Engineering Chitosan Using Α, Ω-Dicarboxylic Acids—An

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Chitosan Using Α, Ω-Dicarboxylic Acids—An Journal of Biomaterials and Nanobiotechnology, 2013, 4, 151-164 151 http://dx.doi.org/10.4236/jbnb.2013.42021 Published Online April 2013 (http://www.scirp.org/journal/jbnb) Engineering Chitosan Using α, -Dicarboxylic Acids—An Approach to Improve the Mechanical Strength and Thermal Stability G. Sailakshmi1, Tapas Mitra1, Suvro Chatterjee2, A. Gnanamani1* 1Microbiology Division, CSIR-Central Leather Research Institute, Chennai, India; 2AU-KBC Research Centre, MIT, Anna Univer- sity, Chennai, India. Email: *[email protected] Received January 19th, 2013; revised March 5th, 2013; accepted April 7th, 2013 Copyright © 2013 G. Sailakshmi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT The current scenario in tissue engineering research demands materials of requisite properties, viz., high porosity, me- chanical stability, thermal stability, biocompatibility and biodegradability for clinical applications. However, bringing these properties in single biomaterial is a challenging task, which needs intensive research on suitable cross-linking agents. In the present study, 3D scaffold was prepared with above said properties using chitosan and oxalic (O), malonic (M), succinic (S), glutaric (G), adipic (A), pimelic (P), suberic (SU), azelaic (AZ) and sebacic (SE) acid (OMS- GAP-SAS) individually as a non covalent cross-linkers as well as the solvent for chitosan. Assessment on degree of cross-linking, mechanical strength, FT-IR analysis, morphological observation, thermal stability, binding interactions (molecular docking), in vitro biocompatibility and its efficacy as a wound dressing material were performed. Results revealed the degree of cross-linking for OMSGAP-SAS engineered chitosan were in the range between ≈55% - 65% and the biomaterial demonstrated thermal stability more than 300˚C and also exhibited ≥3 - 4 fold increase in mechani- cal strength compared to chitosan alone. The bioinformatics studies evidently proved the chemistry behind the interac- tion of OMSGAP-SAS with chitosan. OMSGAP-SAS played dual role to develop the chitosan biomaterial with above said properties, thus matching the requirements needed for various applications. Keywords: Biomaterial; Chitosan; Cytocompatibility; Dicarboxylic Acid; Mechanical Property 1. Introduction temperature, results in the formation of active ester (O- acylisourea) as a highly reactive intermediate, which re- Dicarboxylic acids (DCA) are versatile chemical inter- acts with -NH2 and -OH groups at room temperature. mediates with different chain length, generally repre- However, the pH dependency, the need for additional steps sented as HOOC-(R)n-COOH. These chemical com- for purification of the products, the uncontrolled forma- pounds are used as raw materials for the preparation of tion of side products, hydrolysis and rearrangement reac- perfumes, polymers, adhesives and macrolide antibiotics tions are the major limiting factors identified in this pro- for many years and are well known polymer building cess [6-8]. Hence, DCAs find limited usage in biomaterial/ block [1]. DCA came to research focus because of its re- biopolymer preparations. However, the versatile nature action capability with amine (-NH2) and hydroxyl (-OH) of DCA, if exploited properly, it will solve most of the group containing compounds through amide (-CONH2) problems associated with the preparation of biomaterial. and ester linkage (-COOR) as evidenced in polyamides Generally, biomaterial are prepared from bio-macro- and polyesters preparations [2-5]. However, the said reac- molecules in the presence of glutaraldehyde [9], and it tion requires high temperature (>100˚C), which limits its can easily react with -NH2 group at room temperature application for the preparations. Alternatively, activation and stabilized the bio-macromolecules with the forma- of -COOH group through carbodiimide and/N-hydroxy- tion of imine (-C=N) linkage. However, recently, for the succinimide found suitable for the reactions at ambient biomaterials of high mechanical strength and biocom- *Corresponding author. patibility, it has been identified that glutaraldehyde is not Copyright © 2013 SciRes. JBNB 152 Engineering Chitosan Using α, -Dicarboxylic Acids—An Approach to Improve the Mechanical Strength and Thermal Stability a suitable cross-linker or stabilizer because of the insta- the first four (Oxalic, malonic, succinic and glutaric acid) bility of the Schiff’s base [10]. Hence, an intensive search DCAs are soluble in water, whereas, adipic and pimelic for alternative to glutaraldehyde for biomaterial prepara- are sparingly soluble in water and suberic, azelaic and tions has been initiated at a global level. Related to this, sebacic acids are completely insoluble in water at room we made an attempt on preparation of chitosan based bio- temperature. Though, the carboxyl derivatives of diacid material by exploiting the versatile nature of DCAs. chlorides and dialdehydes are already studied and ex- Although chitosan based biomaterials are well recog- plored for protein coupling [12] because of the functional nized for profound biomedical applications, the selection groups (-COCl & -CHO) reactivity with the amine group and use of cross-linkers restrict the usage. Apart from va- through covalent bond formation (amide and imine link- rious formulations (cream), biomaterials of 2D and 3D ages), the acid derivatives may also interact with proteins, forms find applications in various biomedical fields (Tis- however, as summarized in the first paragraph, the me- sue engineering: culturing cells, drug delivery and also as someric effect of -COOH groups of DCA, requires, high a wound dressing material) [11]. These observations sug- temperature and/activation, and thus restricts the use of gest the necessity of suitable cross-linkers to transform DCAs for the preparation of biopolymer materials. How- the chitosan macromolecule to a porous, high strength and ever, alike diacid chlorides and dialdehydes, DCAs also biocompatible material for tissue engineering research. can interact with the -NH2 group of chitosan at any tem- We found, DCA is the best option with the presump- perature without activation of -COOH group of DCA. tion that it may not (i) require high temperature to initiate The present study explores the possibility of said interac- the reaction, (ii) no need to activate the -COOH groups tion of DCA with chitosan polysaccharide in detail. and (iii) may completely avoid the use of solvents. In brief, chitosan is usually dissolved in acetic acid It has been understood that in the series of DCAs, viz., because of proton exchange between -NH2 group of chi- OMSGAP-SAS, were chosen for the present study and tosan and -COOH group of acetic acid as shown below: O O Proton O Ionic C CH exchange interaction 3 R NH2 + C CH3 R NH3 + C CH3 R NH3 O Chitosan amino HO Acetic acid O group Further, it has been presumed that the bi-functionality fonic acid (TNBS)], were obtained from Sigma-Aldrich of DCA plays a dual role while interacting with the chi- (USA). 3-[4,5-Dimethylthiazol-2-yl]-2,5-dephenyltetrazo- tosan molecule. The mutual crosstalk between DCAs and lium bromide (MTT), dexamethasone was purchased chitosan in water medium transforms chitosan polysac- from Hi-Media (India). All the other reagents were of charide to a homogenous solution (similar to the dissolu- analytical reagent grade and used without further purifi- tion of chitosan in acetic acid), and the prevalent ionic cation. interactions offered higher strength to the biomaterial. Thus, the present study explores the hypothesis behind 2.2. Engineering Chitosan Scaffold Using DCA the dual role of DCAs with chitosan and the non-toxic About 1% of chitosan powder was dispersed in water, nature of DCAs also as an attractive feature to involve and to that DCA was added and stirred vigorously. The DCAs for the preparation of biomaterial. Both dry labs homogenous solution obtained from the above said proc- (molecular docking study) and wet lab (preparation of 3D ess was subjected to centrifugation to remove any unre- biomaterial and animal models) studies were carried out acted molecules and a clear solution obtained upon cen- to substantiate the presumption and our attempt proves trifugation at 5000 RPM for 10 min was used for the pre- that DCA is really an elite compound and suitable for the paration of 3D chitosan biomaterial. For the preparation preparation of biomaterial. of 3D scaffold materials, the solution was poured in Tar- son (India) vial of an inner diameter of 4.5 cm and frozen 2. Experimental Details at −4˚C for 2 h, −20˚C for 12 h and −80˚C for another 12 2.1. Materials h. The frozen samples were lyophilized for 48 h at a va- cuum of 7.5 militorr (1 Pa) and a condenser temperature Chitosan from shrimp shells (≥75% deacetylated), Oxalic of −70˚C (PENQU CLASSIC PLUS, Lark, India). Fol- (O), malonic (M), succinic (S), glutaric (G), adipic (A), lowed by the preparations, the samples were subjected to pimelic (P), suberic (SU), azelaic (AZ) and sebacic acid neutralization with repeated washings with 0.05 N NaOH/ (SE) and Picrylsulfonic acid [2,4,6-Trinitrobenzene sul- ethanol mixtures, neutralized and then lyophilized. The Copyright © 2013 SciRes. JBNB Engineering Chitosan Using α, -Dicarboxylic Acids—An Approach to Improve the 153 Mechanical Strength and Thermal Stability concentration of DCA was
Recommended publications
  • Aldrich FT-IR Collection Edition I Library
    Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL
    [Show full text]
  • Sigma Fatty Acids, Glycerides, Oils and Waxes
    Sigma Fatty Acids, Glycerides, Oils and Waxes Library Listing – 766 spectra This library represents a material-specific subset of the larger Sigma Biochemical Condensed Phase Library relating to relating to fatty acids, glycerides, oils, and waxes found in the Sigma Biochemicals and Reagents catalog. Spectra acquired by Sigma-Aldrich Co. which were examined and processed at Thermo Fisher Scientific. The spectra include compound name, molecular formula, CAS (Chemical Abstract Service) registry number, and Sigma catalog number. Sigma Fatty Acids, Glycerides, Oils and Waxes Index Compound Name Index Compound Name 464 (E)-11-Tetradecenyl acetate 592 1-Monocapryloyl-rac-glycerol 118 (E)-2-Dodecenedioic acid 593 1-Monodecanoyl-rac-glycerol 99 (E)-5-Decenyl acetate 597 1-Monolauroyl-rac-glycerol 115 (E)-7,(Z)-9-Dodecadienyl acetate 599 1-Monolinolenoyl-rac-glycerol 116 (E)-8,(E)-10-Dodecadienyl acetate 600 1-Monolinoleoyl-rac-glycerol 4 (E)-Aconitic acid 601 1-Monomyristoyl-rac-glycerol 495 (E)-Vaccenic acid 598 1-Monooleoyl-rac-glycerol 497 (E)-Vaccenic acid methyl ester 602 1-Monopalmitoleoyl-rac-glycerol 98 (R)-(+)-2-Chloropropionic acid methyl 603 1-Monopalmitoyl-rac-glycerol ester 604 1-Monostearoyl-rac-glycerol; 1- 139 (Z)-11-Eicosenoic anhydride Glyceryl monosterate 180 (Z)-11-Hexadecenyl acetate 589 1-O-Hexadecyl-2,3-dipalmitoyl-rac- 463 (Z)-11-Tetradecenyl acetate glycerol 181 (Z)-3-Hexenyl acetate 588 1-O-Hexadecyl-rac-glycerol 350 (Z)-3-Nonenyl acetate 590 1-O-Hexadecyl-rac-glycerol 100 (Z)-5-Decenyl acetate 591 1-O-Hexadecyl-sn-glycerol
    [Show full text]
  • Pullulan Ω-Carboxyalkanoates for Drug Nanodispersions Jameison T
    Pullulan ω-carboxyalkanoates for Drug Nanodispersions Jameison Theophilus Rolle Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Macromolecular Science and Engineering Kevin J. Edgar, Committee Chair Richey Davis Lynne S. Taylor July 30th, 2015 Blacksburg, VA Keywords: pullulan, amorphous solid dispersions, carboxyalkanoates, drug delivery Copyright 2015, Jameison T. Rolle Pullulan ω-carboxyalkanoates for Drug Nanodispersions Jameison T. Rolle Abstract Pullulan is an exopolysaccharide secreted extracellularly by the black yeast-like fungi Aureobasidium pullulans. Due to an α-(1→6) linked maltotriose repeat unit, which interferes with hydrogen bonding and crystallization, pullulan is completely water soluble unlike cellulose. It has also been tested and shown to possess non-toxic, biodegradable, non-mutagenic and non- carcinogenic properties. Chemical modification of polysaccharides to increased hydrophobicity and increase functionality has shown great promise in drug delivery systems. Particularly in amorphous solid dispersion (ASD) formulations, hydrophobicity increases miscibility with hydrophobic, crystalline drugs and carboxy functionality provides stabilization with drug moieties and well as pH specific release. Successful synthesis of cellulose ω-carboxyalkanoates have been reported and showed great promise as ASD polymers based on their ability to retard the recrystallization of the HIV drug ritonavir and antibacterial clarithromycin. However, these cellulose derivatives have limitations due to their limited water solubility. Natural pullulan is water-soluble and modification with ω-carboxyalkanoate groups would provide a unique set of derivatives with increased solubility therefore stronger polymer-drug interactions in solution. We have successfully prepared novel pullulan ω-carboxyalkanoates, which exhibit good solubility in polar aprotic and polar protic solvents.
    [Show full text]
  • Small Molecule Antagonists of Cell-Surface Heparan Sulfate and Heparin–Protein Interactions
    Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015 Small Molecule Antagonists of Cell-Surface Heparan Sulfate and Heparin–Protein Interactions Ryan J. Weiss,a Philip L.S.M. Gordts,b Dzung Le,c,d Ding Xu,e Jeffrey D. Esko,b,d and Yitzhak Tor*a,d aDepartment of Chemistry and Biochemistry, bDepartment of Cellular and Molecular Medicine, cDepartment of Medicine, dGlycobiology Research and Training Center, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States. eDepartment of Oral Biology, University at Buffalo, 12 Capen Hall, Buffalo, New York 14260. Table of Contents S.1 – Synthesis and characterization of surfen analogs ............................................. 2 S.2 – Synthesis and characterization of building blocks .........................................11 S.3 – General procedure for precipitation of HCl salts ...........................................11 S.4 – X-ray crystal structures ...................................................................................14 S.5 – FGF2 binding inhibition curves ......................................................................21 S.6 – sRAGE Binding Inhibition Data .....................................................................22 S.7 – Biotinylation of FGF2 .....................................................................................22 S.8 – Biotinylation of sRAGE .................................................................................23 S.9 – Example of
    [Show full text]
  • Small Molecule Antagonists of Cell-Surface Heparan Sulfate and Heparin–Protein Interactions† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Small molecule antagonists of cell-surface heparan sulfate and heparin–protein interactions† Cite this: Chem. Sci.,2015,6, 5984 Ryan J. Weiss,a Philip L. S. M. Gordts,b Dzung Le,cd Ding Xu,e Jeffrey D. Eskobd and Yitzhak Tor*ad Surfen, bis-2-methyl-4-amino-quinolyl-6-carbamide, was previously reported as a small molecule antagonist of heparan sulfate (HS), a key cell-surface glycosaminoglycan found on all mammalian cells. To generate structure–activity relationships, a series of rationally designed surfen analogs was synthesized, where its dimeric structure, exocyclic amines, and urea linker region were modified to probe the role of each moiety in recognizing HS. An in vitro assay monitoring inhibition of fibroblast growth factor 2 binding to wild-type CHO cells was utilized to quantify interactions with cell surface HS. The dimeric molecular structure of surfen and its aminoquinoline ring systems was essential for its interaction with HS, and certain dimeric analogs displayed higher inhibitory potency than surfen and were also shown to block downstream FGF signaling in mouse embryonic fibroblast cells. These Creative Commons Attribution-NonCommercial 3.0 Unported Licence. molecules were also able to antagonize other HS–protein interactions including the binding of soluble Received 4th April 2015 RAGE to HS. Importantly, selected molecules were shown to neutralize heparin and other heparinoids, Accepted 21st July 2015 including the synthetic pentasaccharide fondaparinux, in a factor Xa chromogenic assay and in vivo in DOI: 10.1039/c5sc01208b mice. These results suggest that small molecule antagonists of heparan sulfate and heparin can be of www.rsc.org/chemicalscience therapeutic potential for the treatment of disorders involving glycosaminoglycan–protein interactions.
    [Show full text]
  • Sepi- 13, I966 D F. HERMAN ETAL. 3,272,897 METHOD of MAKING POLYMER COATED SUBSTANCES and MOLDING THEM INTO an ARTICLE Filed Nov
    SepI- 13, I966 D F. HERMAN ETAL. 3,272,897 METHOD OF MAKING POLYMER COATED SUBSTANCES AND MOLDING THEM INTO AN ARTICLE Filed Nov. 1, 1962 ABSORBENT SUBSTRATE PARTICLES I FIRST DISPERSING THE SECOND REACTANT SUBSTRATE PARTICLES REACTANT SOLUBLE AT THE INTERFACES SOLUBLE IN FIRST FORMED BY INTER- IN SECOND SOLVENT MINGLING THE FIRST SOLVENT/AND SOLVENT CONTAINING REACTIVE THE FIRST REACTANT WITH FIRST AND THE SECOND REACTANT SOLVENT CONTAINING TO FORM THE SECOND REACTANT POLYMER AND REACTING THE FIRST FIRST AND SECOND SECOND SOLVENT REACTANTS TO FORM SOLVENT POLYMER IMMISCIBLE WITH FIRST SOLVENT SUBSTRATE PARTICLES INDIVIDUALLY ENCAPSULAT ED WITH POLYMER 3,272,897 United States Patent 0 'ice Patented Sept. 13, I966 1 2 Another object of the present invention is to provide 3,272,897 a process for encapsulating particulate substrates with METHOD OF MAKING POLYMER COATED SUB more than equal amounts, by weight of substrates, of STANCES AND MOLDING THEM INTO AN polyfunctional condensation polymers, such as poly ARTICLE amides, polyesters, polysulfonamides, polyurethanes and Daniel F. Herman, Princeton, N.J., and Albert L. Resnick, Jericho, N.Y., assignors to National Lead Company, polyphthalamides, including polyterephthalamides. New York, N.Y., a corporation of New Jersey Other objects will be apparent to those skilled in the Filed Nov. 1, 1962, Ser. No. 234,845 art from reading the following description taken in con 20 Claims. (Cl. 264-109) junction with the accompanying drawing in which the 10 single ?gure is a ?ow sheet embodying the process steps This invention relates to a process for polymerizing of the invention. materials directly onto the surfaces of absorbent sub The objects are accomplished by treating an absorbent strates, and to processes for forming useful articles from substrate material with a ?rst solvent containing dissolved the resultant products.
    [Show full text]
  • The Synthesis of Some Novel Stilbene Dimers Incorporating Diamide Tethers: Studies in Single Cite This: RSC Adv.,2018,8,2506 Electron Transfer Oxidation (Fecl3)†
    RSC Advances View Article Online PAPER View Journal | View Issue The synthesis of some novel stilbene dimers incorporating diamide tethers: studies in single Cite this: RSC Adv.,2018,8,2506 electron transfer oxidation (FeCl3)† Maryam Sadat Alehashem, *a Azhar Ariffin,*a Amjad Ayad Qatran Al-Khdhairawib and Noel F. Thomas*a Received 17th November 2017 The FeCl oxidative cascade reaction of the acetamido stilbene 1 which we reported some years ago Accepted 25th December 2017 3 produced the first atropodiastereomeric indolostilbene hybrid 3. By contrast, recent investigation of the DOI: 10.1039/c7ra12534h oxidation of the stilbene succinamide dimer 72 (FeCl3/CH2Cl2) appears, on the basis of spectroscopic rsc.li/rsc-advances evidence, to have produced the bridged macrocyclic indoline 73. 1. Introduction Some years earlier in a fascinating exploration of the radical- mediated transannular/Diels Alder reaction, Jones8 reported Creative Commons Attribution 3.0 Unported Licence. Some years ago we discovered that the 3,5-dimethoxy that treatment of 7 with tributyltin hydride/AIBN gave rise to the substituted acetamido stilbene, 1 when exposed to FeCl3 in tricycle 11 via 13-endo dig and Diels Alder reactions (Scheme 3). CH2Cl2 proceeded in a mechanistically complex reaction to By contrast, when Pattenden et al. treated the iodopropyl yield four products,1 one of which was, unprecedented. furan derivative 12 with tributyltin hydride, the intermediate This atropodiastereoselective transformation gave rise to formed by 12-endo dig ring closure underwent furan cleavage 14 a product 3 incorporating a stilbene, an indole, a chlor- followed by 5-exo trig ring closure 15 to yield the tetracyclic odimethoxyphenyl substituent, two stereogenic axes and an ketone 16, Scheme 4.
    [Show full text]
  • WO 2012/047964 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date . 12 April 2012 (12.04.2012) WO 2012/047964 Al (51) International Patent Classification: (74) Agent: ZHOU, Jian, S.; CIBA VISION Corporation, C08G 77/42 (2006.01) G02B 1/04 (2006.01) 11460 Johns Creek Parkway, Johns Creek, Georgia 30097 C08G 77/46 (2006.01) C08L 83/10 (2006.01) (US). C08G 77/442 (2006.01) C08G 77/20 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US201 1/054870 AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (22) International Filing Date: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 5 October 201 1 (05.10.201 1) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (25) Filing Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (26) Publication Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (30) Priority Data: RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 61/390,464 6 October 2010 (06.10.2010) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 61/422,672 14 December 2010 (14.12.2010) US ZM, ZW.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0132766A1 Griesgraber (43) Pub
    US 2004O132766A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0132766A1 Griesgraber (43) Pub. Date: Jul. 8, 2004 (54) 1H-MIDAZO DIMERS Publication Classification (76) Inventor: George W. Griesgraber, Eagan, MN (US) (51) Int. Cl." .................... A61K 31/4745; CO7D 471/02 Correspondence Address: (52) U.S. Cl. ............................................ 514/303; 546/118 3M INNOVATIVE PROPERTIES COMPANY PO BOX 33427 ST. PAUL, MN 55133-3427 (US) (57) ABSTRACT (21) Appl. No.: 10/670,957 (22)22) FileFilled: Sep.ep. ZS,25, 2003 1H-imidazo dimer compounds are useful as immune Related U.S. Application Data response modifiers. The compounds and compositions of the invention can induce the biosynthesis of various cytokines (60) Provisional application No. 60/413,848, filed on Sep. and are useful in the treatment of a variety of conditions 26, 2002. including viral diseases and neoplastic diseases. US 2004/O132766 A1 Jul. 8, 2004 1H-MIDAZO DIMERS ing need for compounds that have the ability to modulate the immune response, by induction of cytokine biosynthesis or CROSS REFERENCE TO RELATED other mechanisms. APPLICATION 0001. This application claims priority to U.S. Provisional SUMMARY OF THE INVENTION Application No. 60/413,848, filed Sep. 26, 2002. 0007. It has now been found that certain 1H-imidazo dimer compounds induce cytokine biosynthesis. In one FIELD OF THE INVENTION aspect, the present invention provides 1H-imidazo dimer 0002 The present invention relates to 1H-imidazo dimers compounds of the Formula (I): and to pharmaceutical compositions containing Such dimerS. In addition this invention relates to the use of these dimers as immunomodulators, for inducing cytokine biosynthesis in (I) animals, and in the treatment of diseases, including viral and NH2 NH2 neoplastic diseases.
    [Show full text]
  • Ultra-Strong, Transparent Polytruxillamides Derived from Microbial Photodimers
    Ultra-strong, transparent polytruxillamides derived from microbial photodimers Seiji Tateyama 1† , Shunsuke Masuo 2† , Phruetchika Suvannasara 1,3 , Yuuki Oka 1, Akio Miyazato 1, Katsuaki Yasaki 1, Thapong Teerawatananond 3, Nongnuj Muangsin 3, Shengmin Zhou 2, Yukie Kawasaki 2, Longbao Zhu 4, Zhemin Zhou 4, Naoki Takaya 2* , and Tatsuo Kaneko 1* († equal contribution) Affiliations: 1School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan. 2Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8572, Japan. 3Bioorganic Chemistry and Biomaterials Research Group, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 4Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China. *Email address: [email protected], [email protected] S0 Supporting information Table of contents Efficient bioproduction of 4ACA.......................................................................................... S2 Materials and Methods Biological experiments Bacterial strains and reagents.................................................................................... S3 Plasmid construction................................................................................................... S3 Fermentation of 4APhe............................................................................................... S4 Bioconversion
    [Show full text]
  • A Sheffield Hallam University Thesis
    Nylon-6,6 oligomers : Synthesis, characterization and relevance to the polymer. JOHNSON, Paul D. Available from the Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/19878/ A Sheffield Hallam University thesis This thesis is protected by copyright which belongs to the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Please visit http://shura.shu.ac.uk/19878/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions. I Y p o j ^ © t ie l d h a h am u n iv e r s it y library CITY CAMPUS POND STREET SHFFriPLD S1 1WB __ Fines are charged at 50p per hour _ 4 OCT 2007 ^ k > Sheffield Hallam University REFERENCE ONLY ProQuest Number: 10697184 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10697184 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC.
    [Show full text]
  • Excessive Risk Chemicals
    Excessive Risk Chemicals - Risk Exceeds Educational Utility ChemicalName Hazards Acetic Anhydride Explosive potential, corrosive Acetyl Chloride Corrosive, dangerous fire risk,reacts violently with water and alcohol Acrylamide Toxic by absorption, suspected carcinogen Acrylonitrile Flammable, poison Adipoyl Chloride Corrosive; absorbs through skin, lachrymator Aluminum Chloride, anhydrous Water reactive, corrosive Ammonia, gas Corrosive lachrymator Ammonium Bifluoride Reacts with water, forms Hydrofluoric Acid Ammonium Bichromate May explode on contact with organics, suspected carcinogen Ammonium Chromate Oxidizer, poison; may explode when heated Ammonium Dichromate Reactive, may cause fire and explosion Ammonium Perchlorate Explosive; highly reactive Ammonium Sulfide Poison, Corrosive, Reacts with Water & Acids Aniline Carcinogen, toxic, absorbs through skin Aniline Hydrochloride Poison Antimony Oxide Health and contact hazard Antimony Powder Flammable as dust, health hazard Antimony Trichloride Corrosive; emits hydrogen chloride gas if moistened Arsenic compounds Poison, carcinogen Asbestos, Friable Inhalation Health Hazard, Carcinogen Azide Compounds Explosive in contact with metals, extremely reactive, highly toxic Barium Chromate Poison Benzene Flammable, carcinogen Benzoyl Peroxide Organic peroxide, flammable, oxidizer Beryllium and its compounds Poison. Dust is P-listed & highly toxic. Carcinogen Bromine Corrosive, oxidizer, volatile liquid Cadmium compounds Toxic heavy metal, carcinogen Calcium Fluoride (Fluorspar) Teratogen. Emits
    [Show full text]