Location and Causality in Quantum Theory

Total Page:16

File Type:pdf, Size:1020Kb

Location and Causality in Quantum Theory Location and Causality in Quantum Theory A dissertation submitted to the University of Manchester for the degree of Master of Science by Research in the Faculty of Engineering and Physical Sciences 2013 Robert A Dickinson School of Physics and Astronomy Contents 1 Introduction 8 1.1 Causality . .8 1.2 Relativistic causality . .9 1.3 The structure of this document . 10 2 Correlations 12 2.1 Operational descriptions . 12 2.2 Restrictions on non-local correlations in a classical theory . 12 2.3 Parameter spaces of general correlations . 14 2.3.1 Imaginable parameter spaces for one binary observer . 15 2.3.2 One-way signalling between two observers . 15 2.3.3 Imaginable parameter spaces for two spacelike-separated binary observers . 17 2.3.4 The parameter space in nature for two spacelike-separated binary observers . 21 2.3.5 The parameter space in quantum theory for two spacelike- separated binary observers . 22 2.3.6 Parameter spaces for three or more spacelike-separated binary observers . 24 3 Hilbert Space 26 3.1 The Postulates and their implications . 26 3.2 Operational stochastic quantum theory . 28 3.2.1 Internal unknowns regarding the initial state . 29 3.2.2 External unknowns regarding the initial state . 30 3.2.3 Internal unknowns regarding the measurement . 30 3.2.4 External unknowns regarding the measurement . 31 3.2.5 The generalised update rule . 31 3.3 Causality in quantum mechanics . 33 3.3.1 The no-signalling condition . 33 3.3.2 Special cases . 35 3.4 From discrete to continuous sets of outcomes . 36 3.4.1 Partitions of discrete sets . 36 3.4.2 Partitions of continuous sets . 37 3.4.3 Unbounded operators . 39 3.4.4 Continuous observables . 40 2 4 The relationship between Hilbert space and spaces of gener- alised coordinates 43 4.1 Relationship to classical mechanics . 43 4.2 Non-classical degrees of freedom . 48 4.3 The single particle . 51 5 Propagators 53 5.1 Canonical quantum mechanics and causality . 53 5.2 The propagator in canonical quantum mechanics . 56 5.2.1 If the Hamiltonian is a quadratic function of momentum 58 5.2.2 free-particle propagators . 59 5.3 Propagators involving non-classical degrees of freedom . 61 5.4 Propagators as Green's functions . 62 6 Relativistic free particles and their propagators 65 6.1 The relativistic scalar particle propagator . 65 6.1.1 Positive and negative energy propagators . 65 6.1.2 The path integral for a relativistic particle . 68 6.1.3 Propagation backwards in time? . 71 6.2 The square root Hamiltonian . 74 6.3 Other relativistic Hamiltonians . 77 6.4 The Feshbach{Villars Hamiltonian . 78 6.4.1 Introduction . 78 6.4.2 Notation . 78 6.4.3 The two momentum representations . 79 6.4.4 The structure of the space of states . 82 6.4.5 The two position operators and their eigenstates . 83 6.4.6 A theory with two position spaces . 89 6.4.7 A small adjustment to restore Lorentz invariance . 91 6.5 The Dirac Hamiltonian . 94 6.6 The breakdown of relativistic quantum particle mechanics . 97 7 Quantum Field Theory 99 7.1 Covariant field theory . 100 7.1.1 Classical fields . 100 7.1.2 Quantum scalar fields and observables . 101 7.1.3 Non-scalar fields and observables . 103 7.2 A field theory with a classical source . 106 7.3 Location-specific information in Hilbert space . 113 3 7.4 Particles in quantum field theory . 116 7.4.1 The Fock representation . 116 7.4.2 The correspondence between quantum field theory and quantum mechanics . 119 7.4.3 Particle creation . 123 7.5 The return of relativistic causality violations . 124 7.5.1 Signalling using more than two measurements . 124 7.5.2 The limits of canonical quantum theory? . 127 8 Conclusions 129 A Appendix 134 A.1 Causal relation between observables in quantum mechanics . 134 A.2 The square root of the Klein{Gordon Hamiltonian as a convo- lution operation . 136 A.3 Note on the structure of the Feshbach{Villars space of states and the particle interpretation . 140 A.4 Interaction of a Feshbach{Villars particle with an electromag- netic field . 142 A.4.1 Minimal coupling in the canonical position space . 142 A.4.2 The non-relativistic limit . 143 A.5 Observables in a spinor field . 144 Word Count: 35151 4 Abstract An operational development of quantum theory is presented, from general correlations through single-particle theories to ele- mentary quantum field theory, with a focus throughout on causal relations. The objective is to establish the extent to which quan- tum theories are consistent with the principle of relativistic causal- ity (that no two events separated by a distance greater than their separation in time multiplied by the speed of light may have a causal influence on each other) and to examine the assumptions that this analysis requires. It is necessary to pay particular atten- tion to the notions of spatial location and measurement. It is found that in a relativistically causal theory, any measure- ment made in a finite spatial region must have the capacity for particle creation. A number of derivations are presented, including some rela- tivistic single-particle propagators and a Hamiltonian based on the square root of the Klein Gordon equation. 5 Declaration No portion of the work referred to in this dissertation has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning. Copyright Statement The author of this dissertation (including any appendices and/or schedules to this dissertation) owns any copyright in it (the \Copyright") and he has given The University of Manchester the right to use such Copyright for any administrative, promotional, educational and/or teaching purposes. Copies of this dissertation, either in full or in extracts, may be made only in accordance with the regulations of the John Rylands University Library of Manchester. Details of these regulations may be obtained from the Librarian. This page must form part of any such copies made. The ownership of any patents, designs, trade marks and any and all other intellectual property rights except for the Copyright (the \Intellectual Prop- erty Rights") and any reproductions of copyright works, for example graphs and tables (\Reproductions"), which may be described in this dissertation, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions. Further information on the conditions under which disclosure, publication and exploitation of this dissertation, the Copyright and any Intellectual Prop- erty Rights and/or Reproductions described in it may take place is available from the Head of School of Physics and Astronomy. 6 Acknowledgements I owe a great deal of thanks to Jeff Forshaw, for his patience and encourage- ment, for the time and insight he has put into supervising this project, and most of all for posing a problem that fascinated and confused me so much I had to go back and look at quantum theory afresh. Thanks also to the Manchester HEP group for providing a positive and stimulating atmosphere, with excellent lectures, seminars and discussions. Special thanks to Tamora, my family and friends for all their help and support, and for accepting that I would be doing something strange for a little while. 7 1 Introduction 1.1 Causality The notion that some phenomena arise in dependence upon others is basic to any attempt to understand the world we find ourselves in. The relationship between the dependent events (`effects’) and the sets of events that they de- pend upon (`causes') is known as causality. The purpose of this work is to investigate this relationship in the context of quantum theory. Perhaps the most striking quality of causality is that we intuitively asso- ciate its direction { from cause to effect { with the direction of time. Causes appear to precede effects. Quantum theory is not known for its respect of what we might intuitively think, but in this case we will find our intuitions to be correct. Before I introduce the content and scope of this work, let us take a moment to narrow down what we mean by cause and effect. The philosophy of causal relations has deep roots and many subtleties [1, 2], but from the outset I wish to adopt a simplification that I suggest preserves the essential characteristics of causality without exposing us to crippling am- biguities. Consider the following causal relation: stepping outside in the rain causes you to get wet. Two characteristics contribute the majority of what is meaningful about this relation: • the effect (getting wet) is something we could detect and respond to in some way, and • the causes (stepping outside, rain) include some that are at least partly responsive to something we could do.1 Following this example, our simplification will be to focus only on effects that can be responded to, either by a device that can detect the event and is programmed to respond in a certain way or by a human being who can observe the effect and choose to act on what he or she finds, and to causes that are responsive to such a device or to something a human being could choose to do. There need be no limit on how quickly a response can take place. 1For example, if we chose to stay indoors, one of the causes would cease in response to our choice.
Recommended publications
  • Introduction to Dynamical Triangulations
    Introduction to Dynamical Triangulations Andrzej G¨orlich Niels Bohr Institute, University of Copenhagen Naxos, September 12th, 2011 Andrzej G¨orlich Causal Dynamical Triangulation Outline 1 Path integral for quantum gravity 2 Causal Dynamical Triangulations 3 Numerical setup 4 Phase diagram 5 Background geometry 6 Quantum fluctuations Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. quantum trajectory space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. quantum trajectory space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum gravity General Relativity: gravity is encoded in space-time geometry. The role of a trajectory plays now the geometry of four-dimensional space-time. All space-time histories contribute to the transition amplitude.
    [Show full text]
  • Causality and Determinism: Tension, Or Outright Conflict?
    1 Causality and Determinism: Tension, or Outright Conflict? Carl Hoefer ICREA and Universidad Autònoma de Barcelona Draft October 2004 Abstract: In the philosophical tradition, the notions of determinism and causality are strongly linked: it is assumed that in a world of deterministic laws, causality may be said to reign supreme; and in any world where the causality is strong enough, determinism must hold. I will show that these alleged linkages are based on mistakes, and in fact get things almost completely wrong. In a deterministic world that is anything like ours, there is no room for genuine causation. Though there may be stable enough macro-level regularities to serve the purposes of human agents, the sense of “causality” that can be maintained is one that will at best satisfy Humeans and pragmatists, not causal fundamentalists. Introduction. There has been a strong tendency in the philosophical literature to conflate determinism and causality, or at the very least, to see the former as a particularly strong form of the latter. The tendency persists even today. When the editors of the Stanford Encyclopedia of Philosophy asked me to write the entry on determinism, I found that the title was to be “Causal determinism”.1 I therefore felt obliged to point out in the opening paragraph that determinism actually has little or nothing to do with causation; for the philosophical tradition has it all wrong. What I hope to show in this paper is that, in fact, in a complex world such as the one we inhabit, determinism and genuine causality are probably incompatible with each other.
    [Show full text]
  • Causality in Quantum Field Theory with Classical Sources
    Causality in Quantum Field Theory with Classical Sources Bo-Sture K. Skagerstam1;a), Karl-Erik Eriksson2;b), Per K. Rekdal3;c) a)Department of Physics, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway b) Department of Space, Earth and Environment, Chalmers University of Technology, SE-412 96 G¨oteborg, Sweden c)Molde University College, P.O. Box 2110, N-6402 Molde, Norway Abstract In an exact quantum-mechanical framework we show that space-time expectation values of the second-quantized electromagnetic fields in the Coulomb gauge, in the presence of a classical source, automatically lead to causal and properly retarded elec- tromagnetic field strengths. The classical ~-independent and gauge invariant Maxwell's equations then naturally emerge and are therefore also consistent with the classical spe- cial theory of relativity. The fundamental difference between interference phenomena due to the linear nature of the classical Maxwell theory as considered in, e.g., classical optics, and interference effects of quantum states is clarified. In addition to these is- sues, the framework outlined also provides for a simple approach to invariance under time-reversal, some spontaneous photon emission and/or absorption processes as well as an approach to Vavilov-Cherenkovˇ radiation. The inherent and necessary quan- tum uncertainty, limiting a precise space-time knowledge of expectation values of the quantum fields considered, is, finally, recalled. arXiv:1801.09947v2 [quant-ph] 30 Mar 2019 1Corresponding author. Email address: [email protected] 2Email address: [email protected] 3Email address: [email protected] 1. Introduction The roles of causality and retardation in classical and quantum-mechanical versions of electrodynamics are issues that one encounters in various contexts (for recent discussions see, e.g., Refs.[1]-[14]).
    [Show full text]
  • Time and Causality in General Relativity
    Time and Causality in General Relativity Ettore Minguzzi Universit`aDegli Studi Di Firenze FQXi International Conference. Ponta Delgada, July 10, 2009 FQXi Conference 2009, Ponta Delgada Time and Causality in General Relativity 1/8 Light cone A tangent vector v 2 TM is timelike, lightlike, causal or spacelike if g(v; v) <; =; ≤; > 0 respectively. Time orientation and spacetime At every point there are two cones of timelike vectors. The Lorentzian manifold is time orientable if a continuous choice of one of the cones, termed future, can be made. If such a choice has been made the Lorentzian manifold is time oriented and is also called spacetime. Lorentzian manifolds and light cones Lorentzian manifolds A Lorentzian manifold is a Hausdorff manifold M, of dimension n ≥ 2, endowed with a Lorentzian metric, that is a section g of T ∗M ⊗ T ∗M with signature (−; +;:::; +). FQXi Conference 2009, Ponta Delgada Time and Causality in General Relativity 2/8 Time orientation and spacetime At every point there are two cones of timelike vectors. The Lorentzian manifold is time orientable if a continuous choice of one of the cones, termed future, can be made. If such a choice has been made the Lorentzian manifold is time oriented and is also called spacetime. Lorentzian manifolds and light cones Lorentzian manifolds A Lorentzian manifold is a Hausdorff manifold M, of dimension n ≥ 2, endowed with a Lorentzian metric, that is a section g of T ∗M ⊗ T ∗M with signature (−; +;:::; +). Light cone A tangent vector v 2 TM is timelike, lightlike, causal or spacelike if g(v; v) <; =; ≤; > 0 respectively.
    [Show full text]
  • Causality in the Quantum World
    VIEWPOINT Causality in the Quantum World A new model extends the definition of causality to quantum-mechanical systems. by Jacques Pienaar∗ athematical models for deducing cause-effect relationships from statistical data have been successful in diverse areas of science (see Ref. [1] and references therein). Such models can Mbe applied, for instance, to establish causal relationships between smoking and cancer or to analyze risks in con- struction projects. Can similar models be extended to the microscopic world governed by the laws of quantum me- chanics? Answering this question could lead to advances in quantum information and to a better understanding of the foundations of quantum mechanics. Developing quantum Figure 1: In statistics, causal models can be used to extract extensions of causal models, however, has proven challeng- cause-effect relationships from empirical data on a complex ing because of the peculiar features of quantum mechanics. system. Existing models, however, do not apply if at least one For instance, if two or more quantum systems are entangled, component of the system (Y) is quantum. Allen et al. have now it is hard to deduce whether statistical correlations between proposed a quantum extension of causal models. (APS/Alan them imply a cause-effect relationship. John-Mark Allen at Stonebraker) the University of Oxford, UK, and colleagues have now pro- posed a quantum causal model based on a generalization of an old principle known as Reichenbach’s common cause is a third variable that is a common cause of both. In the principle [2]. latter case, the correlation will disappear if probabilities are Historically, statisticians thought that all information conditioned to the common cause.
    [Show full text]
  • A WORLD WITHOUT CAUSE and EFFECT Logic-Defying Experiments Into Quantum Causality Scramble the Notion of Time Itself
    A WORLD WITHOUT CAUSE AND EFFECT Logic-defying experiments into quantum causality scramble the notion of time itself. BY PHILIP BALL lbert Einstein is heading out for his This finding1 in 2015 made the quantum the constraints of a predefined causal structure daily stroll and has to pass through world seem even stranger than scientists had might solve some problems faster than con- Atwo doorways. First he walks through thought. Walther’s experiments mash up cau- ventional quantum computers,” says quantum the green door, and then through the red one. sality: the idea that one thing leads to another. theorist Giulio Chiribella of the University of Or wait — did he go through the red first and It is as if the physicists have scrambled the con- Hong Kong. then the green? It must have been one or the cept of time itself, so that it seems to run in two What’s more, thinking about the ‘causal struc- other. The events had have to happened in a directions at once. ture’ of quantum mechanics — which events EDGAR BĄK BY ILLUSTRATION sequence, right? In everyday language, that sounds nonsen- precede or succeed others — might prove to be Not if Einstein were riding on one of the sical. But within the mathematical formalism more productive, and ultimately more intuitive, photons ricocheting through Philip Walther’s of quantum theory, ambiguity about causation than couching it in the typical mind-bending lab at the University of Vienna. Walther’s group emerges in a perfectly logical and consistent language that describes photons as being both has shown that it is impossible to say in which way.
    [Show full text]
  • A Brief Introduction to Temporality and Causality
    A Brief Introduction to Temporality and Causality Kamran Karimi D-Wave Systems Inc. Burnaby, BC, Canada [email protected] Abstract Causality is a non-obvious concept that is often considered to be related to temporality. In this paper we present a number of past and present approaches to the definition of temporality and causality from philosophical, physical, and computational points of view. We note that time is an important ingredient in many relationships and phenomena. The topic is then divided into the two main areas of temporal discovery, which is concerned with finding relations that are stretched over time, and causal discovery, where a claim is made as to the causal influence of certain events on others. We present a number of computational tools used for attempting to automatically discover temporal and causal relations in data. 1. Introduction Time and causality are sources of mystery and sometimes treated as philosophical curiosities. However, there is much benefit in being able to automatically extract temporal and causal relations in practical fields such as Artificial Intelligence or Data Mining. Doing so requires a rigorous treatment of temporality and causality. In this paper we present causality from very different view points and list a number of methods for automatic extraction of temporal and causal relations. The arrow of time is a unidirectional part of the space-time continuum, as verified subjectively by the observation that we can remember the past, but not the future. In this regard time is very different from the spatial dimensions, because one can obviously move back and forth spatially.
    [Show full text]
  • K-Causal Structure of Space-Time in General Relativity
    PRAMANA °c Indian Academy of Sciences Vol. 70, No. 4 | journal of April 2008 physics pp. 587{601 K-causal structure of space-time in general relativity SUJATHA JANARDHAN1;¤ and R V SARAYKAR2 1Department of Mathematics, St. Francis De Sales College, Nagpur 440 006, India 2Department of Mathematics, R.T.M. Nagpur University, Nagpur 440 033, India ¤Corresponding author E-mail: sujata [email protected]; r saraykar@redi®mail.com MS received 3 January 2007; revised 29 November 2007; accepted 5 December 2007 Abstract. Using K-causal relation introduced by Sorkin and Woolgar [1], we generalize results of Garcia-Parrado and Senovilla [2,3] on causal maps. We also introduce causality conditions with respect to K-causality which are analogous to those in classical causality theory and prove their inter-relationships. We introduce a new causality condition fol- lowing the work of Bombelli and Noldus [4] and show that this condition lies in between global hyperbolicity and causal simplicity. This approach is simpler and more general as compared to traditional causal approach [5,6] and it has been used by Penrose et al [7] in giving a new proof of positivity of mass theorem. C0-space-time structures arise in many mathematical and physical situations like conical singularities, discontinuous matter distributions, phenomena of topology-change in quantum ¯eld theory etc. Keywords. C0-space-times; causal maps; causality conditions; K-causality. PACS Nos 04.20.-q; 02.40.Pc 1. Introduction The condition that no material particle signals can travel faster than the velocity of light ¯xes the causal structure for Minkowski space-time.
    [Show full text]
  • The Philosophy Behind Quantum Gravity
    The Philosophy behind Quantum Gravity Henrik Zinkernagel Department of Philosophy, Campus de Cartuja, 18071, University of Granada, Spain. [email protected] Published in Theoria - An International Journal for Theory, History and Foundations of Science (San Sebastián, Spain), Vol. 21/3, 2006, pp. 295-312. Abstract This paper investigates some of the philosophical and conceptual issues raised by the search for a quantum theory of gravity. It is critically discussed whether such a theory is necessary in the first place, and how much would be accomplished if it is eventually constructed. I argue that the motivations behind, and expectations to, a theory of quantum gravity are entangled with central themes in the philosophy of science, in particular unification, reductionism, and the interpretation of quantum mechanics. I further argue that there are –contrary to claims made on behalf of string theory –no good reasons to think that a quantum theory of gravity, if constructed, will provide a theory of everything, that is, a fundamental theory from which all physics in principle can be derived. 1. Introduction One of the outstanding tasks in fundamental physics, according to many theoretical physicists, is the construction of a quantum theory of gravity. The so far unsuccessful attempt to construct such a theory is an attempt to unify Einstein's general theory of relativity with quantum theory (or quantum field theory). While quantum gravity aims to describe everything in the universe in terms of quantum theory, the purpose of the closely related project of quantum cosmology is to describe even the universe as a whole as a quantum system.
    [Show full text]
  • Causal Dynamical Triangulations in Four Dimensions
    Jagiellonian University Faculty of Physics, Astronomy and Applied Computer Science Causal Dynamical Triangulations in Four Dimensions by Andrzej G¨orlich Thesis written under the supervision of Prof. Jerzy Jurkiewicz, arXiv:1111.6938v1 [hep-th] 29 Nov 2011 presented to the Jagiellonian University for the PhD degree in Physics Krakow 2010 Contents Preface 5 1 Introduction to Causal Dynamical Triangulations 9 1.1 Causaltriangulations. 11 1.2 The Regge action and the Wick rotation . 14 1.3 The author’s contribution to the field . ..... 17 2 Phase diagram 21 2.1 Phasetransitions ................................ 24 2.2 Relation to Hoˇrava-Lifshitz gravity . ........ 28 3 The macroscopic de Sitter Universe 31 3.1 Spatialvolume .................................. 31 3.2 Theminisuperspacemodel. 37 3.3 Thefourdimensionalspacetime. 38 3.4 GeometryoftheUniverse . 45 4 Quantum fluctuations 53 4.1 Decomposition of the Sturm-Liouville matrix . ........ 58 4.2 Kineticterm ................................... 60 4.3 Potentialterm .................................. 61 4.4 Flow of the gravitational constant . ..... 63 5 Geometry of spatial slices 67 5.1 Hausdorffdimension ............................... 67 5.2 Spectraldimension ............................... 70 5.3 The fractal structure of spatial slices . ........ 71 6 Implementation 75 6.1 Parametrization of the manifold . ..... 75 6.2 MonteCarloSimulations. 81 6.3 MonteCarloMoves................................ 85 3 4 CONTENTS Conclusions 91 A Derivation of the Regge action 93 B Constrained propagator 99 Bibliography 101 The author’s list of publications 107 Acknowledgments 109 Preface To reconcile classical theory of gravity with quantum mechanics is one of the most chal- lenging problems in theoretical physics. Einstein’s General Theory of Relativity, which supersedes the Newton’s law of universal gravitation, known since 17th century, is a geo- metric theory perfectly describing gravitational interactions observed in the macroscopic world.
    [Show full text]
  • The Law of Causality and Its Limits Vienna Circle Collection
    THE LAW OF CAUSALITY AND ITS LIMITS VIENNA CIRCLE COLLECTION lIENK L. MULDER, University ofAmsterdam, Amsterdam, The Netherlands ROBERT S. COHEN, Boston University, Boston, Mass., U.SA. BRIAN MCGUINNESS, University of Siena, Siena, Italy RUDOLF IlALLER, Charles Francis University, Graz, Austria Editorial Advisory Board ALBERT E. BLUMBERG, Rutgers University, New Brunswick, N.J., U.SA. ERWIN N. HIEBERT, Harvard University, Cambridge, Mass., U.SA JAAKKO HiNTIKKA, Boston University, Boston, Mass., U.S.A. A. J. Kox, University ofAmsterdam, Amsterdam, The Netherlands GABRIEL NUCHELMANS, University ofLeyden, Leyden, The Netherlands ANTH:ONY M. QUINTON, All Souls College, Oxford, England J. F. STAAL, University of California, Berkeley, Calif., U.SA. FRIEDRICH STADLER, Institute for Science and Art, Vienna, Austria VOLUME 22 VOLUME EDITOR: ROBERT S. COHEN PHILIPP FRANK PHILIPP FRANK THELAWOF CAUSALITY AND ITS LIMITS Edited by ROBERT s. COHEN Boston University Translated by MARIE NEURATH and ROBERT S. COHEN 1Ii.. ... ,~ SPRINGER SCIENCE+BUSINESS MEDIA, B.V. Library of Congress Cataloging-in-Publication data Frank, Philipp, 1884-1966. [Kausalgesetz und seine Grenzen. Englishl The law of causality and its limits / Philipp Frank; edited by Robert S. Cohen ; translation by Marie Neurath and Robert S. Cohen. p. cm. -- (Vienna Circle collection ; v. 22) Inc I udes index. ISBN 978-94-010-6323-4 ISBN 978-94-011-5516-8 (eBook) DOI 10.1007/978-94-011-5516-8 1. Causation. 2. Science--Phi losophy. I. Cohen, R. S. (Robert Sonne) 11. Title. 111. Series. BD543.F7313
    [Show full text]
  • Is There an Independent Principle of Causality in Physics? John D
    Brit. J. Phil. Sci. 60 (2009), 475–486 Is There an Independent Principle of Causality in Physics? John D. Norton ABSTRACT Mathias Frisch has argued that the requirement that electromagnetic dispersion pro- cesses are causal adds empirical content not found in electrodynamic theory. I urge that this attempt to reconstitute a local principle of causality in physics fails. An independent principle is not needed to recover the results of dispersion theory. The use of ‘causality conditions’ proves to be the mere adding of causal labels to an already presumed fact. If instead one seeks a broader, independently formulated grounding for the conditions, that grounding either fails or dissolves into vagueness and ambiguity, as has traditionally been the fate of candidate principles of causality. 1 Introduction 2 Scattering in Classical Electrodynamics 3 Sufficiency of the Physics 4 Failure of the Principle of Causality Proposed 4.1 A sometimes principle 4.2 The conditions of applicability are obscure 4.3 Effects can come before their causes 4.4 Vagueness of the relata and of the notion of causal process 5 Conclusion 1 Introduction In his ([2009a]), Mathias Frisch responds to a skeptical tradition to which I have contributed (Norton [2003], [2007]). That tradition doubts that the sciences are founded upon an independent principle of causality. His response leads him to argue that the requirement that certain physical processes are causal does add further physical content. His example is dispersion in classical electrodynamics. There causal considerations are invoked at a decisive moment in the derivation of the dispersion relations, purportedly to provide physical content not recoverable through the usual manipulations of electrodynamic theory.
    [Show full text]