Causality and Determinism: Tension, Or Outright Conflict?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
At Least in Biophysical Novelties Amihud Gilead
The Twilight of Determinism: At Least in Biophysical Novelties Amihud Gilead Department of Philosophy, Eshkol Tower, University of Haifa, Haifa 3498838 Email: [email protected] Abstract. In the 1990s, Richard Lewontin referred to what appeared to be the twilight of determinism in biology. He pointed out that DNA determines only a little part of life phenomena, which are very complex. In fact, organisms determine the environment and vice versa in a nonlinear way. Very recently, biophysicists, Shimon Marom and Erez Braun, have demonstrated that controlled biophysical systems have shown a relative autonomy and flexibility in response which could not be predicted. Within the boundaries of some restraints, most of them genetic, this freedom from determinism is well maintained. Marom and Braun have challenged not only biophysical determinism but also reverse-engineering, naive reductionism, mechanism, and systems biology. Metaphysically possibly, anything actual is contingent.1 Of course, such a possibility is entirely excluded in Spinoza’s philosophy as well as in many philosophical views at present. Kant believed that anything phenomenal, namely, anything that is experimental or empirical, is inescapably subject to space, time, and categories (such as causality) which entail the undeniable validity of determinism. Both Kant and Laplace assumed that modern science, such as Newton’s physics, must rely upon such a deterministic view. According to Kant, free will is possible not in the phenomenal world, the empirical world in which we 1 This is an assumption of a full-blown metaphysics—panenmentalism—whose author is Amihud Gilead. See Gilead 1999, 2003, 2009 and 2011, including literary, psychological, and natural applications and examples —especially in chemistry —in Gilead 2009, 2010, 2013, 2014a–c, and 2015a–d. -
Introduction to Dynamical Triangulations
Introduction to Dynamical Triangulations Andrzej G¨orlich Niels Bohr Institute, University of Copenhagen Naxos, September 12th, 2011 Andrzej G¨orlich Causal Dynamical Triangulation Outline 1 Path integral for quantum gravity 2 Causal Dynamical Triangulations 3 Numerical setup 4 Phase diagram 5 Background geometry 6 Quantum fluctuations Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. quantum trajectory space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. quantum trajectory space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum gravity General Relativity: gravity is encoded in space-time geometry. The role of a trajectory plays now the geometry of four-dimensional space-time. All space-time histories contribute to the transition amplitude. -
Causality in Quantum Field Theory with Classical Sources
Causality in Quantum Field Theory with Classical Sources Bo-Sture K. Skagerstam1;a), Karl-Erik Eriksson2;b), Per K. Rekdal3;c) a)Department of Physics, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway b) Department of Space, Earth and Environment, Chalmers University of Technology, SE-412 96 G¨oteborg, Sweden c)Molde University College, P.O. Box 2110, N-6402 Molde, Norway Abstract In an exact quantum-mechanical framework we show that space-time expectation values of the second-quantized electromagnetic fields in the Coulomb gauge, in the presence of a classical source, automatically lead to causal and properly retarded elec- tromagnetic field strengths. The classical ~-independent and gauge invariant Maxwell's equations then naturally emerge and are therefore also consistent with the classical spe- cial theory of relativity. The fundamental difference between interference phenomena due to the linear nature of the classical Maxwell theory as considered in, e.g., classical optics, and interference effects of quantum states is clarified. In addition to these is- sues, the framework outlined also provides for a simple approach to invariance under time-reversal, some spontaneous photon emission and/or absorption processes as well as an approach to Vavilov-Cherenkovˇ radiation. The inherent and necessary quan- tum uncertainty, limiting a precise space-time knowledge of expectation values of the quantum fields considered, is, finally, recalled. arXiv:1801.09947v2 [quant-ph] 30 Mar 2019 1Corresponding author. Email address: [email protected] 2Email address: [email protected] 3Email address: [email protected] 1. Introduction The roles of causality and retardation in classical and quantum-mechanical versions of electrodynamics are issues that one encounters in various contexts (for recent discussions see, e.g., Refs.[1]-[14]). -
Time and Causality in General Relativity
Time and Causality in General Relativity Ettore Minguzzi Universit`aDegli Studi Di Firenze FQXi International Conference. Ponta Delgada, July 10, 2009 FQXi Conference 2009, Ponta Delgada Time and Causality in General Relativity 1/8 Light cone A tangent vector v 2 TM is timelike, lightlike, causal or spacelike if g(v; v) <; =; ≤; > 0 respectively. Time orientation and spacetime At every point there are two cones of timelike vectors. The Lorentzian manifold is time orientable if a continuous choice of one of the cones, termed future, can be made. If such a choice has been made the Lorentzian manifold is time oriented and is also called spacetime. Lorentzian manifolds and light cones Lorentzian manifolds A Lorentzian manifold is a Hausdorff manifold M, of dimension n ≥ 2, endowed with a Lorentzian metric, that is a section g of T ∗M ⊗ T ∗M with signature (−; +;:::; +). FQXi Conference 2009, Ponta Delgada Time and Causality in General Relativity 2/8 Time orientation and spacetime At every point there are two cones of timelike vectors. The Lorentzian manifold is time orientable if a continuous choice of one of the cones, termed future, can be made. If such a choice has been made the Lorentzian manifold is time oriented and is also called spacetime. Lorentzian manifolds and light cones Lorentzian manifolds A Lorentzian manifold is a Hausdorff manifold M, of dimension n ≥ 2, endowed with a Lorentzian metric, that is a section g of T ∗M ⊗ T ∗M with signature (−; +;:::; +). Light cone A tangent vector v 2 TM is timelike, lightlike, causal or spacelike if g(v; v) <; =; ≤; > 0 respectively. -
Studies on Causal Explanation in Naturalistic Philosophy of Mind
tn tn+1 s s* r1 r2 r1* r2* Interactions and Exclusions: Studies on Causal Explanation in Naturalistic Philosophy of Mind Tuomas K. Pernu Department of Biosciences Faculty of Biological and Environmental Sciences & Department of Philosophy, History, Culture and Art Studies Faculty of Arts ACADEMIC DISSERTATION To be publicly discussed, by due permission of the Faculty of Arts at the University of Helsinki, in lecture room 5 of the University of Helsinki Main Building, on the 30th of November, 2013, at 12 o’clock noon. © 2013 Tuomas Pernu (cover figure and introductory essay) © 2008 Springer Science+Business Media (article I) © 2011 Walter de Gruyter (article II) © 2013 Springer Science+Business Media (article III) © 2013 Taylor & Francis (article IV) © 2013 Open Society Foundation (article V) Layout and technical assistance by Aleksi Salokannel | SI SIN Cover layout by Anita Tienhaara Author’s address: Department of Biosciences Division of Physiology and Neuroscience P.O. Box 65 FI-00014 UNIVERSITY OF HELSINKI e-mail [email protected] ISBN 978-952-10-9439-2 (paperback) ISBN 978-952-10-9440-8 (PDF) ISSN 1799-7372 Nord Print Helsinki 2013 If it isn’t literally true that my wanting is causally responsible for my reaching, and my itching is causally responsible for my scratching, and my believing is causally responsible for my saying … , if none of that is literally true, then practically everything I believe about anything is false and it’s the end of the world. Jerry Fodor “Making mind matter more” (1989) Supervised by Docent Markus -
Causation As Folk Science
1. Introduction Each of the individual sciences seeks to comprehend the processes of the natural world in some narrow do- main—chemistry, the chemical processes; biology, living processes; and so on. It is widely held, however, that all the sciences are unified at a deeper level in that natural processes are governed, at least in significant measure, by cause and effect. Their presence is routinely asserted in a law of causa- tion or principle of causality—roughly, that every effect is produced through lawful necessity by a cause—and our ac- counts of the natural world are expected to conform to it.1 My purpose in this paper is to take issue with this view of causation as the underlying principle of all natural processes. Causation I have a negative and a positive thesis. In the negative thesis I urge that the concepts of cause as Folk Science and effect are not the fundamental concepts of our science and that science is not governed by a law or principle of cau- sality. This is not to say that causal talk is meaningless or useless—far from it. Such talk remains a most helpful way of conceiving the world, and I will shortly try to explain how John D. Norton that is possible. What I do deny is that the task of science is to find the particular expressions of some fundamental causal principle in the domain of each of the sciences. My argument will be that centuries of failed attempts to formu- late a principle of causality, robustly true under the introduc- 1Some versions are: Kant (1933, p.218) "All alterations take place in con- formity with the law of the connection of cause and effect"; "Everything that happens, that is, begins to be, presupposes something upon which it follows ac- cording to a rule." Mill (1872, Bk. -
Causality in the Quantum World
VIEWPOINT Causality in the Quantum World A new model extends the definition of causality to quantum-mechanical systems. by Jacques Pienaar∗ athematical models for deducing cause-effect relationships from statistical data have been successful in diverse areas of science (see Ref. [1] and references therein). Such models can Mbe applied, for instance, to establish causal relationships between smoking and cancer or to analyze risks in con- struction projects. Can similar models be extended to the microscopic world governed by the laws of quantum me- chanics? Answering this question could lead to advances in quantum information and to a better understanding of the foundations of quantum mechanics. Developing quantum Figure 1: In statistics, causal models can be used to extract extensions of causal models, however, has proven challeng- cause-effect relationships from empirical data on a complex ing because of the peculiar features of quantum mechanics. system. Existing models, however, do not apply if at least one For instance, if two or more quantum systems are entangled, component of the system (Y) is quantum. Allen et al. have now it is hard to deduce whether statistical correlations between proposed a quantum extension of causal models. (APS/Alan them imply a cause-effect relationship. John-Mark Allen at Stonebraker) the University of Oxford, UK, and colleagues have now pro- posed a quantum causal model based on a generalization of an old principle known as Reichenbach’s common cause is a third variable that is a common cause of both. In the principle [2]. latter case, the correlation will disappear if probabilities are Historically, statisticians thought that all information conditioned to the common cause. -
SPINOZA's ETHICS: FREEDOM and DETERMINISM by Alfredo Lucero
SPINOZA’S ETHICS: FREEDOM AND DETERMINISM by Alfredo Lucero-Montaño 1. What remains alive of a philosopher's thought are the realities that concern him, the problems that he addresses, as well as the questions that he poses. The breath and depth of a philosopher's thought is what continues to excite and incite today. However, his answers are limited to his time and circumstances, and these are subject to the historical evolution of thought, yet his principal commitments are based on the problems and questions with which he is concerned. And this is what resounds of a philosopher's thought, which we can theoretically and practically adopt and adapt. Spinoza is immersed in a time of reforms, and he is a revolutionary and a reformer himself. The reforming trend in modern philosophy is expressed in an eminent way by Descartes' philosophy. Descartes, the great restorer of science and metaphysics, had left unfinished the task of a new foundation of ethics. Spinoza was thus faced with this enterprise. But he couldn't carry it out without the conviction of the importance of the ethical problems or that ethics is involved in a fundamental aspect of existence: the moral destiny of man. Spinoza's Ethics[1] is based on a theory of man or, more precisely, on an ontology of man. Ethics is, for him, ontology. He does not approach the problems of morality — the nature of good and evil, why and wherefore of human life — if it is not on the basis of a conception of man's being-in-itself, to wit, that the moral existence of man can only be explained by its own condition. -
Moritz Schlick and Bas Van Fraassen: Two Different Perspectives on Causality and Quantum Mechanics Richard Dawid1
Moritz Schlick and Bas van Fraassen: Two Different Perspectives on Causality and Quantum Mechanics Richard Dawid1 Moritz Schlick’s interpretation of the causality principle is based on Schlick’s understanding of quantum mechanics and on his conviction that quantum mechanics strongly supports an empiricist reading of causation in his sense. The present paper compares the empiricist position held by Schlick with Bas van Fraassen’s more recent conception of constructive empiricism. It is pointed out that the development from Schlick’s understanding of logical empiricism to constructive empiricism reflects a difference between the understanding of quantum mechanics endorsed by Schlick and the understanding that had been established at the time of van Fraassen’s writing. 1: Introduction Moritz Schlick’s ideas about causality and quantum mechanics dealt with a topic that was at the forefront of research in physics and philosophy of science at the time. In the present article, I want to discuss the plausibility of Schlick’s ideas within the scientific context of the time and compare it with a view based on a modern understanding of quantum mechanics. Schlick had already written about his understanding of causation in [Schlick 1920] before he set out to develop a new account of causation in “Die Kausalität in der gegenwärtigen Physik” [Schlick 1931]. The very substantial differences between the concepts of causality developed in the two papers are due to important philosophical as well as physical developments. Philosophically, [Schlick 1931] accounts for Schlick’s shift from his earlier position of critical realism towards his endorsement of core tenets of logical empiricism. -
Naturalism, Causality, and Nietzsche's Conception of Science Justin Remhof Old Dominion University, [email protected]
Old Dominion University ODU Digital Commons Philosophy Faculty Publications Philosophy & Religious Studies 2015 Naturalism, Causality, and Nietzsche's Conception of Science Justin Remhof Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/philosophy_fac_pubs Part of the Continental Philosophy Commons, Metaphysics Commons, and the Philosophy of Science Commons Repository Citation Remhof, Justin, "Naturalism, Causality, and Nietzsche's Conception of Science" (2015). Philosophy Faculty Publications. 48. https://digitalcommons.odu.edu/philosophy_fac_pubs/48 Original Publication Citation Remhof, J. (2015). Naturalism, causality, and Nietzsche's conception of science. The Journal of Nietzsche Studies, 46(1), 110-119. This Article is brought to you for free and open access by the Philosophy & Religious Studies at ODU Digital Commons. It has been accepted for inclusion in Philosophy Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Naturalism, Causality, and Nietzsche’s Conception of Science JUSTIN REMHOF ABSTRACT: There is a disagreement over how to understand Nietzsche’s view of science. According to what I call the Negative View, Nietzsche thinks science should be reconceived or superseded by another discourse, such as art, because it is nihilistic. By contrast, what I call the Positive View holds that Nietzsche does not think science is nihilistic, so he denies that it should be reinterpreted or overcome. Interestingly, defenders of each position can appeal to Nietzsche’s understanding of naturalism to support their interpretation. I argue that Nietzsche embraces a social constructivist conception of causality that renders his natu- ralism incompatible with the views of naturalism attributed to him by the two dominant readings. -
Consequences of Pragmatism University of Minnesota Press, 1982
estratto dal volume: RICHARD RORTY Consequences of Pragmatism University of Minnesota Press, 1982 INTRODUCTION 1. Platonists, Positivists, and Pragmatists The essays in this book are attempts to draw consequences from a prag- matist theory about truth. This theory says that truth is not the sort of thing one should expect to have a philosophically interesting theory about. For pragmatists, “truth” is just the name of a property which all true statements share. It is what is common to “Bacon did not write Shakespeare,” “It rained yesterday,” “E equals mc²” “Love is better than hate,” “The Alle- gory of Painting was Vermeer’s best work,” “2 plus 2 is 4,” and “There are nondenumerable infinities.” Pragmatists doubt that there is much to be said about this common feature. They doubt this for the same reason they doubt that there is much to be said about the common feature shared by such morally praiseworthy actions as Susan leaving her husband, Ameri- ca joining the war against the Nazis, America pulling out of Vietnam, Socrates not escaping from jail, Roger picking up litter from the trail, and the suicide of the Jews at Masada. They see certain acts as good ones to perform, under the circumstances, but doubt that there is anything gen- eral and useful to say about what makes them all good. The assertion of a given sentence—or the adoption of a disposition to assert the sentence, the conscious acquisition of a belief—is a justifiable, praiseworthy act in certain circumstances. But, a fortiori, it is not likely that there is something general and useful to be said about what makes All such actions good-about the common feature of all the sentences which one should ac- quire a disposition to assert. -
A WORLD WITHOUT CAUSE and EFFECT Logic-Defying Experiments Into Quantum Causality Scramble the Notion of Time Itself
A WORLD WITHOUT CAUSE AND EFFECT Logic-defying experiments into quantum causality scramble the notion of time itself. BY PHILIP BALL lbert Einstein is heading out for his This finding1 in 2015 made the quantum the constraints of a predefined causal structure daily stroll and has to pass through world seem even stranger than scientists had might solve some problems faster than con- Atwo doorways. First he walks through thought. Walther’s experiments mash up cau- ventional quantum computers,” says quantum the green door, and then through the red one. sality: the idea that one thing leads to another. theorist Giulio Chiribella of the University of Or wait — did he go through the red first and It is as if the physicists have scrambled the con- Hong Kong. then the green? It must have been one or the cept of time itself, so that it seems to run in two What’s more, thinking about the ‘causal struc- other. The events had have to happened in a directions at once. ture’ of quantum mechanics — which events EDGAR BĄK BY ILLUSTRATION sequence, right? In everyday language, that sounds nonsen- precede or succeed others — might prove to be Not if Einstein were riding on one of the sical. But within the mathematical formalism more productive, and ultimately more intuitive, photons ricocheting through Philip Walther’s of quantum theory, ambiguity about causation than couching it in the typical mind-bending lab at the University of Vienna. Walther’s group emerges in a perfectly logical and consistent language that describes photons as being both has shown that it is impossible to say in which way.