Late to Post-Appalachian Strain Partitioning and Extension in the Blue Ridge of Alabama and Georgia

Total Page:16

File Type:pdf, Size:1020Kb

Late to Post-Appalachian Strain Partitioning and Extension in the Blue Ridge of Alabama and Georgia Late to post-Appalachian strain partitioning and extension in the Blue Ridge of Alabama and Georgia Mark G. Steltenpohl1, Joshua J. Schwartz2, and B.V. Miller3 1Department of Geology and Geography, Auburn University, Auburn, Alabama 36849, USA 2Department of Geological Sciences, California State University, Northridge, Northridge, California, 91330, USA 3Department of Geology & Geophysics, Texas A&M University, College Station, Texas 77843-3115, USA ABSTRACT margin, possibly refl ecting its reactivation its position far toward the foreland. Loose during Mesozoic rifting of Pangea. timing constraints for this extensional event Structural observations and U-Pb and The Alexander City fault zone is a middle (late Carboniferous to Early Jurassic) leave 40Ar/39Ar isotopic age dates are reported greenschist facies, dextral strike-slip fault room for several tectonic explanations, but for shear zones and metamorphic rocks in rather than a west-vergent thrust fault, as we favor the following. (1) Late Pennsyl- the southernmost Appalachian Blue Ridge. was previously thought. This fault zone is vanian to Early Permian crustal thickening Two major mylonite zones, the Goodwater- obliquely cut and extended by more east- created a wedge of Blue Ridge rocks bound Enitachopco and Alexander City fault zones, trending, subvertical, cataclastic faults above by the Good water-Enitachopco, have retrograded peak amphibolite facies fab- (Mesozoic?) characterized by intense quartz below by the décollement, and to the north- rics and assemblages in rocks of the ancient veining. These brittle faults resemble those west (present-day direction) by a topograph- Laurentian margin. Both faults are within in other parts of the Blue Ridge, Inner ically steep mountain front. (2) Further a zone of transition between Carboniferous Piedmont, and Pine Mountain terrane and, convergence and crustal thickening caused (Alleghanian) west-directed thrusts in the together with the Goodwater-Enitachopco this wedge to gravitationally collapse with foreland and synchronous strike-parallel and Towaliga faults, they appear to form a southward-driven motion. (3) Mesozoic rift- dextral shear zones in the hinterland. The broad graben-like structure across the entire ing reactivated some of the faults as the Gulf 40Ar/39Ar hornblende and muscovite dates piedmont. Shoulder rocks fl anking the Alex- of Mexico began to open. record late Mississippian cooling and exhu- ander City fault zone contain earlier formed mation from the Late Devonian (Neoacadian (peak to late peak metamorphic) dextral INTRODUCTION orogeny, 380–340 Ma) peak. Retrograde shear zones. A 369.4 ± 4.8 Ma U-Pb ther- mylonites of the Goodwater-Enitachopco mal ionization mass spectrometry date on Following the paradigm shift to plate tectonic fault are of two types. Earlier formed, type zircon records the time of crystallization of thinking in the mid-1960s, which explained 1, upper greenschist to lower amphibolite a dike that cuts one of the shears bracketing how layer-parallel compressive stresses were facies shears are roughly coplanar with the the peak metamorphic fabric to between ca. derived from colliding continents, most south- dominant schistosity of the country rock, and 388 and 369 Ma and places a minimum age ern Appalachian (eastern USA) mylonite zones show northwest-southeast stretching. Later for right-slip shearing. Similar kinematics, were interpreted as west-directed thrusts. formed, type 2 shears are discrete, steeply geometries, tectonostratigraphic positions, Thrust faults are classically documented in dipping, middle to upper greenschist facies and timing indicate that these Devonian the southern Appalachian foreland fold and shear zones that cut across the type 1 shears, shears are more southern counterparts to the thrust belt (i.e., the Valley and Ridge physio- displacing them in an oblique dextral and system of Neoacadian dextral faults exposed graphic province; Fig. 1), where fossiliferous normal slip sense. A 366.5 ± 3.5 Ma U-Pb in the North Carolina Blue Ridge. Paleozoic sedimentary rocks indicate them SHRIMP-RG (sensitive high-resolution Kinematic analysis of the Goodwater- to have formed during the late Carboniferous ion microprobe–reverse geometry) date on Enitachopco and Alexander City faults doc- to Permian (the Alleghanian orogenic phase; zircon from a prekinematic trondhjemite ument that dextral strains in the Alabama Roeder et al., 1978; Woodward, 1957; Hatcher dike that is cut by a type 2 shear zone places and western Georgia Blue Ridge are par- et al., 1989a). Development of methods to con- a maximum age on the time of movement titioned much farther toward the foreland strain the kinematics of fault zones based on along the Goodwater-Enitachopco fault. The than is reported to the northeast, likely as shear-sense indicators in mylonitic rocks in 40Ar/39Ar cooling dates place a minimum on a consequence of the southern Appala- the late 1970s and early 1980s (e.g., see ref- the timing of extensional movement along chian master décollement having passed erences cited in Steltenpohl, 1988) led to the the type 1 shears of between ca. 334 and obliquely across a several kilometer step up paradoxical discovery that practically all of 327 Ma. The Goodwater-Enitachopco fault along the Cartersville transform. The top- the major Carboniferous to Permian mylonite coincides at depth with a basement step up to-the-south-southeast normal-slip compo- zones within the exposed southern Appalachian that has been interpreted as a Cambrian rift nent of movement along the Goodwater- hinterland record right-slip movement rather fault formed along the ancient Laurentian Enitachopco fault is unusual, considering than thrusting (i.e., the Brevard, Towaliga, Geosphere; June 2013; v. 9; no. 3; p. 647–666; doi:10.1130/GES00738.1; 13 fi gures; 3 tables; 1 supplemental fi le. Received 25 July 2011 ♦ Revision received 31 January 2013 ♦ Accepted 19 February 2013 ♦ Published online 7 May 2013 For permission to copy, contact [email protected] 647 © 2013 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/9/3/647/3345404/647.pdf by guest on 29 September 2021 Steltenpohl et al. Modoc, BoxAnkle & WVA hornblende thermochronological analyses. Our Goat Rock shear zones KY results are surprising in that they indicate some- VA Grenville basement 84° 37° A what peculiar kinematic and timing histories t SM that we believe hold important new insights 0 100 km into the late stages of tectonic evolution of the southernmost Appalachians. W dow Cartersvile win transform TN GM Sauratown Mtns GEOLOGIC SETTING BF ennessee Embaymen T ? At the scale of a geologic map of eastern North HF America, stark differences in southern Appa- 86° NC 80° lachian structures are clearly seen between the HF 35° 35° SC Tennessee–western North and South Carolina– GA GS northern Georgia and the Alabama segments of the orogen (Fig. 1). Eastern Tennessee contains AL Brevard zone the classic, thin-skinned, southern Appalachian Laurentian platform foreland fold-and-thrust belt with as many as 13 CF Laurentian margin (E & W BR) labama Promontory AF different, generally coplanar, northwest-directed A ? Dahlonega belt (E & W BR) HL thrusts. In sharp contrast, the Valley and Ridge TC ? olinia Cartoogechaye terrane (EBR) GE Car Cowrock terrane (EBR) of Alabama and western Georgia contains many TF MZ fewer northwest-directed thrusts (see Fig. 1). SWL Tugaloo terrane (EBR & IP) Coastal Plain ACFZ W Emuckfaw Group (EBR) The Cartersville transform corresponds to this PM Uchee terrane Cat Square terrane (IP) transition and is interpreted to mark an ancient GR/BF FZ thermochronology transect in Figure 10 transform fault along the rifted Laurentian mar- gin, separating the Tennessee embayment from Figure 1. Tectonic map of the Southern Appalachians (modifi ed from Hatcher et al., the Alabama promontory (Fig. 1), which served 1989b, 2007a; Hatcher, 2004; Hibbard et al., 2002, 2006; Steltenpohl, 2005; Steltenpohl as a template around which later-emplaced et al., 2008). The Cartersville transform is dashed where we have extended it. Abbre- Appalachian sheets conformed (Thomas, viations: ACFZ—Alexander City fault zone; AF—Allatoona fault; BF—Burnsville fault; 1991, 2006; Tull et al., 1998a, 1998b; Tull and CF—Chattahoochee fault; E BR and W BR—Eastern and Western Blue Ridge; GE— Holm, 2005; Thomas and Steltenpohl, 2010). Goodwater-Enitachopco fault; GMW—Grandfather Mountain window; GR/BF FZ— This thrust stack is directly west of the Great Goat Rock–Bartletts Ferry fault zone; GS—Great Smoky thrust; HL—Hollins Line Smoky and Hayesville thrusts (Fig. 1) that have fault; HF—Hayesville-Fries fault; IP—Inner Piedmont; MZ—Modoc zone; PMW—Pine emplaced the western and eastern Blue Ridge Mountain window; SMA—Smith River allochthon; SWL—Stonewall Line shear zone; terranes, respectively, upon the Laurentian plat- TC—Talladega-Cartersville fault; TF—Towaliga fault. Other letters in bold are state form (Fig. 1; Hatcher, 1987, 2010). The Talla- abbreviations. dega-Cartersville fault is the frontal Blue Ridge fault in Alabama and western Georgia and, like its structural equivalent the Great Smoky fault, Bartletts Ferry, Goat Rock, and Modoc fault from a thickened collisional welt into a col- is the southern Appalachian master décollement zones depicted in Fig. 1; Secor et al., 1986; lapsed and extending rift margin by the end of (Cook et al., 1979). The Talladega-Cartersville Steltenpohl, 1988, 2005; Hooper and Hatcher, Triassic time
Recommended publications
  • Faults and Ductile Shear Zones) from Selected Drill Cores P-07-227
    Oskarshamn site investigation – Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores site investigation – Structural characterization Oskarshamn P-07-227 Oskarshamn site investigation Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores and outcrops from the Laxemar area – Results from Phase 2 Giulio Viola, Guri Venvik Ganerød Geological Survey of Norway, Trondheim, Norway December 2007 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Tel +46 8 459 84 00 P-07-227 CM Gruppen AB, Bromma, 2008 ISSN 1651-4416 Tänd ett lager: SKB P-07-227 P, R eller TR. Oskarshamn site investigation Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores and outcrops from the Laxemar area – Results from Phase 2 Giulio Viola, Guri Venvik Ganerød Geological Survey of Norway, Trondheim, Norway December 2007 Keywords: Oskarshamn, AP PS 400-06-098, Structural geology, Shear zone, Fault, Fault rocks, Kinematics. This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. Data in SKB’s database can be changed for different reasons. Minor changes in SKB’s database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se. A pdf version of this document can be downloaded from www.skb.se. Abstract A study of predominantly brittle structures, i.e. brittle deformation zones, faults, fractures and associated fault rocks, was carried out on a number of drill cores and outcrops of the Laxemar area, Oskarshamn.
    [Show full text]
  • Detrital Zircon Provenance and Lithofacies Associations Of
    geosciences Article Detrital Zircon Provenance and Lithofacies Associations of Montmorillonitic Sands in the Maastrichtian Ripley Formation: Implications for Mississippi Embayment Paleodrainage Patterns and Paleogeography Jennifer N. Gifford 1,*, Elizabeth J. Vitale 1, Brian F. Platt 1 , David H. Malone 2 and Inoka H. Widanagamage 1 1 Department of Geology and Geological Engineering, University of Mississippi, Oxford, MS 38677, USA; [email protected] (E.J.V.); [email protected] (B.F.P.); [email protected] (I.H.W.) 2 Department of Geography, Geology, and the Environment, Illinois State University, Normal, IL 61790, USA; [email protected] * Correspondence: jngiff[email protected]; Tel.: +1-(662)-915-2079 Received: 17 January 2020; Accepted: 15 February 2020; Published: 22 February 2020 Abstract: We provide new detrital zircon evidence to support a Maastrichtian age for the establishment of the present-day Mississippi River drainage system. Fieldwork conducted in Pontotoc County,Mississippi, targeted two sites containing montmorillonitic sand in the Maastrichtian Ripley Formation. U-Pb detrital zircon (DZ) ages from these sands (n = 649) ranged from Mesoarchean (~2870 Ma) to Pennsylvanian (~305 Ma) and contained ~91% Appalachian-derived grains, including Appalachian–Ouachita, Gondwanan Terranes, and Grenville source terranes. Other minor source regions include the Mid-Continent Granite–Rhyolite Province, Yavapai–Mazatzal, Trans-Hudson/Penokean, and Superior. This indicates that sediment sourced from the Appalachian Foreland Basin (with very minor input from a northern or northwestern source) was being routed through the Mississippi Embayment (MSE) in the Maastrichtian. We recognize six lithofacies in the field areas interpreted as barrier island to shelf environments. Statistically significant differences between DZ populations and clay mineralogy from both sites indicate that two distinct fluvial systems emptied into a shared back-barrier setting, which experienced volcanic ash input.
    [Show full text]
  • 129 the Use of Joint Patterns for Understanding The
    129 THE USE OF JOINT PATTERNS FOR UNDERSTANDING THE ALLEGHANIAN OROGENY IN THE UPPER DEVONIAN APPALACHIAN BASIN, FINGER LAKES DISTRICT, NEW YORK TERRY ENGELDER Department of Geosciences, Pennsylvania State University University Park, Pennsylvania 16802 REGIONAL SIGNIFICANCE Abundantevidence (deformed fo ssils) for layer parallel shortening in western New York indicates the extent to which the Alleghanian Orogeny affected the Appalachian Plateau (Engelder and Engelder, 1977). In addition to low amplitude ( 100 m) long wave length ( 15 km) folds the Upper Devonian sediments of western New York contain many< mesoscopic-scale structures< including joints that can be systematically related to the Alleghanian Orogeny. Based on the nonorthogonality of cleavage and joints, the Alleghanian Orogeny in the Finger Lakes District of New York consists of at least two phases which Geiser and Engelder (1983) correlate with folding and cross-cutting cleavages in the Appalachian Valley and Ridge. To the southeast of the Finger Lakes District the earlier Lackawanna Phase is manifested by formation of the Lackawanna syncline and Green Pond outlier and the development of a northeast-striking disjunctive cleavage within the Appalachian Valley and Ridge mainly fromthe Kingston Arch of the Hudson Valley southwestward beyond Port Jervis, Pennsylvania (Fig. 1). Within the Finger Lakes Distric� New York, a Lackawanna Phase cleavage is absent; and one fm ds instead a cross-fold joint set which is consistent in orientation with a Lackawanna Phase compression. In bedded siltstone-shale sequences (i.e. the Genesee Group) this cross-fold joint set favors development in the siltstones 1# 2#). Main Phase (stops and The is seen as the refolding of the Lackawanna syncline and Green Pond outlier, as well as the development of the major folds in central Pennsylvania.
    [Show full text]
  • Geology of the Blue Heron Nature Preserve, Atlanta, Georgia
    Geology of the Blue Heron Nature Preserve, Atlanta, Georgia By naturalist L. Scott Ranger There are two stories to tell about the geology of the Blue Heron Nature Preserve: the very small scale of rocks on the ground at the preserve; and, the very large scale of both time and space of the preserve and its place on the surface of planet earth. On the ground at the preserve… The entire property—and much of this part of North Atlanta—is located on a geologic formation mapped as the button schist (POb). Unlike most geologic formation names, this really isn’t a name, but simply a description of the kind of rock that is found here. It has been called this since the early twentieth century but became more formalized in 1966 with the publishing of Michael W. Higgin’s The Geology of the Brevard Lineament Near Atlanta, Georgia as Bulletin 77 of the now defunct Georgia Geological Survey. This map locates the Blue Heron Nature Preserve in its North Atlanta setting. National Park Service (NPS) Geologic Resources Inventory (GRI) program. 2012. Unpublished Digital Geologic Map of the Northern portion of Chattahoochee River National Recreation Area, Georgia (NPS, GRD, GRI, CHAT, CHTN digital map) adapted from U.S. Geological Survey Open-File Report Series digital map by Dicken et. al. (2005). National Park Service (NPS) Geologic Resources Inventory (GRI) program. Geospatial Dataset-2188723. https://irma.nps.gov/App/Reference/Profile/2188723 National Park Service (NPS) Geologic Resources Inventory (GRI) program. 2012. Unpublished Digital Geologic Map of the Southern portion of Chattahoochee River National Recreation Area, Georgia (NPS, GRD, GRI, CHAT, CHTS digital map) adapted from a U.S.
    [Show full text]
  • Grain Size Distributions of Fault Rocks: a Comparison Between Experimentally and Naturally Deformed Granitoids
    Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids. Nynke Keulen, Renée Heilbronner, Holger Stünitz, Anne-Marie Boullier, Hisao Ito To cite this version: Nynke Keulen, Renée Heilbronner, Holger Stünitz, Anne-Marie Boullier, Hisao Ito. Grain size distribu- tions of fault rocks: a comparison between experimentally and naturally deformed granitoids.. Journal of Structural Geology, Elsevier, 2007, 29, pp.1282-1300. 10.1016/j.jsg.2007.04.003. hal-00194259 HAL Id: hal-00194259 https://hal.archives-ouvertes.fr/hal-00194259 Submitted on 6 Dec 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript 1 27.03.2007 2 3 Grain size distributions of fault rocks: a comparison between experimentally and 4 naturally deformed granitoids. 5 6 Nynke Keulen1*, Renée Heilbronner1, Holger Stünitz1, Anne-Marie Boullier2, Hisao Ito3 7 8 1Geological Institute, University of Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland 9 2Université Joseph Fourier, Laboratoire de Géophysique Interne et Tectonophysique, 10 UMR CNRS 5559, Maison des Géosciences, BP 53, 38041 Grenoble Cedex 9, France 11 3Center for Deep Earth Exploration, Japan Agency for Marine-Earth Science and Technology 12 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan 13 14 *corresponding author: 15 [email protected] 16 tel.
    [Show full text]
  • Geologic Controls on the Morphology of the Chattooga River
    Geologic Controls on the Morphology of the Chattooga River Scott E. Brame Geological Sciences Clemson University Clemson, SC 29634 and Robert D. Hatcher, Jr. Earth and Planetary Sciences and Science Alliance Center of Excellence University of Tennessee Knoxville, TN 37996–1410 Abstract The East fork of the Wild and Scenic Chattooga River drains the south side of Whiteside Mountain in North Carolina and flows in a predominant southwesterly direction following the predominant joint direction, and to a much lesser extent the foliation, until it turns sharply to the southeast becoming part of the Savannah River system and flows to the Atlantic Ocean. Paralleling the northeast to southwest trend is the Brevard fault zone and two other river systems, the Chauga River in South Carolina and the Chattahoochee River in Georgia. The Chauga follows a pattern similar to that of the Chattooga, turning sharply to the southeast after flowing predominantly to the southwest from its headwaters. The locations that mark the abrupt turn of the flow of the Chattooga and Chauga Rivers from the southwest to the southeast are likely the result of stream piracy as proposed by Acker and Hatcher. The upper sections of the Chattooga and Chauga represent an extension of the Dahlonega Plateau with a topographic surface that has a maximum elevation of approximately 1600 feet. The 1600’ surface is a piedmont surface at the base of the Blue Ridge. Differential erosion along northeast- and northwest-trending joint sets has exerted a powerful control on the development of the landscape. The northwest-trending joint sets have encouraged headward erosion and breaching of the Dahlonega Plateau surface resulting in stream capture of both the Chattooga and Chauga watersheds by the Savannah River system.
    [Show full text]
  • Character of the Alleghanian Orogeny in the Southern Appalachians: Part I
    Character of the Alleghanian orogeny in the southern Appalachians: Part I. Alleghanian deformation in the eastern Piedmont of South Carolina DONALD T. SECOR, JR. Department of Geology, University of South Carolina, Columbia, South Carolina 29208 ARTHUR W. SNOKE Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071 KENNETH W. BRAMLETT Shell Western E and P, Inc., Box 831, Houston, Texas 77001 OLIVER P. COSTELLO Samson Resources, 801 Travis Street, Suite 1630, Houston, Texas 77002 OLLIE P. KIMBRELL Soil & Material Engineers, Inc., 3025 McNaughton Drive, Columbia, South Carolina 29223 ABSTRACT ward, 1957) is a fundamental problem. This report summarizes results of new field work and outlines interpretations concerning late Paleozoic de- The eastern Piedmont Province in South Carolina contains a formation along the Fall Line in west-central South Carolina. This infor- sequence of Cambrian volcanic and sedimentary rocks that was pene- mation is essential to development of a more general analysis of the tratively deformed (Dj) and regionally metamorphosed (Mi) to the Alleghanian orogeny in the southern Appalachians (Secor and others, greenschist facies during the early and/or middle Paleozoic. The east- 1986). era Piedmont was subsequently affected by late Paleozoic (Allegha- nian) polyphase deformation (D2-D4) and regional metamorphism. The OVERVIEW earliest Alleghanian event (D2) is associated with amphibolite facies regional metamorphism and felsic plutonism in a mid-crustal infra- In the southeastern Piedmont, late Paleozoic deformation events af- structure at ca. 295-315 Ma. The gradational interface between infra- fected a region that had previously been strongly deformed in the early structure and overlying suprastructure contained a steep M2 and/or middle Paleozoic.
    [Show full text]
  • Early Jointing in Coal and Black Shale: Evidence for an Appalachian-Wide Stress field As a Prelude to the Alleghanian Orogeny
    Early jointing in coal and black shale: Evidence for an Appalachian-wide stress field as a prelude to the Alleghanian orogeny Terry Engelder* ⎤ ⎥ Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA Amy Whitaker† ⎦ ABSTRACT means of stratigraphically controlled decolle- Early ENE-striking joints (present coordinates) within both Pennsylvanian coal and ment tectonics (Gates et al., 1988; Wise, Devonian black shale of the Central and Southern Appalachians reflect an approximately 2004). rectilinear stress field with a dimension Ͼ1500 km. This Appalachian-wide stress field (AWSF) dates from the time of joint propagation, when both the coal and shale were FRACTURE EVIDENCE FOR THE buried to the oil window during the 10–15 m.y. period straddling the Pennsylvanian- AWSF Permian boundary. The AWSF was generated during the final assembly of Pangea as a Along the Appalachian Mountains an ENE consequence of plate-boundary tractions arising from late-stage oblique convergence, joint set is the first to propagate in many out- where maximum horizontal stress, SH, of the AWSF was parallel to the direction of closure crops of Devonian through Pennsylvanian between Gondwana and Laurentia. After closure, the AWSF persisted during dextral slip rocks (e.g., Nickelsen and Hough, 1967; Nick- of peri-Gondwanan microcontinents, when SH appears to have crosscut plate-scale trans- elsen, 1979; Kulander and Dean, 1993; Pashin current faults at ϳ30؇. Following Ͼ10 m.y. of dextral slip during tightening of Gondwana and Hinkle, 1997). This early joint set strikes against Laurentia, the AWSF was disrupted by local stress fields associated with thrusting parallel to the orientation of the maximum on master basement decollements to produce the local orocline-shaped Alleghanian map horizontal stress, SH, in a stress field that was pattern seen today.
    [Show full text]
  • Geologic Controls on the Morphology of the Chattooga River
    The 22nd Annual David S. Snipes/Clemson Hydrogeology Symposium Field Trip Guidebook A Geologic Transect from the Piedmont to the Blue Ridge along US Hwy 76 in South Carolina Table Rock gneiss exposed at Ramsey Creek Falls, Chau Ram Park, SC Field Trip Leaders: Sergey Goretoy and Scott Brame April 2 and 4, 2014 A Geologic Transect from the Piedmont to the Blue Ridge along US Hwy 76 in South Carolina Scott E. Brame and Sergey Goretoy Environmental Engineering and Earth Sciences Clemson University Clemson, SC 29634 Introduction This geologic transect is based on a field trip (Hatcher, 2001a) which was part of the ninth Annual Clemson Hydrogeology Symposium. The primary focus of this trip is to view the major geologic transitions that occur heading west from the Walhalla nappe across the Eastatoee fault and Brevard Zone along US Hwy 76 in South Carolina. Since the original field trip in 2001, Garihan and Clendenin (2007) have identified the Eastatoee fault as a major structural transition between the migmatitic rocks of the Walhalla nappe and the non-migmatitic Henderson Gneiss. Observations by the authors of this guide have confirmed the descriptions of rock types identified previously by Hatcher (2000, 2001b), Hatcher and Liu (2001), and Hatcher, Acker, and Liu, (2001), but insights provided by Clendenin and Garihan (2007) during their mapping have been applied to reinterpret some of the original structural relationships. Geologic Interpretation Recent geologic mapping in the northwestern part of South Carolina (Garihan, 2005; (Garihan and others, 2005) divides the western Inner Piedmont thrust stack into (southeast to northwest) the Six Mile, Walhalla, and Jocassee thrust sheets with the Brevard Zone acting as the western boundary.
    [Show full text]
  • Hydrogeological Properties of Fault Zones in a Karstified Carbonate Aquifer (Northern Calcareous Alps, Austria)
    Hydrogeol J DOI 10.1007/s10040-016-1388-9 PAPER Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria) H. Bauer1 & T. C. Schröckenfuchs 1 & K. Decker1 Received: 17 July 2015 /Accepted: 14 February 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract This study presents a comparative, field-based impermeable fault cores only very locally have the potential hydrogeological characterization of exhumed, inactive fault to create barriers. zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic Keywords Fractured rocks . Carbonate rocks . Fault zones . importance supplying 60 % of the drinking water of Austria’s Hydrogeological properties . Austria capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by Introduction a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and per- Fault zones in the upper crust produce permeability heteroge- meabilities >1,000 mD form high-permeability domains. With neities that have a large impact on subsurface fluid migration respect to fault-zone architecture and rock content, which is and storage patterns (e.g. Agosta et al. 2010, 2012; Caine et al. demonstrated to be different for dolostone and limestone, four 1996;Faulkneretal.2010;Jourdeetal.2002; Mitchell and types of faults are presented. Faults with single-stranded mi- Faulkner 2012; Shipton and Cowie 2003; Shipton et al. 2006; nor fault cores, faults with single-stranded permeable fault Wibberley and Shimamoto 2003; Wibberley et al.
    [Show full text]
  • Regional Seismic Lines Across the Rome Trough and Allegheny Plateau of Northern West Virginia, Western Maryland, and Southwestern Pennsylvania
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I–2791 U.S. GEOLOGICAL SURVEY REGIONAL SEISMIC LINES ACROSS THE ROME TROUGH AND ALLEGHENY PLATEAU OF NORTHERN WEST VIRGINIA, WESTERN MARYLAND, AND SOUTHWESTERN PENNSYLVANIA By Christopher S. Kulander 1 and Robert T. Ryder 2 INTRODUCTION having thin-skinned structures with greater tectonic shortening. These provinces meet at a physiographic and structural boundary The study area for this investigation is the central Appalachian called the Allegheny structural front. The Rome trough, a north­ basin (see index map below). The northern West Virginia, west­ east-trending graben that involves basement, underlies the ern Maryland, and southwestern Pennsylvania parts of the cen­ Allegheny Plateau (fig. 2). Commonly, basement rocks in the tral Appalachian basin consist of complex structural geometries Rome trough are buried beneath at least 20,000 feet (ft) of and a thick Paleozoic sequence. Here, the basin coincides with Paleozoic strata (Shumaker, 1996). Little has been published that is related to the deep structure of 80˚ the Rome trough in northern West Virginia, western Maryland, and southwestern Pennsylvania. Wells drilled to basement are absent here and most of the multi-fold seismic data are propri­ etary. Although Ryder (1991) and Ryder and others (1992) con­ NY structed several detailed stratigraphic cross sections of Cambrian and Ordovician strata across parts of the Rome trough and Shumaker (1996) mapped basement structure along the entire PA NJ 40˚ Rome trough from central Kentucky to northeastern Pennsylvania, few interpreted, regional seismic-based geologic OH MD DE cross sections have been published in this area. The objective of this investigation is to interpret the structure and stratigraphy of 40˚ WV the Rome trough and Allegheny Plateau of northern West VA Virginia, western Maryland, and southwestern Pennsylvania KY based on three multi-fold seismic lines acquired by Amoco in the early 1980s.
    [Show full text]
  • Significance of the Deformation History Within the Hinge Zone of the Pennsylvania Salient, Appalachian Mountains
    Bucknell University Bucknell Digital Commons Faculty Journal Articles Faculty Scholarship 2014 Significance of the Deformation History within the Hinge Zone of the Pennsylvania Salient, Appalachian Mountains Mary Beth Gray Bucknell University, [email protected] Peter B. Sak [email protected] Zeshan Ismat Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_journ Part of the Tectonics and Structure Commons Recommended Citation Sak, P.B., Gray, M.B., and Ismat, Z., 2014, Significance of the Juniata culmination in the deformation history of the Pennsylvania salient, Appalachian Mountains. Journal of Geology 122, 367-380 This Article is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It has been accepted for inclusion in Faculty Journal Articles by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. Significance of the Deformation History within the Hinge Zone of the Pennsylvania Salient, Appalachian Mountains Peter B. Sak,1,* Mary Beth Gray,2 and Zeshan Ismat3 1. Department of Earth Sciences, Dickinson College, Carlisle, Pennsylvania 17013, USA; 2. Department of Geology, Bucknell University, Lewisburg, Pennsylvania 17837, USA; 3. Department of Earth and Environment, Franklin and Marshall College, Lancaster, Pennsylvania 17603, USA ABSTRACT Two competing models exist for the formation of the Pennsylvania salient, a widely studied area of pronounced curvature in the Appalachian mountain belt. The viability of these models can be tested by compiling and analyzing the patterns of structures within the general hinge zone of the Pennsylvania salient. One end-member model suggests a NW-directed maximum shortening direction and no rotation through time in the culmination.
    [Show full text]