Richness of Morphological Hypotheses in Ciliate Systematics Allows for Detailed Assessment of Homology and Comparisons with Gene Trees*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Systema Naturae∗
Systema Naturae∗ c Alexey B. Shipunov v. 5.802 (June 29, 2008) 7 Regnum Monera [ Bacillus ] /Bacteria Subregnum Bacteria [ 6:8Bacillus ]1 Superphylum Posibacteria [ 6:2Bacillus ] stat.m. Phylum 1. Firmicutes [ 6Bacillus ]2 Classis 1(1). Thermotogae [ 5Thermotoga ] i.s. 2(2). Mollicutes [ 5Mycoplasma ] 3(3). Clostridia [ 5Clostridium ]3 4(4). Bacilli [ 5Bacillus ] 5(5). Symbiobacteres [ 5Symbiobacterium ] Phylum 2. Actinobacteria [ 6Actynomyces ] Classis 1(6). Actinobacteres [ 5Actinomyces ] Phylum 3. Hadobacteria [ 6Deinococcus ] sed.m. Classis 1(7). Hadobacteres [ 5Deinococcus ]4 Superphylum Negibacteria [ 6:2Rhodospirillum ] stat.m. Phylum 4. Chlorobacteria [ 6Chloroflexus ]5 Classis 1(8). Ktedonobacteres [ 5Ktedonobacter ] sed.m. 2(9). Thermomicrobia [ 5Thermomicrobium ] 3(10). Chloroflexi [ 5Chloroflexus ] ∗Only recent taxa. Viruses are not included. Abbreviations and signs: sed.m. (sedis mutabilis); stat.m. (status mutabilis): s., aut i. (superior, aut interior); i.s. (incertae sedis); sed.p. (sedis possibilis); s.str. (sensu stricto); s.l. (sensu lato); incl. (inclusum); excl. (exclusum); \quotes" for environmental groups; * (asterisk) for paraphyletic taxa; / (slash) at margins for major clades (\domains"). 1Incl. \Nanobacteria" i.s. et dubitativa, \OP11 group" i.s. 2Incl. \TM7" i.s., \OP9", \OP10". 3Incl. Dictyoglomi sed.m., Fusobacteria, Thermolithobacteria. 4= Deinococcus{Thermus. 5Incl. Thermobaculum i.s. 1 4(11). Dehalococcoidetes [ 5Dehalococcoides ] 5(12). Anaerolineae [ 5Anaerolinea ]6 Phylum 5. Cyanobacteria [ 6Nostoc ] Classis 1(13). Gloeobacteres [ 5Gloeobacter ] 2(14). Chroobacteres [ 5Chroococcus ]7 3(15). Hormogoneae [ 5Nostoc ] Phylum 6. Bacteroidobacteria [ 6Bacteroides ]8 Classis 1(16). Fibrobacteres [ 5Fibrobacter ] 2(17). Chlorobi [ 5Chlorobium ] 3(18). Salinibacteres [ 5Salinibacter ] 4(19). Bacteroidetes [ 5Bacteroides ]9 Phylum 7. Spirobacteria [ 6Spirochaeta ] Classis 1(20). Spirochaetes [ 5Spirochaeta ] s.l.10 Phylum 8. Planctobacteria [ 6Planctomyces ]11 Classis 1(21). -
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
The Draft Assembly of the Radically Organized Stylonychia Lemnae Macronuclear Genome
GBE The Draft Assembly of the Radically Organized Stylonychia lemnae Macronuclear Genome Samuel H. Aeschlimann1,FranziskaJo¨ nsson2,JanPostberg2,3, Nicholas A. Stover4, Robert L. Petera4, Hans-Joachim Lipps2,*, Mariusz Nowacki1,*, and Estienne C. Swart1,* 1Institute of Cell Biology, University of Bern, Switzerland 2Centre for Biological Research and Education (ZBAF), Institute of Cell Biology, Witten/Herdecke University, Wuppertal, Germany 3Department of Neonatology, HELIOS Children’s Hospital, Witten/Herdecke University, Wuppertal, Germany 4Biology Department, Bradley University *Corresponding author: E-mail: [email protected]; [email protected]; [email protected]. Accepted: June 16, 2014 Downloaded from Data deposition: The draft Stylonychia lemnae macronuclear genome assembly and Illumina shotgun sequence data have been deposited at European Nucleotide Archive under the project accession PRJEB5807. This genome assembly is accessible for community searches and annotation at StyloDB (stylo.ciliate.org). http://gbe.oxfordjournals.org/ Abstract Stylonychia lemnae is a classical model single-celled eukaryote, and a quintessential ciliate typified by dimorphic nuclei: A small, germline micronucleus and a massive, vegetative macronucleus. The genome within Stylonychia’s macronucleus has a very unusual architecture, comprised variably and highly amplified “nanochromosomes,” each usually encoding a single gene with a minimal amount of surrounding noncoding DNA. As only a tiny fraction of the Stylonychia genes has been sequenced, and to promote research using this organism, we sequenced its macronuclear genome. We report the analysis of the 50.2-Mb draft S. lemnae macronuclear genome assembly, containing in excess of 16,000 complete nanochromosomes, assembled as less than 20,000 at World Trade Institute on July 15, 2014 contigs. -
Protist Phylogeny and the High-Level Classification of Protozoa
Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane). -
Couplage Entre Introduction Et Réparation Des Cassures Double Brin Pendant Les Réarrangements Programmés Du Génome Chez Paramecium Tetraurelia
Centre de génétique moléculaire Bâtiment 26 1 avenue de la Terrasse 91190 Gif sur Yvette Thèse de doctorat de l’université Paris Sud XI Ecole doctorale : Gènes, Génomes, Cellules Présentée par Antoine MARMIGNON Couplage entre introduction et réparation des cassures double brin pendant les réarrangements programmés du génome chez Paramecium tetraurelia. Soutenance le 27 septembre 2013 Devant le jury composé de : Président du jury : Jean Cohen Rapporteur : Jean Baptiste Charbonnier Rapporteure : Gaelle Legube Examinatrice : Ariane Gratias-Weill Directrice de thèse : Mireille Bétermier 1 2 Remerciements On m’avait dit que les remerciements s’écrivaient en dernier, tout à la fin, et que c’était très facile, le tout étant de ne pas provoquer de crise diplomatique en oubliant quelqu’un. Rien de tel pour nous mettre la pression, à moi et ma mémoire de poisson rouge. J’ai déjà du mal à retenir les dates d’anniversaire de ma famille alors… pour tout ceux que je vais oublier, car il y en aura probablement, je m’excuse par avance et vous remercie mille fois également. En premier lieu, je tiens à remercier les membres de mon jury qui ont accepté de juger mon travail de thèse. Certains ont eu besoin d’être convaincu. Pour obtenir leur accord, je me suis engagé à ne pas terminer la soutenance par un paint-ball endiablé ou un jeu de rôle moyenâgeux. Je tiendrais promesse. Je souhaite également remercier les organismes qui ont financé ma recherche, le ministère d’abord, puis la fondation ARC. L’idéal serait que la fondation ARC reste dans ces bonnes dispositions et porte un regard bienveillant sur mes futures demandes d’argent, ca faciliterait grandement la poursuite de ma carrière dans un futur très très proche. -
Protistology an International Journal Vol
Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb. -
Protozoologica
Acta Protozool. (2014) 53: 207–213 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.14.017.1598 PROTOZOOLOGICA Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4 1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, al- though support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences. -
The Revised Classification of Eukaryotes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. -
(Ciliophora, Hypotricha): Ontogenetic, Morphologic, and Molecular Data Suggest the Establishment of a New Genus Apourostylopsis N
The Journal of Published by 中国科技论文在线 http://www.paper.edu.cnthe International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 58(1), 2011 pp. 11–21 r 2010 The Author(s) Journal of Eukaryotic Microbiology r 2010 International Society of Protistologists DOI: 10.1111/j.1550-7408.2010.00518.x Re-Evaluation on the Diversity of the Polyphyletic Genus Metaurostylopsis (Ciliophora, Hypotricha): Ontogenetic, Morphologic, and Molecular Data Suggest the Establishment of a New Genus Apourostylopsis n. g. WEIBO SONG,a NORBERT WILBERT,b LIQIONG LIa and QIANQIAN ZHANGa aLaboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China, and bZoologisches Institut, Universita¨t Bonn, 53115 Bonn, Germany ABSTRACT. The urostylid genus Metaurostylopsis Song et al., 2001 was considered to be a well-outlined taxon. Nevertheless, recent evidence, including morphological, ontogenetic, and molecular information, have consistently revealed conflicts among congeners, regarding their systematic relationships, ciliature patterns, and origins of ciliary organelles. In the present work, the morphogenetic and morphogenetic features were re-checked and compared, and the phylogeny of nominal species was analysed based on information inferred from the small subunit ribosomal RNA (SS rRNA) gene sequence. In addition, the binary divisional process in a new isolate of Meta- urostylopsis struederkypkeae Shao et al., 2008 is described. All results obtained reveal that the genus is a polyphyletic -
WA488 3831 P1825-T43-Nr4 AP.Pdf
Acta Protozool. (2004) 43: 291 - 301 Syndrome of the Failure to Turn off Mitotic Activity in Tetrahymena thermophila: in cdaA1 Phenotypes Ewa JOACHIMIAK, Janina KACZANOWSKA, Mauryla KIERSNOWSKA and Andrzej KACZANOWSKI Department of Cytophysiology, Institute of Zoology, Warsaw University, Warsaw, Poland Summary. During early micronuclear mitosis of a wild type Tetrahymena thermophila, basal body proliferation and cortical growth are localized in the equatorial region of the pre-dividing cell. These processes are arrested prior to cytokinesis when the fission line gaps appear in ciliary rows. Then a putative marker of cellular polarity, the fenestrin antigen, appears in the apical zone of the dividing cell and around the old oral apparatus (OA1) and in the cortex localized posterior to the fission line gaps and around the new oral apparatus (OA2) i.e. in the apical cortex of the prospective posterior daughter cell. Prior to cytokinesis, the membranelles within OA1 and OA2 oral apparatuses are strongly labeled with the MPM2 antibody against mitotic phosphoproteins. The transition to cytokinesis is correlated with disappearance of both the polar fenestrin staining and of the phosphoprotein antigens in OA1 and OA2. cdaA1 (cell division arrest) mutant cells grown at the restrictive temperature do not produce a fission line and they do not undergo cytokinesis thereby generating irregular chains. The cdaA1 phenotypes continue elongation of their ciliary rows in equatorial regions, mostly without formation of the fission line gaps, accompanied with repetitive micronuclear mitoses and repetitive formation of the defective oral structures. In cdaA1 cells at restrictive temperature, the fenestrin antigen was recruited and then permanently found in the apical regions and around all oral apparatuses, and was always absent in equatorial regions, in spite of variability of immunostaining patterns, sizes and advancement of organization of OAs in different specimens of the same sample. -
Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published. -
Molecular Phylogeny of Tintinnid Ciliates (Tintinnida, Ciliophora)
Protist, Vol. 163, 873–887, November 2012 http://www.elsevier.de/protis Published online date 9 February 2012 ORIGINAL PAPER Molecular Phylogeny of Tintinnid Ciliates (Tintinnida, Ciliophora) a b a c Charles Bachy , Fernando Gómez , Purificación López-García , John R. Dolan , and a,1 David Moreira a Unité d’Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 360, 91405 Orsay Cedex, France b Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, PO Box 22085, 46071 Valencia, Spain c Université Pierre et Marie Curie and Centre National de la Recherche Scientifique (CNRS), UMR 7093, Laboratoire d’Océanographie de Villefranche, Marine Microbial Ecology, Station Zoologique, B.P. 28, 06230 Villefranche-sur-Mer, France Submitted October 6, 2011; Accepted January 4, 2012 Monitoring Editor: Hervé Philippe We investigated the phylogeny of tintinnids (Ciliophora, Tintinnida) with 62 new SSU-rDNA sequences from single cells of 32 marine and freshwater species in 20 genera, including the first SSU-rDNA sequences for Amphorides, Climacocylis, Codonaria, Cyttarocylis, Parundella, Petalotricha, Undella and Xystonella, and 23 ITS sequences of 17 species in 15 genera. SSU-rDNA phylogenies sug- gested a basal position for Eutintinnus, distant to other Tintinnidae. We propose Eutintinnidae fam. nov. for this divergent genus, keeping the family Tintinnidae for Amphorellopsis, Amphorides and Steenstrupiella. Tintinnopsis species branched in at least two separate groups and, unexpectedly, Climacocylis branched among Tintinnopsis sensu stricto species. Tintinnopsis does not belong to the family Codonellidae, which is restricted to Codonella, Codonaria, and also Dictyocysta (formerly in the family Dictyocystidae). The oceanic genus Undella branched close to an undescribed fresh- water species.