RHODES MELANIE 33.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecology and Morphology of Copepods Developments in Hydrobiology 102
Ecology and Morphology of Copepods Developments in Hydrobiology 102 Series editor H. J. Dumont Ecology and Morphology of Copepods Proceedings of the 5th International Conference on Copepoda, Baltimore, USA, June 6-13, 1993 Edited by Frank D. Ferrari & Brian P. Bradley Reprinted from Hydrobiologia, vo/s 2921293 (1994) Springer-Science+Business Media, BV. Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-4490-7 ISBN 978-94-017-1347-4 (eBook) DOI 10.1007/978-94-017-1347-4 Printed an acid-free paper AII Rights Reserved © 1994 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1994 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. v Contents Preface............................................................................................. ix Photograph and List of Participants x Maxilliped lecture How many copepods? by A.G. Humes 1 Systematics Acartia tonsa: a species new for the Black Sea fauna by G. Belmonte, M.G. Mazzocchi, I.Y. Prusova & N.V. Shadrin ......................... 9 A new species of Erebonectes (Copepoda, Calanoida) from marine caves on Caicos Islands, West Indies by A. Fosshagen & T.M. Iliffe .............................................................. 17 Nomenclature, redescription, and new record from Okinawa of Cymbasoma morii Sekiguchi, 1982 (Monstrilloida) by M.J. Grygier .............................................................................. 23 Copepod phylogeny: a reconsideration of Huys & Boxshall's 'parsimony versus homology' by J-S. -
Protistology an International Journal Vol
Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb. -
WA488 3831 P1825-T43-Nr4 AP.Pdf
Acta Protozool. (2004) 43: 291 - 301 Syndrome of the Failure to Turn off Mitotic Activity in Tetrahymena thermophila: in cdaA1 Phenotypes Ewa JOACHIMIAK, Janina KACZANOWSKA, Mauryla KIERSNOWSKA and Andrzej KACZANOWSKI Department of Cytophysiology, Institute of Zoology, Warsaw University, Warsaw, Poland Summary. During early micronuclear mitosis of a wild type Tetrahymena thermophila, basal body proliferation and cortical growth are localized in the equatorial region of the pre-dividing cell. These processes are arrested prior to cytokinesis when the fission line gaps appear in ciliary rows. Then a putative marker of cellular polarity, the fenestrin antigen, appears in the apical zone of the dividing cell and around the old oral apparatus (OA1) and in the cortex localized posterior to the fission line gaps and around the new oral apparatus (OA2) i.e. in the apical cortex of the prospective posterior daughter cell. Prior to cytokinesis, the membranelles within OA1 and OA2 oral apparatuses are strongly labeled with the MPM2 antibody against mitotic phosphoproteins. The transition to cytokinesis is correlated with disappearance of both the polar fenestrin staining and of the phosphoprotein antigens in OA1 and OA2. cdaA1 (cell division arrest) mutant cells grown at the restrictive temperature do not produce a fission line and they do not undergo cytokinesis thereby generating irregular chains. The cdaA1 phenotypes continue elongation of their ciliary rows in equatorial regions, mostly without formation of the fission line gaps, accompanied with repetitive micronuclear mitoses and repetitive formation of the defective oral structures. In cdaA1 cells at restrictive temperature, the fenestrin antigen was recruited and then permanently found in the apical regions and around all oral apparatuses, and was always absent in equatorial regions, in spite of variability of immunostaining patterns, sizes and advancement of organization of OAs in different specimens of the same sample. -
Observing Copepods Through a Genomic Lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace a Wyngaard6
Bron et al. Frontiers in Zoology 2011, 8:22 http://www.frontiersinzoology.com/content/8/1/22 DEBATE Open Access Observing copepods through a genomic lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace A Wyngaard6 Abstract Background: Copepods outnumber every other multicellular animal group. They are critical components of the world’s freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion: The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. -
A New Species of Monstrillopsis (Crustacea, Copepoda, Monstrilloida) from the Lower Northwest Passage of the Canadian Arctic
A peer-reviewed open-access journal ZooKeys 709: 1–16 A(2017) new species of Monstrillopsis (Crustacea, Copepoda, Monstrilloida)... 1 doi: 10.3897/zookeys.708.20181 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Monstrillopsis (Crustacea, Copepoda, Monstrilloida) from the lower Northwest Passage of the Canadian Arctic Aurélie Delaforge1, Eduardo Suárez-Morales2, Wojciech Walkusz3, Karley Campbell1, C. J. Mundy1 1 Centre for Earth Observation Science (CEOS), Faculty of Environment, Earth and Resources, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 2 El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal. P.O. Box 424. Chetumal, Quintana Roo 77014. Mexico 3 Department of Fisheries and Oceans, Winnipeg, Manitoba, Canada R3T 2N6 Corresponding author: Eduardo Suárez-Morales ([email protected]) Academic editor: D. Defaye | Received 21 August 2017 | Accepted 4 October 2017 | Published 18 October 2017 http://zoobank.org/FC4FADA8-EDDD-41CF-AB6B-2FE812BC8452 Citation: Delaforge A, Suárez-Morales E, Walkusz W, Campbell K, Mundy CJ (2017) A new species of Monstrillopsis (Crustacea, Copepoda, Monstrilloida) from the lower Northwest Passage of the Canadian Arctic. ZooKeys 709: 1–16. https://doi.org/10.3897/zookeys.709.20181 Abstract A new species of monstrilloid copepod, Monstrillopsis planifrons sp. n., is described from an adult female that was collected beneath snow-covered sea ice during the 2014 Ice Covered Ecosystem – CAMbridge bay Process Study (ICE-CAMPS) in Dease Strait -
Phylogeny of the Order Tintinnida (Ciliophora, Spirotrichea) Inferred from Small- and Large-Subunit Rrna Genes
The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 0(0), 2012 pp. 1–4 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00627.x Phylogeny of the Order Tintinnida (Ciliophora, Spirotrichea) Inferred from Small- and Large-Subunit rRNA Genes LUCIANA F. SANTOFERRARA,a,b GEORGE B. McMANUSa and VIVIANA A. ALDERb,c,d aDepartment of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA, and bDepartamento de Ecologı´a, Gene´tica y Evolucio´n, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina, and cCONICET, Buenos Aires, Argentina and dInstituto Anta´rtico Argentino, Buenos Aires, Argentina ABSTRACT. Concatenated sequences of small- and large-subunit rRNA genes were used to infer the phylogeny of 29 species in six genera of Tintinnida. We confirmed previous results on the positions of major clusters and the grouping of various genera, including Stenosemella, the paraphyletic Tintinnopsis, the newly investigated Helicostomella, and some species of the polyphyletic Favella. Tintinnidium and Eutintinnus were found to be monophyletic. This study contributes to tintinnid phylogenetic reconstruc tion by increasing both the number of species and the range of genetic markers analyzed. Key Words. Ciliate, concatenated phylogeny, LSU rDNA, SSU rDNA, tintinnid. INTINNID ciliates play a key role as trophic link in (Santoferrara et al. 2012). Strombidinopsis sp. and Strombidi T planktonic food webs of estuarine and marine environ um rassoulzadegani were isolated from Long Island Sound ments (Lynn 2008). They are characterized by the presence of (USA; 41º16′N, 72º36′W), cultured as described by McManus a lorica, which has been the basis for taxonomy (Alder 1999; et al. -
Distribution and Diversity of Planktonic Ciliates: Patterns and Processes Mary Doherty University of Massachusetts Amherst, [email protected]
University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2009 Distribution and Diversity of Planktonic Ciliates: Patterns and Processes Mary Doherty University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Life Sciences Commons Recommended Citation Doherty, Mary, "Distribution and Diversity of Planktonic Ciliates: Patterns and Processes" (2009). Open Access Dissertations. 94. https://doi.org/10.7275/gx2q-k729 https://scholarworks.umass.edu/open_access_dissertations/94 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. DISTRIBUTION AND DIVERSITY OF PLANKTONIC CILIATES: PATTERNS AND PROCESSES A Dissertation Presented by MARY DOHERTY Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2009 Program in Organismic and Evolutionary Biology i © Copyright by Mary Doherty 2009 All Rights Reserved ii DISTRIBUTION AND DIVERSITY OF PLANKTONIC CILIATES: PATTERNS AND PROCESSES A Dissertation Presented by MARY DOHERTY Approved as to style and content by: Laura A. Katz, Chair Benjamin B. Normark, member George B. McManus, member Rob Dorit, member Joseph S. Elkinton, Director Organismic and Evolutionary Biology iii DEDICATION To my daughter, Ruth A. Doherty, keeping in mind that what is essential is invisible to the eye. iv ACKNOWLEDGEMENTS I would like to acknowledge my thesis advisor, Laura A. Katz, who has inspired my science, provided me with all the tools I needed to succeed, told me what I needed to hear, no matter how unpleasant, and demonstrated to me how to be a genuine advocate for students. -
Phylogenetic Investigation on Five Genera of Tintinnid Ciliates
Available online at www.sciencedirect.com Progress in Natural Science 19 (2009) 1097–1101 www.elsevier.com/locate/pnsc Phylogenetic investigation on five genera of tintinnid ciliates (Ciliophora, Choreotrichia), based on the small subunit ribosomal RNA gene sequences Zicong Li a, Zhenzhen Yi a, Jinpeng Yang a, Jun Gong b, John C. Clamp c, Khaled A.S. Al-Rasheid d, Saud Al-Arifi d, Abdulaziz A. Al-Khedhairy d, Weibo Song a,* a Laboratory of Protozoology, KLM, Ocean University of China, Qingdao 266003, China b Department of Zoology, Natural History Museum, London SW7 5BD, UK c Department of Biology, North Carolina Central University, NC 27707, USA d Zoology Department, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia Received 7 October 2008; received in revised form 6 November 2008; accepted 7 November 2008 Abstract The phylogenetic relationship among tintinnid ciliates are relatively poorly studied based on molecular data. In the present work, seven species belonging to five genera of the order Tintinnida (Amphorellopsis acuta, Codonellopsis nipponica, Favella taraikaensis, Steno- semella nivalis, Tintinnopsis beroidea, Tintinnopsis cylindrica and Tintinnopsis lohmanni) were analyzed using the information on their small subunit ribosomal RNA gene sequences. Phylogenetic trees were constructed using Bayesian inference (BI), maximum parsimony (MP), neighbor-joining (NJ), and least-squares (LS) methods. Generally, similar topologies were revealed with high or moderate sup- ports, in which the main results show that (1) all tintinnids analyzed belong to a single assemblage; (2) congeners in Tintinnopsis do not cluster together, which indicates that the lorica-based definition for this genus is not consistent with the SSU rRNA phylogeny; (3) A. -
Universidad Nacional Del Sur
UNIVERSIDAD NACIONAL DEL SUR TESIS DE DOCTOR EN BIOLOGÍA Dinámica planctónica y transferencia de biotoxinas marinas a la Ballena Franca Austral (Eubalaena australis) a través de su alimentación en los golfos Nuevo y San José, Península Valdés, Chubut Valeria C. D’Agostino BAHIA BLANCA ARGENTINA (Año 2016) PREFACIO Esta Tesis se presenta como parte de los requisitos para optar al grado Académico de Doctor en Biología, de la Universidad Nacional del Sur y no ha sido presentada previamente para la obtención de otro título en ésta u otra universidad. La misma contiene los resultados obtenidos en investigaciones llevadas a cabo en el ámbito del Centro para el Estudio de Sistemas Marinos CESIMAR-CCT-CENPAT y el Instituto Argentino de Oceanografía IADO - Centro Científico Tecnológico de Bahía Blanca (CCTBB) - UNS, ambos dependientes del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) durante el período comprendido entre el 20 de mayo de 2014 y el 29 de noviembre de 2016, bajo la dirección de la Doctora Mónica Hoffmeyer (IADO – CONICET) y la codirección de la Doctora Mariana Degrati (CESIMAR-CONICET). Lic. Valeria C. D‘Agostino UNIVERSIDAD NACIONAL DEL SUR Secretaría General de Posgrado y Educación Continua La presente tesis ha sido aprobada el .…/.…/.….. , mereciendo la calificación de ......(……………………) A mi máma María del Carmen y mi papá Miguel, a mis hermanos Romina y José y especialmente a Maxi. Agradecimientos Considero que ésta es una de las secciones más complicadas de escribir, no me quiero olvidar de nadie y a la vez es difícil expresar con palabras la gratitud que tengo hacia cada una de las personas que colaboraron en la realización de esta tesis. -
Oceanographic Structure and Seasonal Variation Contribute To
1 Published in ICES J. Mar. Sci (2021) - https://doi.org/10.1093/icesjms/fsab127 2 Oceanographic structure and seasonal variation 3 contribute to high heterogeneity in mesozooplankton 4 over small spatial scales 5 6 Manoela C. Brandão1*, Thierry Comtet2, Patrick Pouline3, Caroline Cailliau3, Aline 7 Blanchet-Aurigny1, Marc Sourisseau4, Raffaele Siano4, Laurent Memery5, Frédérique 8 Viard6, and Flavia Nunes1* 9 10 1Ifremer Centre de Bretagne, DYNECO, Laboratory of Coastal Benthic Ecology, Plouzané, France 11 2Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place G. Teissier, 12 Roscoff, France 13 3Office Français de la Biodiversité, Parc Naturel Marin d'Iroise, Le Conquet, France 14 4Ifremer Centre de Bretagne, DYNECO, PELAGOS, Plouzané, France 15 5Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR CNRS/IFREMER/IRD/UBO 6539, 16 Plouzané, France 17 6ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France 18 *Corresponding authors: [email protected] (MCB), [email protected] (FN) 19 20 Abstract 21 The coastal oceans can be highly variable, especially near ocean fronts. The Ushant Front is the 22 dominant oceanographic feature in the Iroise Sea (NE Atlantic) during summer, separating warm 23 stratified offshore waters from cool vertically-mixed nearshore waters. Mesozooplankton 24 community structure was investigated over an annual cycle to examine relationships with 25 oceanographic conditions. DNA metabarcoding of COI and 18S genes was used in communities 26 from six sites along two cross-shelf transects. Taxonomic assignments of 380 and 296 OTUs (COI 27 and 18S respectively) identified 21 classes across 13 phyla. Meroplankton relative abundances 28 peaked in spring and summer, particularly for polychaete and decapod larvae respectively, 29 corresponding to the reproductive periods of these taxa. -
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. -
Richness of Morphological Hypotheses in Ciliate Systematics Allows for Detailed Assessment of Homology and Comparisons with Gene Trees*
©Biologiezentrum Linz/Austria, download unter www.biologiezentrum.at Richness of morphological hypotheses in ciliate systematics allows for detailed assessment of homology and comparisons with gene trees* M i c a h D UNTH OR N & L a u r a A. K A TZ Abstract: Morphological investigations are central to ciliate systematics. Morphology has provided most species delimitations as well as almost all hypotheses on the ciliate tree of life. Moreover, emerging analyses of molecular markers are generally concor- dant with morphology-based ciliate taxonomies. Despite the richness of morphology-based hypotheses, there are challenges to cil- iate morphological systematics that include the decreasing numbers of trained morphologists and the difficulty in establishing ho- mology for some morphological traits. There are also open questions about ciliate morphology, such as the cause of morphologi- cal stasis in cryptic species, and the contrasting pattern of considerable morphological variation with little underlying genetic variation. Key words: Ciliates, Colpodea, Halteriids, morphology, systematics. Introduction methods (e.g., SONNEBORN 1975; NANNEY & MCCOY 1976; FOISSNER & BERGER 1999). These morphological Ciliates are unique among microbial groups in that investigations provide us with an estimate of the mini- their diverse morphology, abundance and relatively mal number of extant ciliate species. Although it is ar- large sizes have enabled the creation of a comprehen- gued that the number is around 3000 by ecologists (FIN- sive morphology-based taxonomy. Analyses of morpho- LAY et al. 1996; FINLAY 2002), the actual number may logical and ontogenetic characters, first gathered using be “near-imponderable” (FOISSNER 1999). Estimates of light microscopy and more recently in analyses of elec- ciliate species numbers require highly trained taxono- tron micrographs, have led to detailed hypotheses on mists exploring new environments and different parts the relationships among ciliates that extend across tax- of the Earth: the more they look, the more they find onomic levels.