Fault Injection Framework for Time-Triggered Systems

Total Page:16

File Type:pdf, Size:1020Kb

Fault Injection Framework for Time-Triggered Systems Fault Injection Framework for Time-Triggered Systems DISSERTATION zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) Dissertation vorgelegt von: Onwuchekwa, Daniel Lucky eingereicht bei der Naturwissenschaftlich-Technischen Fakultät der Universität Siegen Date of Oral Examination: 09. October 2020 Betreuer und erster Gutachter: Prof. Dr. Roman Obermaisser, Universität Siegen Zweiter Gutachter Prof. Dr. Kristof Van Laerhoven, Universität Siegen Prüfungskommission: Prof. Dr. Roman Obermaisser Prof. Dr. Kristof Van Laerhoven Prof. Frank Gronwald Prof. Malte Lochau Acknowledgement I wrote this thesis during my employment at the department of Embedded Systems, Uni- versity of Siegen. I thank Prof. Dr Roman Obermaisser for providing the opportunity for me to be a member of his team, and also for introducing me into the field of fault-tolerant and safety-critical systems. His valuable remarks and criticism advanced my scientific experience. I would also like to thank my colleague, friend, and football teammate, Tobias Pieper. He played a considerable role that enabled my integration in Germany. He supported my settlement, taught me a lot about the German culture and introduced me to TSG Adler Dielfen football team, a common interest for us. I would also like to thank all my colleagues at the institute. Tobias, Hongie Fang and Maryam Palehvan have been an immense source of inspiration and a pool of knowledge which was beneficial during my work. I thank my colleague also Stefan Otterbach for ensuring that I get all the necessary tools required for the success of this work. I also thank Simon Meckel, Veit Wiese, Michael Schmidt, Hamidreza Ahmadian and Setareh Majidi for the pleasant atmosphere and harmony at work. Special thanks go to my dearest wife Jennifer, who has been very helpful in providing constructive criticisms and exhibited patience on the way to reach my goal. She also provided the required emotional support to carry out my work. I also thank my kids, Giovanni and Gianna, for providing me with the necessary daily smiles and emotional support. I also thank my sisters Eberechi and Ezinne for their encouragement. I would also like to thank my in-laws for their presence and support in much needed time while I carried out my work. Finally, I would like to thank my friends Ugochukwu Osabiku, Oghneneochuko Obie, and Raymond Webilor for their support. I Zusammenfassung In dieser Dissertation wird eine Methodik zur Verifizierung und Validierung des Ver- haltens von integrierten System vorgestellt, die auf zeitgesteuerten Ethernet-Netzwerken basieren. Der Determinismus und die ausreichende Bandbreite, die durch ein zeitgesteu- ertes Ethernet-Netzwerk bereitgestellt werden, ermöglichen die Konstruktion sicherheits- kritischer Systeme in verschiedenen Bereichen wie Eisenbahn, Luftfahrt, Gesundheit und Automobil. Viele Anwendungen in diesen Bereichen stellen hohe Anforderungen an die Zuverlässigkeit. Deshalb sind Verifizierung und Validierung in den meisten Phasen des Entwicklungsprozesses sicherheitskritischer Systeme erforderlich. Aufgrund der Komplexität von zeitgesteuerten Netzwerkprotokollen verwenden Entwick- ler meist formale Methoden und Simulationen als Verifikations- und Validierungstechni- ken. Allerdings verifizieren und validieren diese Methoden hauptsächlich bestimmte Funk- tionen der zeitgesteuerten Protokolle und nicht das Verhalten des integrierten Systems. Die Gründe dafür liegen in den Nachteilen dieser Ansätze. Die Modellierung komplexer Systeme führt bei der Benutzung formaler Methoden zu einer Explosion des Zustands- raums und Simulatoren modellieren bestimmte komplexe Funktionen nicht ausreichend. Des Weiteren erfordern Simulatoren eine zusätzliche Verifizierung durch ein physikalisches Netzwerk, um die Aussagekräftigkeit zu verbessern. Da die Evaluierung der physikalischen Realisierung von zeitgesteuerten Ethernet-Netzwerken zu den besten Ergebnissen führt, konzentriert sich diese Arbeit auf die Anwendung der Fehlerinjektion auf physikalische Geräte. Diese Dissertation schlägt ein neuartiges und topologieunabhängiges Cut-Through-Fehler- injektions-Framework vor, welches das integrierte Systemverhalten von zeitgesteuerten Ethernet-Netzwerken auswerten kann. Sie bietet zudem eine Lösung für die Fehlerer- kennung in zeitgesteuerten Netzwerken während des Synchronisationsstarts, bevor eine globale Zeit festgelegt wird. Darüber hinaus werden experimentelle Verfahren und Ergeb- nisse diskutiert, die die Verwendung des Fehlerinjektions-Frameworks für die Bewertung einer Auswahl verschiedener Anwendungsfälle demonstrieren. Die hier durchgeführten Experimente bestätigen, wie das neuartige Framework andere zeitgesteuerte Ethernet- II 0.0 Inhaltsverzeichnis Frameworks übertrifft, indem es die kollektiven Anforderungen erfüllt. Hierzu gehören geringe Störanfälligkeit, Portabilität und die Abstraktion der Fehlerinjektionskomponen- te aus dem zu testenden Netzwerk. Page III Abstract This thesis presents a methodology and tool for verifying and validating the integrated system behaviour of time-triggered Ethernet networks. The determinism and sufficient bandwidth provided by time-triggered Ethernet network make it appealing for building safety-critical systems in different domains such as railway, aviation, health, and auto- mobile. Many applications in these domains impose stringent dependability requirements. Therefore, verification and validation are often required at most stages of the development process when designing these systems. Due to the complexity of time-triggered network protocols, design engineers mostly employ formal methods and simulations as the verification and validation techniques. However, these methods mainly verify and validate only certain functions of the time-triggered protocol and not the integrated system behaviour. The reasons stem from the downsides of these approaches. The formal method suffers from a state-space explosion when modelling complex systems, and simulators do not sufficiently model certain complex functionality. Simulators also require cross-verification from a physical network to gain better confidence. Since evaluating the physical realisation of time-triggered Ethernet networks results in the best confidence levels, this work then focuses on the use of fault injection on physical devices for this purpose. This work proposes a novel and topology independent cut-through fault injection frame- work that can be used to evaluate the integrated system behaviour of time-triggered Eth- ernet networks. This work also describes a technique that can be used for failure detection in time-triggered networks during the synchronisation startup before the establishment of global time. It furthermore presents a discussion of experimental procedure(s) and results that demonstrate the use of the fault injection framework for the evaluation of a selection of different use cases. The Experiments carried out herein confirms how the novel fault injection framework surpasses other time-triggered Ethernet frameworks by satisfying a set of collective requirements which mainly include low-intrusiveness, portability, and the abstraction of fault injection component from the network under test. IV Contents Acknowledgement I Zusammenfassung III Abstract IV Table of Contents V 1 Introduction 1 1.1 Context and motivation . 1 1.2 Objectives and contribution . 3 1.3 Thesis structure . 5 2 Background Theory 7 2.1 Real-time systems . 7 2.2 dependability of a system . 8 2.2.1 Means to attain dependability in a system . 8 2.2.2 Threats to the dependability of a system . 9 2.2.3 Attributes of the dependability of a system . 10 2.2.4 Redundancy . 11 2.2.5 Methods of dependability evaluation . 12 2.2.6 Safety . 13 2.2.7 Safety-criticality system . 13 2.3 Verification and validation . 14 2.4 Fault injection . 14 2.4.1 Fault injection categorisation . 15 2.4.2 Fault injection environment . 16 2.4.3 Modelling a fault injection framework . 17 2.4.4 Types of fault injection . 19 2.5 Concept of deep learning . 21 2.5.1 Machine learning . 21 2.5.2 Deep learning . 22 3 Time-Triggered Ethernet communication 26 3.1 Ethernet . 27 3.1.1 Open system interconnection layers . 27 3.1.2 Key characteristics of Ethernet . 28 V TABLE OF CONTENTS 3.1.3 Components of Ethernet . 30 3.1.4 Absence of determinism in Ethernet . 31 3.2 Time-triggered control . 31 3.2.1 Clock and global time . 32 3.2.2 Clock offset . 33 3.2.3 Time-Triggered system . 34 3.3 TTEthernet system . 34 3.3.1 TTEthernet frame structure . 36 3.3.2 Fault tolerant clock synchronization . 37 3.3.3 TTEthernet startup and restart service . 40 3.4 Time sensitive networking . 43 3.4.1 Background on precision time protocol and profile . 45 3.4.2 Generalized precision time protocol . 49 3.4.3 Start-up time . 50 4 Related Work 55 4.1 Requirement . 55 4.2 Fault injection tools . 58 4.3 Network verification methods . 61 4.4 Related works on the verification of network protocols . 63 4.4.1 Verification and validation of TTEthernet . 65 4.4.2 Verification and validation of TSN . 68 4.5 Summary of related works . 69 5 System Model of Fault Injection Framework 72 5.1 System model . 72 5.1.1 Fault hypothesis . 73 5.2 TRAITOR in TTEthernet . 74 5.2.1 Architectural overview of TRAITOR . 75 5.2.2 Fault injector component . 78 5.2.3 Observation probe . 80 5.2.4 Data collector/analyser . 81 5.2.5 Controller . 81 5.2.6 Monitor . 82 5.3 TSN fault injection framework . 83 5.4 FPGA block diagram design . 83 5.5 Software design . 84 5.6 TRAITOR operation summary . 86 6 Implementation
Recommended publications
  • On Ttethernet for Integrated Fault-Tolerant Spacecraft Networks
    On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks Andrew Loveless∗ NASA Johnson Space Center, Houston, TX, 77058 There has recently been a push for adopting integrated modular avionics (IMA) princi- ples in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEther- net can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Ex- ploration Systems (AES) program. Nomenclature A&S = Avionics and Software Project AA2 = Ascent Abort 2 AES = Advanced Exploration Systems Program ANTARES = Advanced NASA Technology Architecture for Exploration Studies API = Application Program Interface ARM = Asteroid Redirect Mission
    [Show full text]
  • Wireless Technologies for the Next-Generation Train Control and Monitoring System
    Wireless Technologies for the Next-Generation Train Control and Monitoring System Jérôme Härri Aitor Arriola Pedro Aljama Communication Systems Communication Systems Communication Systems EURECOM Ikerlan Ikerlan Sophia-Antipolis, France Arrasate-Mondragón, Spain Arrasate-Mondragón, Spain [email protected] [email protected] [email protected] Igor Lopez Uwe Fuhr Marvin Straub Technology Division TCMS Communcations TCMS Communcations CAF R&D Bombardier Transportation Bombardier Transportation Beasain, Spain Mannheim, Germany Mannheim, Germany [email protected] [email protected] [email protected] Abstract—The Next Generation Train Control and functionalities (e.g. [4]). Yet, a study introducing the global Monitoring System (NG-TCMS) represents a major innovation NG-TCMS requirements and matching with a technology- of the European Railway industry introducing a wireless agnostic survey of various available wireless technologies is architecture as an enabler to enhanced automation, flexible train still missing. management and increased railway capacity. This paper surveys various available and future wireless technologies matching the In this paper, we describe the vision and functionalities of requirements both at train backbone and consist levels. the NG-TCMS, putting into perspective the performance Illustrating the challenges for a single technology to match all requirements of wireless links for the WLTB and WLCN with requirements, this paper also highlights the benefits of the the performance of selected wireless technologies. Our upcoming 5G technology for future NG-TCMS. contributions are threefold: (i) we introduce the future NG- TCMS, in particular the WLTB and WLCN, (ii) we provide a Keywords—5G-V2X, LTE-V2X, Wireless Train Backbone, technology-agnostic comparison of selected technologies Wireless Consist Network, 5G, NG-TCMS.
    [Show full text]
  • An Extension of the Omnet++ INET Framework for Simulating Real-Time Ethernet with High Accuracy
    An Extension of the OMNeT++ INET Framework for Simulating Real-time Ethernet with High Accuracy Till Steinbach, Hermand Dieumo Kenfack, Franz Korf, Thomas C. Schmidt HAW-Hamburg, Department Informatik Berliner Tor 7, D-20099 Hamburg, Germany {till.steinbach, hermand.dieumo, korf, schmidt}@informatik.haw-hamburg.de ABSTRACT those fields; real-time Ethernet is a promising candidate for Real-time extensions to standard switched Ethernet widen the upcoming tasks. the realm of computer networking into the time-critical do- Ethernet has proven to be a flexible, widely deployed, and main. These technologies have started to establish in pro- highly scalable protocol. Current Ethernet is a technology cess automation, while Ethernet-based communication in- based on switching that also allows to increase the amount of frastructures in vehicles are novel and challenged by particu- traffic simultaneously transferred, by using segregated com- larly hard real-time constraints. Simulation tools are of vital munication in groups. However, due to its randomised me- importance to explore the technical feasibility and facilitate dia access and best effort approach, it does not provide re- the distributed process of vehicle infrastructure design. liable temporal performance bounds. Real-time extensions This paper introduces an extension of the OMNeT++ to Ethernet promise to overcome those obstacles. INET framework for simulating real-time Ethernet with high In process automation, several Ethernet-based products temporal accuracy. Our module implements the TTEther- already provide real-time functionality for tasks with strict net protocol, a real-time extension to standard Ethernet that temporal constraints. The use of real-time Ethernet in an is proposed for standardisation.
    [Show full text]
  • Deliverable Title
    Contract No. H2020 – 826098 CONTRIBUTING TO SHIFT2RAIL'S NEXT GENERATION OF HIGH CAPABLE AND SAFE TCMS. PHASE II. D1.1 – Specification of evolved Wireless TCMS Due date of deliverable: 31/12/2019 Actual submission date: 20/12/2019 Leader/Responsible of this Deliverable: Igor Lopez (CAF) Reviewed: Y Project funded from the European Union’s Horizon 2020 research and innovation programme Dissemination Level PU Public X CO Confidential, restricted under conditions set out in Model Grant Agreement Start date: 01/10/2018 Duration: 30 months CTA2-T1.1-D-CAF-005-09 Page 1 of 175 20/12/2019 Contract No. H2020 – 826098 Document status Revision Date Description First issue. Executive summary, Introduction and General 01 27/11/2018 architecture 02 27/06/2019 Contributions of sections 3.1, 3.2, 4.2, 5.2, 5.3, 6.1, 6.2, 6.3, 8 03 03/09/2019 Section 4.1 added. Updated sections 5, 6 and 8 Doc template: corrected footer Abbreviations and Acronyms list: updated Section 3.2: corrected internal references according to CTA2- 04 22/11/2019 T1.1-I-BTD-008-04 Sections 6: updated accoding to CTA2-T1.1-I-BTD-030-09, added new references, corrected internal references 05 05/12/2019 Section 4.2.3: content added 06 06/12/2019 Updated according to CTA2-T1.1-R-SNF-061-01 07 08/12/2019 Section 5.2 and 5.3 added. 08 17/12/2019 Reviews to new contributions applied Whole Document review from CTA2 T1.1 members, TMT and 09 20/12/2019 Safe4RAIL-2 members Disclaimer The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any particular purpose.
    [Show full text]
  • Universidad Nacional De Chimborazo Facultad De Ingeniería Carrera De Electrónica Y Telecomunicaciones
    UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE INGENIERÍA CARRERA DE ELECTRÓNICA Y TELECOMUNICACIONES Proyecto de Investigación previo a la obtención del título de Ingeniero en Electrónica y Telecomunicaciones TRABAJO DE TITULACIÓN DISEÑO Y SIMULACIÓN DE UNA RED DE COMUNICACIÓN EN VAGONES DE FERROCARRILES A TRAVÉS DE LA UTILIZACIÓN DE LOS ESTÁNDARES IEC 61375 PARA LA RUTA TREN DEL HIELO I (RIOBAMBA – URBINA – LA MOYA – RIOBAMBA) Autor: Denis Andrés Maigualema Quimbita Tutor: Ing. PhD. Ciro Diego Radicelli García Riobamba - Ecuador Año 2020 I Los miembros del tribunal de graduación del proyecto de investigación de título: “DISEÑO Y SIMULACIÓN DE UNA RED DE COMUNICACIÓN EN VAGONES DE FERROCARRILES A TRAVÉS DE LA UTILIZACIÓN DE LOS ESTÁNDARES IEC 61375 PARA LA RUTA TREN DEL HIELO I (RIOBAMBA – URBINA – LA MOYA – RIOBAMBA)”, presentado por: Denis Andrés Maigualema Quimbita, y dirigido por el Ing. PhD. Ciro Diego Radicelli García. Una vez revisado el informe final del proyecto de investigación con fines de graduación escrito en el cual consta el cumplimento de las observaciones realizadas, remite la presente para uso y custodia en la Biblioteca de la Facultad de Ingeniería de la UNACH. Para constancia de lo expuesto firman. Ing. PhD. Ciro Radicelli Tutor Dr. Marlon Basantes Miembro del tribunal Ing. José Jinez Miembro del tribunal II DECLARACIÓN EXPUESTA DE TUTORÍA En calidad de tutor del tema de investigación: “DISEÑO Y SIMULACIÓN DE UNA RED DE COMUNICACIÓN EN VAGONES DE FERROCARRILES A TRAVÉS DE LA UTILIZACIÓN DE LOS ESTÁNDARES IEC 61375 PARA LA RUTA TREN DEL HIELO I (RIOBAMBA – URBINA – LA MOYA – RIOBAMBA ". Realizado por el Sr.
    [Show full text]
  • Innovative Monitoring and Predictive Maintenance Solutions on Lightweight Wagon
    Innovative Monitoring and Predictive Maintenance Solutions on Lightweight Wagon Grant Agreement no.: 730863 - S2R-OC-IP5-03-2015 Project Start Date: 01/11/2016 Project End Date: 30/04/2019 DELIVERABLE D1.1 Benchmark and market drivers for an integrated intelligent and lightweight wagon solution Work Package: WP 1 Deliverable type R Dissemination Level: PU Status: Final Leader beneficiary: UNEW Due date of deliverable: 31/03/2017 Actual submission date: 31/03/2017 Prepared by: Cristian Ulianov and Paul Hyde, Newcastle University (UNEW) Contributors: Sian Evans, Newcastle University (UNEW) Liang Cheng, Newcastle University (UNEW) Emmanuel Matsika, Newcastle University (UNEW) Raluca Marin-Perianu, Inertia Technology B.V. (INE) Martin Wischner, Havelländische Eisenbahn AG (HVLE) Daniele Regazzi, Lucchini RS S.p.A. (LRS) Franco Castagnetti, NewOpera Aisbl (NEWO) Giuseppe Rizzi, NewOpera Aisbl (NEWO) David Vincent, Perpetuum Ltd. (PER) Stefano Bruni, Politecnico di Milano (POLIM) Marco Macchi, Politecnico di Milano (POLIM) Dachuan Shi, Technische Universität Berlin (TUB) Philipp Krause, Technische Universität Berlin (TUB) Florentin Barbuceanu, Uzina de Vagoane Aiud S.A. (UVA) Verified by: Cristian Ulianov Deliverable D1.1 Document history Version Date Author(s) Description D1 02/12/2016 Cristian Ulianov [UNEW] Document initiated, draft structure D2 20/12/2016 Cristian Ulianov [UNEW] Document updated, structure and Paul Hyde [UNEW] content proposed D3 24/01/2017 All Update of structure and content D5 23/02/2017 All Content added and revised
    [Show full text]
  • Industrielle Bussysteme : Ethernet • Ethernet Link Schicht • Medium Access Control • Logical Link Control – LLC Dr
    Inhalt • Ethernet Übersicht und Protokolle • Ethernet Schicht-1 Industrielle Bussysteme : Ethernet • Ethernet Link Schicht • Medium Access Control • Logical Link Control – LLC Dr. Leonhard Stiegler Automation • Ergänzende LAN Protokolle www.dhbw-stuttgart.de Industrielle Bussysteme , Teil 1 – Ethernet, L.Stiegler , 1 5. Semester, Automation, 2015 Industrielle Bussysteme , Teil 1 – Ethernet, L.Stiegler , 2 5. Semester, Automation, 2015 Definitionen IEEE 802 Standardisierung Ein Computernetz ist eine Zusammenschaltung von Host-Rechnern, die 802.1 LAN/MAN Architecture Informationen austauschen über WGs: Interworking, - Übertragungsverbindungen und Security, Audio/Video Bridging and Netzknoten - Congestion Management. Ein Lokales Netz (LAN) umfasst in der Regel einen begrenzten 802.2 : Logical Link Control (LLC) geografischen Bereich, wie z.B. ein Gebäude, Stockwerk oder einen 802.3 : Ethernet Campus Basic Ethernet 10 Mbit/s Ethernet ist eine weit verbreitete LAN Technologie. Sie definiert Fast Ethernet 100 Mbit/s over copper or fibre Gbit-Ethernet 1 Gbit/s over copper or fibre - das Übertragungsmedium 10G-Ethernet 10 Gbit/s over optical fibres - den Zugang zum Medium 802.11 : WLAN - die physikalischen Übertragungseigensaften und Prozeduren 802.16 : WMAN Ethernet ist Teil der Standardisierungsfamilie 802 802.17 : Resilient Packet Ring Industrielle Bussysteme , Teil 1 – Ethernet, L.Stiegler , 3 5. Semester, Automation, 2015 Industrielle Bussysteme , Teil 1 – Ethernet, L.Stiegler , 4 5. Semester, Automation, 2015 IEEE 802.3 Standards LAN Characteristika
    [Show full text]
  • Industrial Networking Solutions for Mission Critical Applications
    www.hirschmann.com GLOBAL LOCATIONS Industrial Networking Solutions for Mission Critical Applications For more information, please visit us at: www.belden.com/hirschmann Industrial Networking Solutions for Mission Critical Applications Critical Mission Industrial for Networking Solutions UNITED STATES CANADA LATIN AMERICA and the CARIBBEAN ISLANDS Division Headquarters Industrial Networking National Business Regional Office – Americas (Hirschmann/GarrettCom/ Center 6100 Hollywood Boulevard 2200 U.S. Highway 27 South Tofino Security) 2280 Alfred-Nobel Suite 110 Richmond, IN 47374 255 Fourier Ave. Suite 200 Hollywood, Florida 33024 Phone: 765-983-5200 Fremont, CA 94539, USA Saint-Laurent, QC Phone: 954-987-5044 Canada H4S 2A4 Inside Sales: 800-235-3361 Phone: 510-438-9071 Fax: 954-987-8022 Fax: 765-983-5294 Fax: 510-952-3456 Phone: 514-822-2345 [email protected] [email protected] www.belden.com Fax: 514-822-7979 www.belden.com [email protected] Belden 2200 U.S. Highway 27 South Richmond, IN 47374a Inside Sales: 1-800-BELDEN-1 (1-800-235-3361) Industry-specific solutions that can Phone: 765-983-5200 Fax: 765-983-5294 improve productivity and operational [email protected] efficiency today, while laying the foundations for tomorrow‘s IIoT opportunities. Belden, Belden Sending All The Right Signals, GarrettCom, Hirschmann, Lumberg Automation, Tofino Security, Tripwire and the Belden logo are trademarks or registered trademarks of Belden Inc. or its affiliated companies in the United States and other jurisdictions. Belden and other parties may also have trademark rights in other terms used herein. Edition 2017 ©Copyright 2017, Belden Inc. Edition 2017 Printed in Germany HIRSCHMANN-INDUSTRIAL-NETWORKING-SOLUTIONS_CA_INIT_HIR_0117_A_AG Prepare your infrastructure for the Industrial Internet of Things (IIoT) The IIoT is widely considered to be one of the primary trends affecting industrial businesses today and in the future.
    [Show full text]
  • Developing Deterministic Networking Technology for Railway Applications Using Ttethernet Software-Based End Systems
    INDustrial EXploitation of the genesYS cross-domain architecture Developing deterministic networking technology for railway applications using TTEthernet software-based end systems Project n° 100021 Astrit Ademaj, TTTech Computertechnik AG Outline INDustrial EXploitation of the genesYS cross-domain architecture GENESYS requirements - railway Time-triggered communication TTEthernet SW based implementation of the TTEthernet Conclusion ARTEMISIA Association Title Presentation - 2 GENESYS – GENeric Embedded SYStems INDustrial EXploitation of the genesYS cross-domain architecture Instruction how to build your embedded systems architecture GENESYS: ¾ is a reference architecture template providing specifications and requirements to design a cross domain embedded systems architecture. ¾ architecture style supports a composable, robust and comprehensible, component based framework with strict separation of computation from message based communication ¾ distinguishes between 3 integration levels: • Chip Level (IP cores communicate via a deterministic Network-on-a-Chip) • Device Level (Chips communicate within a device) • System Level (Devices communicate in an open or closed environment) ARTEMISIA Association Title Presentation - 3 GENESYS and the railway domain INDustrial EXploitation of the genesYS cross-domain architecture Safety-critical applications in the railway domain require ¾ deterministic communication networks ¾ robustness and ¾ composability are key issues. GENESYS ¾ architecture style supports a composable, robust and comprehensible,
    [Show full text]
  • Protocol Selection Table
    Protocol Selection Table Bender offers signal line protection devices for many different communication and signal protocols. Use the table below to know which protectors must be used for a good surge protection. Selection table Protocol Signal Bender Surge protector I/O ± 5 VDC, < 250kHz NSL7v5-G NSLT1-7v5 I/O ± 12 VDC, < 250kHz NSL18-G NSLT1-18 I/O ± 24 VDC, < 250kHz NSL36-G NSLT1-36 I/O 0-20mA / 4-20mA NSL420-G NSLT1-36 I/O RS-232 NSL-DH I/O RS-422 NSL485-EC90 (x2) I/O RS-452 NSL485-EC90 (x2) I/O RS-485 NSL485-EC90 I/O 1-Wire NSL485-EC90 Protocol Signal Bender Surge protector 10/100/1000BaseT Ethernet NTP-RJ45-xCAT6 AS-i 32 VDC 1-pair NSL36-G NSLT1-36 BACnet ARCNET / Ethernet / BACnet/IP NTP-RJ45-xCAT6 BACnet RS-232 NSL-DH BACnet RS-485 NSL485-EC90 BitBus RS-485 NSL485-EC90 CAN Bus (Signal) 5 VDC 1-Pair NSL485-EC90 C-Bus 36 VDC 1-pair NSSP6A-38 CC-Link/LT/Safety RS-485 NSL485-EC90 CC-Link IE Field Ethernet NTP-RJ45-xCAT6 CCTV Power over Ethernet NTP-RJ45-xPoE DALI Digital Serial Interface NSL36-G NSLT1-36 Data Highway/Plus RS-485 NSL485-EC90 DeviceNet (Signal) 5 VDC 1-Pair NSL7v5-G NSLT1-7v5 DF1 RS-232 NSL-DH DirectNET RS-232 NSL-DH DirectNET RS-485 NSL485-EC90 Dupline (Signal) 5 VDC 1-Pair NSL7v5-G NSLT1-7v5 Dynalite DyNet NTP-RJ45-xCAT6 EtherCAT Ethernet NTP-RJ45-xCAT6 Ethernet Global Data Ethernet NTP-RJ45-xCAT6 Ethernet Powerlink Ethernet NTP-RJ45-xCAT6 Protocol Signal Bender Surge protector FIP Bus RS-485 NSL485-EC90 FINS Ethernet NTP-RJ45-xCAT6 FINS RS-232 NSL-DH FINS DeviceNet (Signal) NSL7v5-G NSLT1-7v5 FOUNDATION Fieldbus H1
    [Show full text]
  • A Survey of Channel Measurements and Models
    A Survey of Channel Measurements and Models for Current and Future Railway Communication Systems Paul Unterhuber, Stephan Pfletschinger, Stephan Sand, Mohamed Soliman, Thomas Jost, Aitor Arriola, Inaki Val, Cristina Cruces, Juan Moreno, Juan Pablo Garcia-Nieto, et al. To cite this version: Paul Unterhuber, Stephan Pfletschinger, Stephan Sand, Mohamed Soliman, Thomas Jost, et al.. A Survey of Channel Measurements and Models for Current and Future Railway Com- munication Systems. Mobile Information Systems, Hindawi/IOS Press, 2016, 2016, pp.7308604. 10.1155/2016/7308604. hal-01578998 HAL Id: hal-01578998 https://hal.archives-ouvertes.fr/hal-01578998 Submitted on 30 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hindawi Publishing Corporation Mobile Information Systems Volume 2016, Article ID 7308604, 14 pages http://dx.doi.org/10.1155/2016/7308604 Review Article A Survey of Channel Measurements and Models for Current and Future Railway Communication Systems Paul Unterhuber,1 Stephan Pfletschinger,1 Stephan Sand,1 Mohammad Soliman,1 Thomas Jost,1 Aitor Arriola,2 Iñaki Val,2 Cristina Cruces,2 Juan Moreno,3 Juan Pablo García-Nieto,3 Carlos Rodríguez,3 Marion Berbineau,4 Eneko Echeverría,5 and Imanol Baz5 1 German Aerospace Center (DLR), Oberpfaffenhofen, 82234 Wessling, Germany 2IK4-IKERLAN, Arizmendiarrieta 2, 20500 Mondragon, Spain 3MetrodeMadrid(MDM),CalleCavanilles58,28007Madrid,Spain 4Universite´ Lille Nord de France, IFSTTAR, COSYS, 59650 Villeneuve d’Ascq, France 5Construcciones y Auxiliar de Ferrocarriles (CAF), J.M.
    [Show full text]
  • Read Full Text (PDF)
    Industrial networks and IIoT: Now and future trends Downloaded from: https://research.chalmers.se, 2021-09-25 14:32 UTC Citation for the original published paper (version of record): Sari, A., Lekidis, A., Butun, I. (2020) Industrial networks and IIoT: Now and future trends Industrial IoT: Challenges, Design Principles, Applications, and Security: 3-55 http://dx.doi.org/10.1007/978-3-030-42500-5_1 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) 8JJINXHZXXNTSXXYFYXFSIFZYMTWUWTKNQJXKTWYMNXUZGQNHFYNTSFYMYYUX\\\WJXJFWHMLFYJSJYUZGQNHFYNTS ,QGXVWULDO1HWZRUNVDQG,,R71RZDQG)XWXUH7UHQGV (MFUYJW{/ZQ^ )4.D (.9&9.438 7*&)8 FZYMTWX &QUFWXQFS8FWN &QJ]NTX1JPNINX :SN[JWXNY^TK)JQF\FWJFWJ .SYWFHTR9JQJHTR8& 5:'1.(&9.438dddFor(.9&9.438(.9&9 ddd 5:'1.(&9.438ddd(.9&9.438ddd 8**574+.1* 8**574+.1* .XRFNQ'ZYZS (MFQRJWX:SN[JWXNY^TK9JHMSTQTL^ 5:'1.(&9.438ddd(.9&9.438ddd 8**574+.1* 8TRJTKYMJFZYMTWXTKYMNXUZGQNHFYNTSFWJFQXT\TWPNSLTSYMJXJWJQFYJIUWTOJHYXReviewJIUWTOJHYX .S2TYNTS;NJ\UWTOJHY *SJWL^HTSXZRUYNTSKTW.T9X^XYJRX;NJ\UWTOJHY &QQHTSYJSYKTQQT\NSLYMNXUFLJ\FXZUQTFIJIG^&QJ]NTX1JPNINXTS/ZQ^ 9MJZXJWMFXWJVZJXYJIJSMFSHJRJSYTKYMJIT\SQTFIJIKNQJ Industrial networks and IIoT: Now and future trends Alparslan Sari, Alexios Lekidis, and Ismail Butun For Abstractact ConnectivityConnecti is tthe one word summary for Industry 4.0 revolution. The importancemportancetance of InternetIntern of ThinThings (IoT) and Industrial IoT (IIoT) have been increased dramaticallyaticallytically with the rise ofo induindustrialization and industry 4.0. As new opportunities bring theireir own challenges, wwith the massive interconnected devices of the IIoT, cyber securityrity of thosetho netwnetworks anddpr privacy of their users have become an impor- tant aspect.
    [Show full text]