Geology of the Northern Chugach Mountains, Southcentral Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Geology of the Northern Chugach Mountains, Southcentral Alaska GEOLOGY OF THE NORTHERN CHUGACH MOUNTAINS, SOUTHCENTRAL ALASKA BY L.E.Burns, G.H.Pessel, T.A. Little, T.L. Pavlis, R.J. Newberry, G.R. Winkler, and John Decker Professional Report 94 Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DMSION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Alaska Department of NATURAL RESOURCES GEOLOGY OF THE NORTHERN CHUGACH MOUNTAINS, SOUTHCENTRAL ALASKA BY L.E. Burns, G.H. Pessel, TA. Little, T.L. Pavlis, R.J. Newberry, G.R. Winkler, and John Decker Cover: View looking east into valley of a tributary of Coal Creek in the Anchorage C-4 Quadrangle. Photo shows Mesozoic schist (Mzsh) and a very mixed unit of Jurassic diorite-quam diorite (Jdqd) inmdcd by Creraceow rrondhjemite (Kt). A smaU fault-bounded sliver of Jurassic gabbroic rocks (Jgu) is imbedded in the rrondhjemite. A mkture of Jurassic plutonic rocks, including compositionsfrom gabbroic to quom diontic, crops our in the background. Foreground is composed of a rock glacier (Qrg) and glacier (Qg). Photo by G.H. Pessel, 1983. Professional Report 94 Division of Geological & Geophysical Surveys Fairbanks, Alaska 1991 STATE OF ALASKA Walter J. Hickel, Governor DEPARTMENT OF NATURAL RESOURCES Harold C. Heinze, Commissioner DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Thomas E. Smith, Acting Director and State Geologist DGGS publications may be inspected at the following locations. Address mail orders to the Fairbanks office. Alaska Division of Geological & Geophysical Surveys 794 University Avenue, Suite 200 400 Willoughby Avenue, 3rd floor Fairbanks, Alaska 99709-3645 Juneau, Alaska 99801-1796 U. S. Geological Survey Earth Science Information Center 605 West 4th Avenue, Room G684 4230 University Drive, Room 101 Anchorage, Alaska 99501-2299 Anchorage, Alaska 99508-4664 This publication, released by the Division of Geological & Geophysical Surveys, was produced at a cost of $10 per copy which includes the text printed in Delta Junction, Alaska and the oversize maps which were printed in Washington, D.C.Publica- tion is required by Alaska Statute 41, "to determine the potential of Alaskan land for production of metals, minerals, ...[and] advance knowledge of the geology of Alaska." CONTENTS Page Abstract ............................................................................................................................................................... Introduction ........................................................................................................................................................ Description of the study area ..................................................................................................................... Location, access, and topography ............................. .............................................................................. Previous work ............................................................................................................................................... Current study ................................................................................................................................................ Geologic setting ................................................................................................................................................ Peninsular terrane ...................................................................................................................................... Chugach terrane ....................................................................................................................................... Rocks common to both terranes ........................ .................................................................................. Descriptive geology of the Peninsular terranc ............................................................................................... Paleozoic(?) and Mesozoic metamorphic rocks ...................................................................................... Petrology and lithology ....................................................................................................................... Amphibolite and marble ................................................................................................................ Pelitic schist and quartzite .............................................................................................................. Mixed assemblages of metamorphic and plutonic rock .............................................................. Alteration and metamorphism ............................................................................................................. Age, correlation, and interpretation .................................................................................................... Jurassic system igneous rocks .................................................................................................................... Volcanic rocks of the Talkeetna Formation ....................................................................................... Plutonic rocks ......................................................................................................................................... Cumulate ultramafic rocks ............................................................................................................. Petrology and lithology ............................................................................................................. Mineralogy .................................................................................................................................. Alteration and metamorphism .............................................................................................. Deformation .............................................................................................................................. Gabbroic rocks ................................................................................................................................. Petrology and lithology ........................................................................................................... Mineralogy .................................................................................................................................. Gabbronorite clan ............................................................................................................. Pyroxene-hornblende gabbronorite .................................................................................. Alteration and metamorphism .............................................................................................. Age and correlation ................................................................................................................... Intermediate composition plutonic rocks ..................................................................................... Quartz diorite and tonalite ....................................................................................................... Granodiorite within quartz diorite-tonalilc plutons .............................................................. Small plutons of quartz monzodiorite and granodiorite ....................................................... Age and correlation ................................................................................................................ Interpretation ......................................................................................................................................... Cretaceous sedimentary rocks ................................................................................................................... Matanuska Formation ........................................................................................................................ Petrology and lithology .................................................................................................................. Age and correlation ......................................................................................................................... Interpretation ................................................................................................................................... Descriptive geology of the Chugach terrane .................................................................................................. Cretaceous system ....................................................................................................................................... McHugh Complex ................................................................................................................................. Petrology and lithology ................................................................................................................... Alteration and metamorphism ....................................................................................................... Age and correlation ......................................................................................................................... Interpretation and deformation ..................................................................................................... Valdez Group ........................ .............................................................................................................. Petrology and lithology ..................................................................................................................
Recommended publications
  • NOTES on the BIRDS of CHIRIKOF ISLAND, ALASKA Jack J
    NOTES ON THE BIRDS OF CHIRIKOF ISLAND, ALASKA JACK J. WITHROW, University of Alaska Museum, 907 Yukon Drive, Fairbanks, Alaska 99775; [email protected] ABSTRACT: Isolated in the western Gulf of Alaska 61 km from nearest land and 74 km southwest of the Kodiak archipelago, Chirikof Island has never seen a focused investigation of its avifauna. Annotated status and abundance for 89 species recorded during eight visits 2008–2014 presented here include eastern range extensions for three Beringian subspecies of the Pacific Wren (Troglodytes pacificus semidiensis), Song Sparrow (Melospiza melodia sanaka), and Gray-crowned Rosy-Finch (Leucost- icte tephrocotis griseonucha). A paucity of breeding bird species is thought to be a result of the long history of the presence of introduced cattle and introduced foxes (Vulpes lagopus), both of which persist to this day. Unique among sizable islands in southwestern Alaska, Chirikof Island (55° 50′ N 155° 37′ W) has escaped focused investigations of its avifauna, owing to its geographic isolation, lack of an all-weather anchorage, and absence of major seabird colonies. In contrast, nearly every other sizable island or group of islands in this region has been visited by biologists, and they or their data have added to the published literature on birds: the Aleutian Is- lands (Gibson and Byrd 2007), the Kodiak archipelago (Friedmann 1935), the Shumagin Islands (Bailey 1978), the Semidi Islands (Hatch and Hatch 1983a), the Sandman Reefs (Bailey and Faust 1980), and other, smaller islands off the Alaska Peninsula (Murie 1959, Bailey and Faust 1981, 1984). With the exception of most of the Kodiak archipelago these islands form part of the Alaska Maritime National Wildlife Refuge (AMNWR), and many of these publications are focused largely on seabirds.
    [Show full text]
  • 1 Paleobotanical Proxies for Early Eocene Climates and Ecosystems in Northern North 2 America from Mid to High Latitudes 3 4 Christopher K
    https://doi.org/10.5194/cp-2020-32 Preprint. Discussion started: 24 March 2020 c Author(s) 2020. CC BY 4.0 License. 1 Paleobotanical proxies for early Eocene climates and ecosystems in northern North 2 America from mid to high latitudes 3 4 Christopher K. West1, David R. Greenwood2, Tammo Reichgelt3, Alexander J. Lowe4, Janelle M. 5 Vachon2, and James F. Basinger1. 6 1 Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, 7 Saskatchewan, S7N 5E2, Canada. 8 2 Dept. of Biology, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada. 9 3 Department of Geosciences, University of Connecticut, Beach Hall, 354 Mansfield Rd #207, 10 Storrs, CT 06269, U.S.A. 11 4 Dept. of Biology, University of Washington, Seattle, WA 98195-1800, U.S.A. 12 13 Correspondence to: C.K West ([email protected]) 14 15 Abstract. Early Eocene climates were globally warm, with ice-free conditions at both poles. Early 16 Eocene polar landmasses supported extensive forest ecosystems of a primarily temperate biota, 17 but also with abundant thermophilic elements such as crocodilians, and mesothermic taxodioid 18 conifers and angiosperms. The globally warm early Eocene was punctuated by geologically brief 19 hyperthermals such as the Paleocene-Eocene Thermal Maximum (PETM), culminating in the 20 Early Eocene Climatic Optimum (EECO), during which the range of thermophilic plants such as 21 palms extended into the Arctic. Climate models have struggled to reproduce early Eocene Arctic 22 warm winters and high precipitation, with models invoking a variety of mechanisms, from 23 atmospheric CO2 levels that are unsupported by proxy evidence, to the role of an enhanced 24 hydrological cycle to reproduce winters that experienced no direct solar energy input yet remained 25 wet and above freezing.
    [Show full text]
  • PUBLIC NOTICE Washington, D.C
    REPORT NO. PN-1-210205-01 | PUBLISH DATE: 02/05/2021 Federal Communications Commission 45 L Street NE PUBLIC NOTICE Washington, D.C. 20554 News media info. (202) 418-0500 APPLICATIONS File Number Purpose Service Call Sign Facility ID Station Type Channel/Freq. City, State Applicant or Licensee Status Date Status 0000132840 Assignment AM WING 25039 Main 1410.0 DAYTON, OH ALPHA MEDIA 01/27/2021 Accepted of LICENSEE LLC For Filing Authorization From: ALPHA MEDIA LICENSEE LLC To: Alpha Media Licensee LLC Debtor in Possession 0000132974 Assignment FM KKUU 11658 Main 92.7 INDIO, CA ALPHA MEDIA 01/27/2021 Accepted of LICENSEE LLC For Filing Authorization From: ALPHA MEDIA LICENSEE LLC To: Alpha Media Licensee LLC Debtor in Possession 0000132926 Assignment AM WSGW 22674 Main 790.0 SAGINAW, MI ALPHA MEDIA 01/27/2021 Accepted of LICENSEE LLC For Filing Authorization From: ALPHA MEDIA LICENSEE LLC To: Alpha Media Licensee LLC Debtor in Possession 0000132914 Assignment FM WDLD 23469 Main 96.7 HALFWAY, MD ALPHA MEDIA 01/27/2021 Accepted of LICENSEE LLC For Filing Authorization From: ALPHA MEDIA LICENSEE LLC To: Alpha Media Licensee LLC Debtor in Possession 0000132842 Assignment AM WJQS 50409 Main 1400.0 JACKSON, MS ALPHA MEDIA 01/27/2021 Accepted of LICENSEE LLC For Filing Authorization From: ALPHA MEDIA LICENSEE LLC To: Alpha Media Licensee LLC Debtor in Possession Page 1 of 66 REPORT NO. PN-1-210205-01 | PUBLISH DATE: 02/05/2021 Federal Communications Commission 45 L Street NE PUBLIC NOTICE Washington, D.C. 20554 News media info. (202) 418-0500 APPLICATIONS File Number Purpose Service Call Sign Facility ID Station Type Channel/Freq.
    [Show full text]
  • 1961 Climbers Outing in the Icefield Range of the St
    the Mountaineer 1962 Entered as second-class matter, April 8, 1922, at Post Office in Seattle, Wash., under the Act of March 3, 1879. Published monthly and semi-monthly during March and December by THE MOUNTAINEERS, P. 0. Box 122, Seattle 11, Wash. Clubroom is at 523 Pike Street in Seattle. Subscription price is $3.00 per year. The Mountaineers To explore and study the mountains, forests, and watercourses of the Northwest; To gather into permanent form the history and traditions of this region; To preserve by the encouragement of protective legislation or otherwise the natural beauty of Northwest America; To make expeditions into these regions in fulfillment of the above purposes; To encourage a spirit of good fellowship among all lovers of outdoor Zif e. EDITORIAL STAFF Nancy Miller, Editor, Marjorie Wilson, Betty Manning, Winifred Coleman The Mountaineers OFFICERS AND TRUSTEES Robert N. Latz, President Peggy Lawton, Secretary Arthur Bratsberg, Vice-President Edward H. Murray, Treasurer A. L. Crittenden Frank Fickeisen Peggy Lawton John Klos William Marzolf Nancy Miller Morris Moen Roy A. Snider Ira Spring Leon Uziel E. A. Robinson (Ex-Officio) James Geniesse (Everett) J. D. Cockrell (Tacoma) James Pennington (Jr. Representative) OFFICERS AND TRUSTEES : TACOMA BRANCH Nels Bjarke, Chairman Wilma Shannon, Treasurer Harry Connor, Vice Chairman Miles Johnson John Freeman (Ex-Officio) (Jr. Representative) Jack Gallagher James Henriot Edith Goodman George Munday Helen Sohlberg, Secretary OFFICERS: EVERETT BRANCH Jim Geniesse, Chairman Dorothy Philipp, Secretary Ralph Mackey, Treasurer COPYRIGHT 1962 BY THE MOUNTAINEERS The Mountaineer Climbing Code· A climbing party of three is the minimum, unless adequate support is available who have knowledge that the climb is in progress.
    [Show full text]
  • Faults and Ductile Shear Zones) from Selected Drill Cores P-07-227
    Oskarshamn site investigation – Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores site investigation – Structural characterization Oskarshamn P-07-227 Oskarshamn site investigation Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores and outcrops from the Laxemar area – Results from Phase 2 Giulio Viola, Guri Venvik Ganerød Geological Survey of Norway, Trondheim, Norway December 2007 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Tel +46 8 459 84 00 P-07-227 CM Gruppen AB, Bromma, 2008 ISSN 1651-4416 Tänd ett lager: SKB P-07-227 P, R eller TR. Oskarshamn site investigation Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores and outcrops from the Laxemar area – Results from Phase 2 Giulio Viola, Guri Venvik Ganerød Geological Survey of Norway, Trondheim, Norway December 2007 Keywords: Oskarshamn, AP PS 400-06-098, Structural geology, Shear zone, Fault, Fault rocks, Kinematics. This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. Data in SKB’s database can be changed for different reasons. Minor changes in SKB’s database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se. A pdf version of this document can be downloaded from www.skb.se. Abstract A study of predominantly brittle structures, i.e. brittle deformation zones, faults, fractures and associated fault rocks, was carried out on a number of drill cores and outcrops of the Laxemar area, Oskarshamn.
    [Show full text]
  • Glenn Highway Region
    Chapter 3: Glenn Highway Region Glenn Highway Region This approximately 581,000 acre region encompasses the Glenn Highway corridor from Palmer out past Eureka to the eastern border of the Matanuska-Susitna Borough. It follows the Matanuska River Valley with the Talkeetna Mountains to the north and Chugach Mountains to the south. The communities of Palmer, Sutton, and Chickaloon are within this region. Most of the state land within the western third of this region is within the boundary of the Matanuska Valley Moose Range, a Legislatively Designated Area (LDA). Another LDA within the plan boundary and adjacent to this region is a small portion of Chugach State Park at the southwest corner of the region along the Knik River. Two Public Use Areas (PUA) adjoin the boundary of this region: the Nelchina PUA to the north and the Knik River PUA to the south. The Hatcher Pass management area defines the western boundary. While most of the region is the valley bottom and benchlands of the Matanuska River, the front range of the Talkeetna Mountains, where most of the human use is due to its accessibility from the highway, is also within the region. At the eastern end of the region the land rises to a high plateau and the distance between the Talkeetna and Chugach mountains broadens significantly. Refer to Figure 3-1 to locate the map of a particular area. Distribution and Characteristics There are approximately 331,000 acres of general state land (and state-selected) within this region. This does not include the approximately 122,000 acres in the legislatively designated Matanuska Valley Moose Range (MVMR).
    [Show full text]
  • Pamphlet to Accompany Scientific Investigations Map 3131
    Bedrock Geologic Map of the Seward Peninsula, Alaska, and Accompanying Conodont Data By Alison B. Till, Julie A. Dumoulin, Melanie B. Werdon, and Heather A. Bleick Pamphlet to accompany Scientific Investigations Map 3131 View of Salmon Lake and the eastern Kigluaik Mountains, central Seward Peninsula 2011 U.S. Department of the Interior U.S. Geological Survey Contents Introduction ....................................................................................................................................................1 Sources of data ....................................................................................................................................1 Components of the map and accompanying materials .................................................................1 Geologic Summary ........................................................................................................................................1 Major geologic components ..............................................................................................................1 York terrane ..................................................................................................................................2 Grantley Harbor Fault Zone and contact between the York terrane and the Nome Complex ..........................................................................................................................3 Nome Complex ............................................................................................................................3
    [Show full text]
  • 2020 January Scree
    the SCREE Mountaineering Club of Alaska January 2020 Volume 63, Number 1 Contents Mount Anno Domini Peak 2330 and Far Out Peak Devils Paw North Taku Tower Randoism via Rosie’s Roost "The greatest danger for Berlin Wall most of us is not that our aim is too high and we Katmai and the Valley of Ten Thousand Smokes miss it, but that it is too Peak of the Month: Old Snowy low and we reach it." – Michelangelo JANUARY MEETING: Wednesday, January 8, at 6:30 p.m. Luc Mehl will give the presentation. The Mountaineering Club of Alaska www.mtnclubak.org "To maintain, promote, and perpetuate the association of persons who are interested in promoting, sponsoring, im- proving, stimulating, and contributing to the exercise of skill and safety in the Art and Science of Mountaineering." This issue brought to you by: Editor—Steve Gruhn assisted by Dawn Munroe Hut Needs and Notes Cover Photo If you are headed to one of the MCA huts, please consult the Hut Gabe Hayden high on Devils Paw. Inventory and Needs on the website (http://www.mtnclubak.org/ Photo by Brette Harrington index.cfm/Huts/Hut-Inventory-and-Needs) or Greg Bragiel, MCA Huts Committee Chairman, at either [email protected] or (907) 350-5146 to see what needs to be taken to the huts or repaired. All JANUARY MEETING huts have tools and materials so that anyone can make basic re- Wednesday, January 8, at 6:30 p.m. at the BP Energy Center at pairs. Hutmeisters are needed for each hut: If you have a favorite 1014 Energy Court in Anchorage.
    [Show full text]
  • APPLICATIONS of QUANTITATIVE METHODS and CHAOS THEORY in ICHNOLOGY for ANALYSIS of INVERTEBRATE BEHAVIOR and EVOLUTION by James
    APPLICATIONS OF QUANTITATIVE METHODS AND CHAOS THEORY IN ICHNOLOGY FOR ANALYSIS OF INVERTEBRATE BEHAVIOR AND EVOLUTION by James Richard Woodson Lehane A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology Department of Geology and Geophysics The University of Utah August 2014 Copyright © James Richard Woodson Lehane 2014 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of James Richard Woodson Lehane has been approved by the following supervisory committee members: Allan A. Ekdale , Chair May 5th, 2014 Date Approved Randall B. Irmis , Member June 6th, 2014 Date Approved Marjorie A. Chan , Member May 5th, 2014 Date Approved Elena A. Cherkaev , Member June 12th, 2014 Date Approved Leif Tapanila , Member June 6th, 2014 Date Approved and by John M. Bartley , Chair/Dean of the Department/College/School of Geology and Geophysics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Trace fossils are the result of animal behaviors, such as burrowing and feeding, recorded in the rock record. Previous research has been mainly on the systematic description of trace fossils and their paleoenvironmental implications, not how animal behaviors have evolved. This study analyzes behavioral evolution using the quantification of a group of trace fossils, termed graphoglyptids. Graphoglyptids are deep marine trace fossils, typically found preserved as casts on the bottom of turbidite beds. The analytical techniques performed on the graphoglyptids include calculating fractal dimension, branching angles, and tortuosity, among other analyses, for each individual trace fossil and were performed on over 400 trace fossils, ranging from the Cambrian to the modem.
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • Alaska Range
    Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range.
    [Show full text]
  • Paleoproterozoic Mafic and Ultramafic Volcanic Rocks in the South Savo Region, Eastern Finland
    Development of the Paleoproterozoic Svecofennian orogeny: new constraints from the southeastern boundary of the Central Finland Granitoid Complex Edited by Perttu Mikkola, Pentti Hölttä and Asko Käpyaho Geological Survey of Finland, Bulletin 407, 63-84, 2018 PALEOPROTEROZOIC MAFIC AND ULTRAMAFIC VOLCANIC ROCKS IN THE SOUTH SAVO REGION, EASTERN FINLAND by Jukka Kousa, Perttu Mikkola and Hannu Makkonen Kousa, J., Mikkola, P. & Makkonen, H. 2018. Paleoproterozoic mafic and ultramafic volcanic rocks in the South Savo region, eastern Finland. Geological Survey of Finland, Bulletin 407, 63–84, 11 figures and 1 table. Ultramafic and mafic volcanic rocks are present as sporadic interlayers in the Paleo- proterozoic Svecofennian paragneiss units in the South Savo region of eastern Finland. These elongated volcanic bodies display locally well-preserved primary structures, have a maximum thickness of ca. 500 m and a maximum length of several kilometres. Geo- chemically, the ultramafic variants are picrites, whereas the mafic members display EMORB-like chemical compositions. The picrites, in particular, display significant com- positional variation in both major and trace elements (light rare earth and large-ion lithophile elements). These differences may have been caused by differences in their magma source, variable degrees of crustal contamination and post-magmatic altera- tion, as well as crystal accumulation and fractionation processes. The volcanic units are interpreted to represent extensional phase(s) in the development of the sedimentary basin(s) where the protoliths of the paragneisses were deposited. The eruption age of the volcanic units is interpreted to be 1.91–1.90 Ga. Appendix 1 is available at: http://tupa.gtk.fi/julkaisu/liiteaineisto/bt_407_appendix_1.
    [Show full text]