Compulsory Non-Credit Courses

Total Page:16

File Type:pdf, Size:1020Kb

Compulsory Non-Credit Courses Compulsory Non-Credit Courses SWIMMING: FPE-111 (0+1) Practical Class Experiments 1 History, hazards in water and safety precautions 2 Pool maintenance and water quality control. 3 Learning swimming. 4 Understanding and practice of ducking the head. 5 Kicking action, holding breath under water and various strokes (Free style, breast stroke) 6 Kicking action, holding breath under water and various strokes (butterfly, back stroke) 7 Competitive swimming relays and medleys 8 Lap time practice. 9 Swimming and floating aids and the their rules 10 Diving-styles of diving 11 Rules, regulation and precautions. 12 Methods of life saving in water 13 Boating, canoeing and sailing 14 Types and maintenance of boating, canoeing and sailing 15 Skill development 16 Rules and deregulations and practice PHYSICAL EDUCATION, FIRST AID & YOGA PRACTICES: FPE-121 (0+1) Practical Class Experiments 1 Introduction to physical education: Definition, objectives, scope, history, development and importance 2 Physical culture: Meaning and importance of Physical Fitness and Wellness 3 Physical fitness components- speed,strength,endurance,power,flexibility,agility,coordinationandbalance 4 Warming up - General & Specific & its Physiological basis; Test and measurement in physical education 5 Training and Coaching - Meaning & Concept; Methods of Training; aerobic and anaerobic exercises; Calisthenics, weight training, circuit training, interval training, Fartlek training 6 Effects of Exercise on Muscular, Respiratory, Circulatory & Digestive systems 7 Balanced Diet and Nutrition: Effects of Diet on Performance; Physiological changes due to ageing and role of regular exercise on ageing process; Personality, its dimensions and types; Role of sports in personality development 8 Motivation and Achievements in Sports; Learning and Theories of learning; Adolescent Problems & its Management; Posture; Postural Deformities; Exercises for good posture 9 Yoga; Introduction to - Asanas, Pranayam, Meditation and Yogic Kriyas; Role of yoga in sports Governance of sport in India; Important national sporting events; Awards in Sports 10 History, latest rules, measurements of playfield, specifications of equipments, skill, technique, style and coaching of major games( Cricket, football, table Tennis, Badminton, Volleyball, Basketball, Kabaddi and Kho-Kho) and Athletics 11 Need and requirement to first aid. First Aid equipments and upkeep. Handling and transport of injured Itraumatized persons 12 Emergency procedure for suffocation, demonstration of artificial respiration 13 Treatment of injuries (wounds and bleeding)-methods of dressing and bandages; first-aid procedure for injured bones. Handling unconsciousness 14 Treatment of bumsandscalds.Emergencyprocedureforpoisoningwithspecialreferencestosnakebite 15 Injuries I accidents in fishing, fish processing factories, chemical laboratories and their treatments. 16 Shock injuries to muscles and joints and treatments. Sports injuries and their treatments Dept. of Aquaculture PRINCIPLES OF AQUACULTURE: AQ-111 (1 + 1) Theory Class Topics & Sub- topics 1 Introductory What is aquaculture Role of aquaculture 2 Definition of aquaculture Scope of aquaculture 3 National and Global aquaculture status Recent advances in aquaculture in India Global aquaculture status- Odisha aquaculture status 4 History of Aquaculture Practice of fish culture In prehistoric days Fish culture in India. 5 Aquaculture and Agriculture Aquaculture Agriculture 6 Aquaculture Systems Based on the salinity of the water Based on the temperature condition of water Based on the movement of water Based on the environment Based on the different types of species Mono Sex Culture Criteria of selection of major candidate species 7 Aquaculture Systems Sub Topic-Pond Culture 8 Aquaculture Systems Pen culture Principles of pen culture- 9 Aquaculture Systems Cage culture Advantages of cage culture, Disadvantages of cage culture 10 Running Water Culture Examples of Running water systems Principle of fish culture in Running water systems 11 Zero Water Exchange System Principle Of Fish Culture In Zero Water Exchange Systems 12 Types of Aquaculture Extensive, Semi-Intensive, Intensive, Super Intensive Culture Practices In- Fresh Water, Brackish Water , Marine(Inland)Water 13 Factors Affecting Productivity of Ponds Physical, factors Chemical, factors Biological factors 14 Aquaculture –Nutrition Seasonal Variations Of Food 15 Aquaculture -Health Management Concept of Immunity In Fish, Physiological Defence Mechanism 16 Aquaculture-Economics Basic Principles of Production Economics Applied to Aquaculture Practical Class Experiments 1 Practices of pre-stocking management 2 Practices of pre-stocking management 3 Practices of post-stocking management 4 Analysis of water and soil samples 5 Collection and storage of livestock residues 6 Collection and storage of crop residues 7 Study of bio-gas slurry on water quality 8 Study of bio-gas slurry on water quality 9 Study of cultivable fresh water fin fishes 10 Study of cultivable fresh water shell fishes 11 Study of cultivable brackish water fin fishes 12 Study of cultivable brackish water shell fishes 13 Study of cultivable marine water fin fishes 14 Study of cultivable marine water fin fishes 15 Trend analysis of freshwater fish production in India 16 Trend analysis of freshwater fish production in Odisha FUNDAMENTALS OF BIOCHEMISTRY: AQ-112 (2+1) Theory Class Topics & sub topic 1. Introduction Biochemistry as a branch of organic chemistry Overview of syllabus A brief introduction to developments in biochemistry and its transformation to molecular biology. 2. Cell structure Major cell organelles and their function 3. Major molecules of life and their important functions Important functions of Carbohydrates Important functions of Proteins Important functions of Lipids Important functions of Nucleic Acids Important functions of Vitamins 4. Carbohydrate Chemistry Definition of carbohydrates Classification: mono-, di-, oligo- & poly- saccharides 5. Structure of monosaccharides Fischer projection formula Prospective formula Howarth projection formula Conformational formula 6. Isomerism of Carbohydrates Positional Isomerism Functional Isomerism Optical Isomerism 7. Properties of Carbohydrates Optical Isomerism (Contd…) Specific Rotation Mutarotation Glycoside formation Reducing sugar 8. Structure, functions and properties of disaccharides Structure, functions and properties of Maltose, Lactose, Cellobiose, Sucrose 9. Metabolism in carbohydrate Overview of digestive system of human being Site of digestion and absorption of different nutrients Metabolism –Catabolism & Anabolism Central metabolic pathways 10. Glycolysis Explanation of the concept Different glycolytic pathways and their importance - Anaerobic glycolysis - Aerobic glycolysis - Alcoholic fermentation - Reaction steps of glycolysis and enzymes involved 11. Glycogenesis Biosynthesis of carbohydrates Blood sugar level & its balance before and after food intake Reaction steps of glycogenesis Glycogenolysis Importance of glycogenolysis Reaction steps Comparison with glycogenesis Regulation of the speed of reaction 12. Gluconeogenesis Reaction steps Comparison with Glycolysis Calculation of ATP loss by anaerobic glycolysis 13. TCA Cycle Tricarboxylic acid cycle History and nomenclature Reaction steps Central role of TCA Cycle in metabolism 14. Protein Chemistry Classification and function of proteins Amino acids as building blocks of proteins Definition, Classification of Amino acids 15. Properties of amino acids Essential and non-essential amino acids 16. Polypeptides & proteins Primary, secondary, tertiary & quarterinary structure 17. Properties of proteins Amphoteric property Biuret reaction Xanthoprotic reaction 18. Digestion and absorption of protein Exopeptidases Endopeptidases Acidic and alkaline digestion Regulation of digestion process 19. Lipids - Definition Classification – simple, compound and derived lipids Function and properties of lipids 20. Fats, Oils and Fatty acids Composition of fats and oils Structure and Classification of fatty acids Essential fatty acids 21. ω3, ω6 & ω9 fatty acids Significance of ω3 & ω6 fatty acids 22. Phospholipids and cholesterols Structure and their biological importance 23. Reactions of fats and oils Hydrolysis Auto-oxidation (i) Peroxide value (ii) Thiobarbituric acid (TBA) Number 24. Reactions of fats and oils (Contd..) Rancidity – Oxidative and Hydrolytic rancidity Saponification, saponification value Halogination, Iodine number Acid number 25. Enzymes Nomenclature and Classification 26. Mechanism of enzyme action Specificity of enzyme action Kinetics and regulation of enzymatic activity 27. Hormones Steroid Hormones and Peptide hormones Chemistry and function of hormones 28. Vitamins Introduction and classification Fat soluble vitamins -Structure and function 29. Vitamins Water soluble vitamins - Structure and function 30. Minerals Classification and function 31. Nucleic acids – Structure of RNA & DNA Function and importance 31. Importance of genetic code Transcription, Translation and Protein Synthesis 32 Energy changes in chemical reactions Reversible and irreversible reactions in metabolism Practical Class Experiments 1 Calculations of strength of reagents 2 Calculations of strength of reagents 3 Concepts of primary and secondary standard solutions 4 Preparation of various standard solutions 5 Preparation of various standard
Recommended publications
  • Toxic Dinoflagellate Spores in Ships' Ballast Water
    Final Report FIRDC Grant 89 I 39 Toxic dinoflagellate spores in ships' ballast water : A danger to aquaculture G.M. Hallegraeff CSIRO Marine Laboratories, GPO Box 1538, Hobart, Tasmania 7 001 April 1992 Foreword The present investigations on "Toxic dinoflagellate spores in ships' ballast water" and "its implications for aquaculture" were funded by FIRDC grant 89 I 39 (Sept 1989 - Sept 1991 ) . This research involved a collaborative effort between CSIRO Division of Fisheries and the Australian Quarantine and Inspection Service (AQIS), and was instigated by the claim by CSIRO that the toxic dinoflagellate Gymnodinium catenatum in Tasmanian waters could have been introduced via cyst stages contained in ships' ballast water. In February 1986, contamination of Tasmanian shellfish with dinoflagellate toxins led to the closure of 15 shellfish farms for periods up to 6 months. Subsequently, similar toxic dinoflagellate outbreaks surfaced in the Australian ports of Adelaide (Aiexandrium minutum ) and Melbourne (Aiexandrium catenella ) . Genetic evidence (rRNA fingerprints) suggest that these latter species are also ballast water introductions. The present research received considerable national and international publicity ( front page news in the Hobart "Mercury" and "Sydney Morning Herald", national television coverage on the "7.30 report" and "Beyond.2000"). The Australian Quarantine and Inspection Service has responded to this evidence by introducing, as of 1 February 1990, voluntary ballast water guidelines for ships entering Australian ports from overseas. As of 1 November 1991, the International Maritime Organisation (IMO) ratified these guidelines for adoption on an international basis. The present FIRDC- funded research has functioned as a catalyst for further ballast water research funds (600 K) made available by AQIS and BRR.
    [Show full text]
  • Ecology and Morphology of Copepods Developments in Hydrobiology 102
    Ecology and Morphology of Copepods Developments in Hydrobiology 102 Series editor H. J. Dumont Ecology and Morphology of Copepods Proceedings of the 5th International Conference on Copepoda, Baltimore, USA, June 6-13, 1993 Edited by Frank D. Ferrari & Brian P. Bradley Reprinted from Hydrobiologia, vo/s 2921293 (1994) Springer-Science+Business Media, BV. Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-4490-7 ISBN 978-94-017-1347-4 (eBook) DOI 10.1007/978-94-017-1347-4 Printed an acid-free paper AII Rights Reserved © 1994 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1994 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. v Contents Preface............................................................................................. ix Photograph and List of Participants x Maxilliped lecture How many copepods? by A.G. Humes 1 Systematics Acartia tonsa: a species new for the Black Sea fauna by G. Belmonte, M.G. Mazzocchi, I.Y. Prusova & N.V. Shadrin ......................... 9 A new species of Erebonectes (Copepoda, Calanoida) from marine caves on Caicos Islands, West Indies by A. Fosshagen & T.M. Iliffe .............................................................. 17 Nomenclature, redescription, and new record from Okinawa of Cymbasoma morii Sekiguchi, 1982 (Monstrilloida) by M.J. Grygier .............................................................................. 23 Copepod phylogeny: a reconsideration of Huys & Boxshall's 'parsimony versus homology' by J-S.
    [Show full text]
  • Fishing Methods and Gears in Panay Island, Philippines
    Fishing Methods and Gears in Panay Island, Philippines 著者 KAWAMURA Gunzo, BAGARINAO Teodora journal or 鹿児島大学水産学部紀要=Memoirs of Faculty of publication title Fisheries Kagoshima University volume 29 page range 81-121 別言語のタイトル フィリピン, パナイ島の漁具漁法 URL http://hdl.handle.net/10232/13182 Mem. Fac. Fish., Kagoshima Univ. Vol.29 pp. 81-121 (1980) Fishing Methods and Gears in Panay Island, Philippines*1 Gunzo Kawamura*2 and Teodora Bagarinao*3 Abstract The authors surveyed the fishing methods and gears in Panay and smaller neighboring islands in the Philippines in September-December 1979 and in March-May 1980. This paper is a report on the fishing methods and gears used in these islands, with special focus on the traditional and primitive ones. The term "fishing" is commonly used to mean the capture of many aquatic animals — fishes, crustaceans, mollusks, coelenterates, echinoderms, sponges, and even birds and mammals. Moreover, the harvesting of algae underwater or from the intertidal zone is often an important job for the fishermen. Fishing method is the manner by which the aquatic organisms are captured or collected; fishing gear is the implement developed for the purpose. Oftentimes, the gear alone is not sufficient and auxiliary instruments have to be used to realize a method. A fishing method can be applied by means of various gears, just as a fishing gear can sometimes be used in the appli cation of several methods. Commonly, only commercial fishing is covered in fisheries reports. Although traditional and primitive fishing is done on a small scale, it is still very important from the viewpoint of supply of animal protein.
    [Show full text]
  • Biology and Ecology of Sardines in the Philippines: a Review
    Biology and Ecology of Sardines in the Philippines: A Review Demian A. Willette 1,2 , Eunice D.C. Bognot 2, Ma. Theresa M.Mutia 3, and Mudjekeewis D. Santos 2 1 CT-PIRE Philippines, Old Dominion University, United States of America 2 National Fisheries Research and Development Institute, Quezon City, Philippines 3 Fisheries Biological Research Centre, Batangas, Philippines REVIEWERS: Stanley Swerdloff, Ph.D Sr. Fisheries Advisor GEM Program Damosa Business Center, Anglionto St Davao City 8000, Philippines [email protected] Kerry Reeves, Ph.D Office of Energy and Environment USAID Philippines Email: [email protected] Tel: +63 2 552 9822 Kent E. Carpenter, Ph.D Professor Department of Biological Sciences Old Dominion University Norfolk, Virginia 23529-0266 USA & Global Marine Species Assessment Coordinator IUCN/CI/:http://www.sci.odu. edu/gmsa/ Coral Triangle PIRE project: www.sci.odu.edu/impa/ctpire. html Office Phone: (757) 683-4197 Fax: (757) 683-5283 Email: [email protected] http://sci.odu.edu/biology/ directory/kent.shtml COVER DESIGN BY: HEHERSON G. BAUN Abstract Sardines (Clupeidae) make up a substantial proportion of the fish catch across the Philippines and consequently are the most accessible source of animal protein for millions of Filipinos. Further, this fishery is an economic engine providing thousands of jobs and generating revenue at the individual, municipal, and national levels. Ecologically, sardines are basally positioned in a food web that supports pelagic tuna and mackerel, as well as numerous sea birds and marine mammals. Philippine sardine biodiversity is among the highest in the world and includes the only known freshwater sardine species.
    [Show full text]
  • Estuarine Fish Diversity of Tamil Nadu, India
    Indian Journal of Geo Marine Sciences Vol. 46 (10), October 2017, pp. 1968-1985 Estuarine fish diversity of Tamil Nadu, India H.S. Mogalekar*, J. Canciyal#, P. Jawahar, D.S. Patadiya, C. Sudhan, P. Pavinkumar, Prateek, S. Santhoshkumar & A. Subburaj Department of Fisheries Biology and Resource Management, Fisheries College & Research Institute, (Tamil Nadu Fisheries University), Thoothukudi-628 008, India. #ICAR-National Academy of Agricultural Research Management, Rajendranagar, Hyderabad-500 030, Telangana, India. *[E-Mail: [email protected]] Received 04 February 2016 ; revised 10 August 2017 Systematic and updated checklist of estuarine fishes contains 330 species distributed under 205 genera, 95 families, 23 orders and two classes. The most diverse order was perciformes with 175 species, 100 genera and 43 families. The top four families with the highest number of species were gobidae (28 species), carangidae (23 species), engraulidae (15 species) and lutjanidae (14 species). Conservation status of all taxa includes one species as endangered, five species as vulnerable, 14 near threatened, 93 least concern and 16 data deficient. As numbers of commercial, sports, ornamental and cultivable fishes are high, commercial and recreational fishing could be organized. Seed production by selective breeding is recommended for aquaculture practices in estuarine areas of Tamil Nadu. [Keywords: Estuarine fishes, updated checklist, fishery and conservation status, Tamil Nadu] Introduction significant component of coastal ecosystem due to The total estuarine area of Tamil Nadu their immense biodiversity values in aquatic was estimated to be 56000 ha, which accounts ecology. The fish fauna inhabiting the estuarine 3.88 % of the total estuarine area of India 1.
    [Show full text]
  • Native Fish Conservation
    Yellowstone SScience Native Fish Conservation @ JOSH UDESEN Native Trout on the Rise he waters of Yellowstone National Park are among the most pristine on Earth. Here at the headwaters of the Missouri and Snake rivers, the park’s incredibly productive streams and lakes support an abundance of fish. Following the last Tglacial period 8,000-10,000 years ago, 12 species/subspecies of fish recolonized the park. These fish, including the iconic cutthroat trout, adapted and evolved to become specialists in the Yellowstone environment, underpinning a natural food web that includes magnificent animals: ospreys, bald eagles, river otters, black bears, and grizzly bears all feed upon cutthroat trout. When the park was established in 1872, early naturalists noted that about half of the waters were fishless, mostly because of waterfalls which precluded upstream movement of recolonizing fishes. Later, during a period of increasing popularity of the Yellowstone sport fishery, the newly established U.S. Fish Commission began to extensively stock the park’s waters with non-natives, including brown, brook, rainbow, and lake trout. Done more than a century ago as an attempt to increase an- gling opportunities, these actions had unintended consequences. Non-native fish caused serious negative impacts on native fish populations in some watersheds, and altered the parks natural ecology, particularly at Yellowstone Lake. It took a great deal of effort over many decades to alter our native fisheries. It will take a great deal more work to restore them. As Aldo Leopold once said, “A thing is right when it tends to preserve the integrity, stability, and beauty of the biotic com- munity.
    [Show full text]
  • Sardinella
    A CHECK.LIST OF THE FISHES OF INDIA, BURMA AND CEYLON. PART II. CLUPEIFORMES, BATHYCLUPEIFORMES, GALAXIIFORMES, SCOPELIFORMES AND ATELEOPIl~"ORMES. By K. S. l\iISRA, D.Se., F.Z.S., ,,1ssistant Superintendent, Zoological Survey of India, Kaiser Castle, Banaras Gantt. CONTENTS. PAGE. INTRODUOTION •• 382 SYSTEMATIC ACCOUNT 382 Class TELEOSTOMI 382 Subclass ACTINOPTERYGII 382 Order CLUPEIFOR)IES (ISOSPONDYLI, MALACOPTERYGII S. STR., 382 THRISSO)IORPHI). Suborder CLUPEOIDEI .. 382 Superfamily ELOPOIDAE 382 Family ELOPIDAE 382 Elopa 8aurU8 L. 382 Family MEGALOPIDA.E 383 M egalopa cyprinoides (Brouss.) 383 Su perfamily ALBULOIDAE 383 Family ALBULIDAE 383 Albula vulpe8 (L.) 384 Superfamily CLUPEOIDAE ... 384 Family CL UPEIDAE .' 384 SU bfamily DU88umieriini 384- Dussumieria acuta (C.V.) ". 384 Dus8umieria hasselti Blkr. 384 Ehirava jluviatiz.i8 Deraniyagala 385 Stolephorus malabaricu.9 Day 385 Subfamily Clupeini 385 IJarengula, punctata (RUpp.) 385 , Ilarcngula 'l:itteta (C. V .) .. 386 Sardinella albella.<C.V.) 386 Sardinella clupeoides (Blkr.) 387 Sardinella dayi Reg. 387 Saidinella jimbriata (C.V.) .. 387 Sa-rdinella gibbosa (Blkr.) 387 Sarain,ella longiceps C. V. 388 Sardinella melon1#tra (C.) 388 Sard·inella 8inden~i8 (Day) 389 Sardinella sirm (RliPll.) 389 Hilsu U·isha (Ham.) 389 HUsa !'anglt'rta (Blkr.) 390 390 lli/sa tol~ (C.v.) ., . [ 377 ] Q 378 Records of tll.e Indian Museum. [VOL. XLV .P~OE. (}ac1lUsia chapra (Ham.) 391 GadU8ia vari8!Jata (Day) 391 l(owala coval (C.) · . 392 Oarica Bohoma Ham. 392 Ilisha brachllsom:a (Blkr.) .. 3\J2 llisha elongata (Benn.) .. 393 llish.Q jiligera (C. V.) Ii • 393 llislla indica (Swns.) .. 393 ilisha kampeni (Web. & de Bfrt.) 394 llisha leach.enaulti (C.V.) , .
    [Show full text]
  • Fishing in Twelve Michigan Lakes Under Experimental Regulations
    Fishing in Twelve Michigan Lakes Under Experimental Regulations by KENNETH E. CHRISTENSEN FRANKLIN DE KLEINE COMPANY. STATE PRINTERS. LANSING. MICHIGAN 1953 1 -9ntrocluction In recent years (from 1945 to 1951) the Michigan Legislature made several important liberalizations in laws related to fishing for warm-water species, particularly the pan fishes. The size limit on pan fish was eliminated, the closed season on bluegills and sunfish was shortened, and all lakes (except a few "trout lakes") were opened to year-round fishing for perch, crappies, rock bass and certain other species not protected by a closed season. These liberalizations reflected the findings of general creel census on "pike lakes" which had been open to year-round fishing, the results of research parties working on many Michigan lakes over the past twenty years, and especially the findings from intensive studies since 1946 on a group of "test" lakes. The results from studies on the "test" lakes are presented in the present report. In view of the special interest in fishing regulations in connection with these studies, an historical review of Michigan fishing laws is first presented in the following. 3 HISTORY OF REGULATIONS The earliest legislation pertaining to fishing in inland waters of Michigan was concerned with the use of seines and other types of "continuous" nets. One of the first of such laws was Act No. 198, Laws of Michigan 1859 (Public Acts), which listed twelve counties of the extreme southern part of the Lower Peninsula where the use of seines and continuous nets was prohibited. Many of these earlier laws pertained to individual waters.
    [Show full text]
  • A Comparative Study of the Habitats, Growth and Reproduction of Eight Species of Tropical Anchovy from Cleveland and Bowling Green Bays, North Queensland
    ResearchOnline@JCU This file is part of the following reference: Hoedt, Frank Edward (1994) A comparative study of the habitats, growth and reproduction of eight species of tropical anchovy from Cleveland and Bowling Green Bays, North Queensland. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24109/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24109/ A comparative study of the habitats, growth and reproduction of eight species of tropical anchovy from Cleveland and Bowling Green Bays, North Queensland. Thesis submitted by Frank Edward Hoedt BSc (lions) (JCU) in September 1994 for the degree of Doctor of Philosophy in the Department of Marine Biology James Cook University of North Queensland STATEMENT ON ACCESS TO THESIS I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: "In consulting this thesis, I agree not to copy or paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgment for any assistance which I have obtained from it." Beyond this, I do not wish to place any restrictions on access to this thesis.
    [Show full text]
  • Observing Copepods Through a Genomic Lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace a Wyngaard6
    Bron et al. Frontiers in Zoology 2011, 8:22 http://www.frontiersinzoology.com/content/8/1/22 DEBATE Open Access Observing copepods through a genomic lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace A Wyngaard6 Abstract Background: Copepods outnumber every other multicellular animal group. They are critical components of the world’s freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion: The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored.
    [Show full text]
  • Teleostei, Clupeiformes)
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Fall 2019 Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes) Tiffany L. Birge Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Birge, Tiffany L.. "Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes)" (2019). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/8m64-bg07 https://digitalcommons.odu.edu/biology_etds/109 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) by Tiffany L. Birge A.S. May 2014, Tidewater Community College B.S. May 2016, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY December 2019 Approved by: Kent E. Carpenter (Advisor) Sara Maxwell (Member) Thomas Munroe (Member) ABSTRACT GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) Tiffany L. Birge Old Dominion University, 2019 Advisor: Dr. Kent E.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]