24 E-mail: [email protected] 25 26 1 1 ABSTRACT 2 Field investigations, combined with meso- and microstructural analyses, reveal that 3 numerous ultracataclastic veins are widely developed within a fault zone (<150 m wide) as 4 simple veins, complex lenses, and networks, along active faults of the Arima–Takatsuki 5 Tectonic Line, southwest Japan. These veins comprise mainly pseudotachylyte-like vein 6 and weakly consolidated to unconsolidated fault gouge that is black, dark-brown, brown, 7 gray, and brownish-red in color.
    [Show full text]
  • Kronprins Christian Land Orogeny Deformational Styles of the End Cretaceous Transpressional Mobile Belt in Eastern North Greenland
    Polarforschung 69, J17 - 130, J999 (erschienen 200J) Kronprins Christian Land Orogeny Deformational Styles of the End Cretaceous Transpressional Mobile Belt in Eastern North Greenland By Stig A. Schack-Pedersen' and Eckart Häkansson'? THEME 6: Eurekan Teetonics in Canada, North Greenland, succession superseding the Caledonian and Ellesmerian 01'0­ Spitsbergen; Fold Belts adjacent to Extensional genies in North Greenland (DAWES & SOPER 1973, Fig. 1). Ocean Basins Knowledge of the Wandel Sea Basin was improved consider­ ably through large-scale mapping in eastern North Greenland Summary: In Kronprins Christian Land the end-Cretaceous Kronprins Chri­ by the Geological Survey of Greenland in 1978 to 1980 stian Land Orogeny constitutes a fairly narrow, NW-SE oriented transpres­ (HAKANSSON 1979, HAKANSSON et al. 1981). In the wake of sional zone of deformation characterized by a high-intensity axis with diverging thrust displacement and a rapid, symmetric drop in deformational this campaign a number of models for the regional develop­ intensity and - probably - thermal alteration away from the axis. Strike-slip ment emerged, including models pertaining to the Wandel Sea dominated deformation is centered along a system of prominent, reactivated Basin (e.g. HAKANSSON & PEDERSEN 1982, SOPER et al. 1982). along-axis faults, whereas compressional structural elements dominate in the In this process, the geology of Kronprins Christian Land was areas between the main faults. The two axial tectono-stratigraphic terranes represent, respectively, the north and south verging flanks of a major flower found to be of particular importance to the understanding of structure. The Kilen Terrane exposes upper stockwerk level deformation the regional Wandel Hav Strike-Slip Mobile Belt (WHSSMB) characterized by oblique, en echelon domal folds with minor reverse faults introduced by HAKANSSON & PEDERSEN (1982) as the unifying and late, small-scale tear faults.
    [Show full text]
  • Late to Post-Appalachian Strain Partitioning and Extension in the Blue Ridge of Alabama and Georgia
    Late to post-Appalachian strain partitioning and extension in the Blue Ridge of Alabama and Georgia Mark G. Steltenpohl1, Joshua J. Schwartz2, and B.V. Miller3 1Department of Geology and Geography, Auburn University, Auburn, Alabama 36849, USA 2Department of Geological Sciences, California State University, Northridge, Northridge, California, 91330, USA 3Department of Geology & Geophysics, Texas A&M University, College Station, Texas 77843-3115, USA ABSTRACT margin, possibly refl ecting its reactivation its position far toward the foreland. Loose during Mesozoic rifting of Pangea. timing constraints for this extensional event Structural observations and U-Pb and The Alexander City fault zone is a middle (late Carboniferous to Early Jurassic) leave 40Ar/39Ar isotopic age dates are reported greenschist facies, dextral strike-slip fault room for several tectonic explanations, but for shear zones and metamorphic rocks in rather than a west-vergent thrust fault, as we favor the following. (1) Late Pennsyl- the southernmost Appalachian Blue Ridge. was previously thought. This fault zone is vanian to Early Permian crustal thickening Two major mylonite zones, the Goodwater- obliquely cut and extended by more east- created a wedge of Blue Ridge rocks bound Enitachopco and Alexander City fault zones, trending, subvertical, cataclastic faults above by the Good water-Enitachopco, have retrograded peak amphibolite facies fab- (Mesozoic?) characterized by intense quartz below by the décollement, and to the north- rics and assemblages in rocks of the ancient veining. These brittle faults resemble those west (present-day direction) by a topograph- Laurentian margin. Both faults are within in other parts of the Blue Ridge, Inner ically steep mountain front.
    [Show full text]
  • Arizona Geological Survey | 2Mcdowell Sonoran Field Institute
    QUARTZ VEIN INVESTIGATION, MCDOWELL SONORAN PRESERVE, SCOTTSDALE, MARICOPA COUNTY, ARIZONA Brian F. Gootee1 & Daniel G. Gruber2 1Arizona Geological Survey | 2McDowell Sonoran Field Institute State geological survey employees collecting geothermal data. OPEN-FILE REPORT OFR-15-03 July 2015 Arizona Geological Survey www.azgs.az.gov | repository.azgs.az.gov Arizona Geological Survey M. Lee Allison, State Geologist and Director Manuscript approved for publication in July 2015 Printed by the Arizona Geological Survey All rights reserved For an electronic copy of this publication: www.repository.azgs.az.gov Printed copies are on sale at the Arizona Experience Store 416 W. Congress, Tucson, AZ 85701 (520.770.3500) For information on the mission, objectives or geologic products of the Arizona Geological Survey visit www.azgs.az.gov. This publication was prepared by an agency of the State of Arizona. The State of Arizona, or any agency thereof, or any of their employees, makes no warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the State of Arizona. ___________________________ Recommended Citation: Gootee, B.F. and Gruber, D.G., 2015, Quartz vein investigation, McDowell Sonoran Preserve, Scottsdale, Maricopa County, Arizona. Arizona Geological Survey Open File Report,
    [Show full text]
  • Appomattox Court House National Historical Park Geologic Resources Inventory Report
    National Park Service U.S. Department of the Interior Natural Resource Program Center Appomattox Court House National Historical Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/145 THIS PAGE: Plain Run Branch, in Appomattox Court House National Historical Park, is one tributary of the Appomattox River (also present in the park). The boulders are Cambrian-age metamorphic rock that formed deep within the Earth, in association with the Appalachian Mountains. ON THE COVER: The rolling forested hills of the Piedmont Province of Virginia form the landscape of Appomattox Court House National HistoricalHistorical Park. The low hills contain rocks that formed deep within the Earth during the uplift of the Appalachian Mountains. NPS Photos courtesy Brian Eick (NPS APCO) Appomattox Court House National Historical Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/145 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 September 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • A Review of Deformation Bands in Reservoir Sandstones: Geometries, Mechanisms and Distribution
    A review of deformation bands in reservoir sandstones: geometries, mechanisms and distribution HAAKON FOSSEN1,2,3*, ROGER SOLIVA4, GREGORY BALLAS5, BARBARA TRZASKOS2, CAROLINA CAVALCANTE2 & RICHARD A. SCHULTZ6 1Department of Earth Science and Museum of Natural History, University of Bergen, Postboks 7803, 5007 Bergen, Norway 2Departamento de Geologia, Universidade Federal do Parana´ – Setor de Cieˆncias da Terra, Caixa Postal 19.001, Centro Polite´cnico - Jardim das Ame´ricas, 81531-980 Curitiba, PR, Brazil 3Instituto de Geocieˆncias, Universidade de Sa˜o Paulo, 05508-900, SP, Brazil 4Geosciences Montpellier, Universite´ de Montpellier, Campus Triolet, CC060, Place Euge`ne, Bataillon, 34095 Montpellier Cedex 05, France 5Institut Franc¸ais de Recherche pour l’Exploitation de la Mer, Pointe du Diable, 29280 Plouzane´, France 6Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin Texas 78712 USA *Correspondence: [email protected] Abstract: Deformation bands are common subseismic structures in porous sandstones that vary with respect to deformation mechanisms, geometries and distribution. The amount of cataclasis involved largely determines how they impact fluid flow, and cataclasis is generally promoted by coarse grain size, good sorting, high porosity and overburden (usually .500–1000 m). Most bands involve a combination of shear and compaction, and a distinction can be made between those where shear displacement greatly exceeds compaction (compactional shear bands or CSB), where the two are of similar magnitude (shear-enhanced compaction bands or SECB), and pure compaction bands (PCB). The latter two only occur in the contractional regime, are char- acterized by high (70–1008) dihedral angles (SECB) or perpendicularity (PCB) to s1 (the maxi- mum principal stress) and are restricted to layers with very high porosity.
    [Show full text]
  • Cataclastic and Plutonic Rocks Within and West of the Clinton-Newbury Fault Zone, East-Central Massachusetts" (1976)
    University of New Hampshire University of New Hampshire Scholars' Repository New England Intercollegiate Geological NEIGC Trips Excursion Collection 1-1-1976 Cataclastic and Plutonic Rocks within and West of the Clinton- Newbury Fault Zone, East-Central Massachusetts Gore, Richard S. Follow this and additional works at: https://scholars.unh.edu/neigc_trips Recommended Citation Gore, Richard S., "Cataclastic and Plutonic Rocks within and West of the Clinton-Newbury Fault Zone, East-Central Massachusetts" (1976). NEIGC Trips. 257. https://scholars.unh.edu/neigc_trips/257 This Text is brought to you for free and open access by the New England Intercollegiate Geological Excursion Collection at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NEIGC Trips by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Trips A-15 & B-15 CATACLASTIC AND PLUTONIC ROCKS WITHIN AND WEST OF THE CLINTON-NEWBURY FAULT ZONE, EAST- CENTRAL MASSACHUSETTS RICHARD Z. GORE UNIVERSITY OF LOWELL LOWELL, MASSACHUSETTS Introduction This trip will examine the Clinton-Newbury fault zone and adjacent rock units exposed in the southern two thirds of the Ayer 7i minute quadrangle, Massachusetts, The Clinton-Newbury fault zone is the dominant geologic feature of this area. It separates and includes contrasting lithologic elements. West of the zone, the bedrock is dominated by the Ayer Crystalline Complex(Gore, 1976), a series of closely related, predominantly felsic plutonic rocks, and a series of clastic metasediments. East of the zone is the Tadmuck Brook Schist(3ell and Alvord, 197*0 > a series of clastic and volcano- clastic (?) rocks.
    [Show full text]
  • Geology of the Northern Chugach Mountains, Southcentral Alaska
    GEOLOGY OF THE NORTHERN CHUGACH MOUNTAINS, SOUTHCENTRAL ALASKA BY L.E.Burns, G.H.Pessel, T.A. Little, T.L. Pavlis, R.J. Newberry, G.R. Winkler, and John Decker Professional Report 94 Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DMSION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Alaska Department of NATURAL RESOURCES GEOLOGY OF THE NORTHERN CHUGACH MOUNTAINS, SOUTHCENTRAL ALASKA BY L.E. Burns, G.H. Pessel, TA. Little, T.L. Pavlis, R.J. Newberry, G.R. Winkler, and John Decker Cover: View looking east into valley of a tributary of Coal Creek in the Anchorage C-4 Quadrangle. Photo shows Mesozoic schist (Mzsh) and a very mixed unit of Jurassic diorite-quam diorite (Jdqd) inmdcd by Creraceow rrondhjemite (Kt). A smaU fault-bounded sliver of Jurassic gabbroic rocks (Jgu) is imbedded in the rrondhjemite. A mkture of Jurassic plutonic rocks, including compositionsfrom gabbroic to quom diontic, crops our in the background. Foreground is composed of a rock glacier (Qrg) and glacier (Qg). Photo by G.H. Pessel, 1983. Professional Report 94 Division of Geological & Geophysical Surveys Fairbanks, Alaska 1991 STATE OF ALASKA Walter J. Hickel, Governor DEPARTMENT OF NATURAL RESOURCES Harold C. Heinze, Commissioner DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Thomas E. Smith, Acting Director and State Geologist DGGS publications may be inspected at the following locations. Address mail orders to the Fairbanks office. Alaska Division of Geological & Geophysical Surveys 794 University Avenue, Suite 200 400 Willoughby Avenue, 3rd floor Fairbanks, Alaska
    [Show full text]