Winter 2011 Gems & Gemology

Total Page:16

File Type:pdf, Size:1020Kb

Winter 2011 Gems & Gemology G EMS & G VOLUME XLVII WINTER 2011 EMOLOGY W INTER 2011 P AGES 259–336 Dyed Purple Ethiopian Opal Garnet Composition from Gem Properties Symmetry Boundaries for Round Brilliants V OLUME Odontolite in Antique Jewelry Safety of Irradiated Blue Topaz 47 N O. 4 THE QUARTERLY JOURNAL OF THE GEMOLOGICAL INSTITUTE OF AMERICA Winter 2011 Volume 47, No. 4 ® EDITORIAL 259 Great Expectations Jan Iverson FEATURE ARTICLES 260 Dyed Purple Hydrophane Opal Nathan Renfro and Shane F. McClure Carat Points Evidence indicates that opal with a vivid purple bodycolor, reportedly from a new deposit in Mexico, is actually dyed hydrophane from Ethiopia. 272 Determining Garnet Composition from Magnetic Susceptibility And Other Properties Donald B. Hoover Garnet compositions derived from measurements of physical properties pg. 262 correspond closely with results obtained using chemical data. 286 GIA’s Symmetry Grading Boundaries for Round Brilliant Cut Diamonds Ron H. Geurts, Ilene M. Reinitz, Troy Blodgett, and Al M. Gilbertson GIA’s boundary limits for 10 symmetry parameters, measured by optical scanners, will improve consistency in the symmetry grading of round brilliants. NOTES & NEW TECHNIQUES 296 A Historic Turquoise Jewelry Set Containing Fossilized Dentine (Odontolite) and Glass Michael S. Krzemnicki, Franz Herzog, and Wei Zhou Investigation of six antique brooches identifed most of their “turquoise” cabochons as odontolite. pg. 287 RAPID COMMUNICATIONS 302 The Radioactive Decay Pattern of Blue Topaz Treated by Neutron Irradiation Jian Zhang, Taijin Lu, Manjun Wang, and Hua Chen Some “London Blue” topaz contains radioactive trace impurities that may require several years to reach a safe level. REGULAR FEATURES 308 Lab Notes Fancy Vivid purple diamond • Strongly purple-colored black diamond • HPHT-treated diamond with the fluorescence pattern of an HPHT-grown synthetic • Type IIb diamond with long phospho- rescence • Clarity-enhanced opal with artificial matrix • Ethiopian black opal • Coated bead-cul- tured freshwater pearls • Tenebrescent zircon 316 Gem News International Chondrodite from Tanzania • Blue dolomite from Colombia • Fluorite from Namibia • Common opal from Western Australia • A bicolor, bi-pattern hydrophane opal • Chatoyant quartz with cinnabar inclusions • Quartz with acicular emerald inclusions • Quartz with izoklakeite inclusions • Ruby and pg. 312 sapphire mining in Pakistan • Color-change sphene from Pakistan/Afghanistan • Cobalt blue– colored spinel from Vietnam • Trapiche spinel from Mogok, Myanmar • Non-nacreous “cat’s-eye pearls” • Large synthetic quartz • Sugar-acid treatment of opal from Wollo, Ethiopia • Conference reports 336 Book Reviews/Gemological Abstracts Online Listing www.gia.edu/gandg EDITORIAL Editor-in-Chief Editor and Technical Specialist Associate Editor STAFF Jan Iverson Brendan M. Laurs Stuart D. Overlin [email protected] [email protected] [email protected] Senior Manager, Editor, Gemological Abstracts Editors, Lab Notes Communications Brendan M. Laurs Thomas M. Moses Amanda Luke Shane F. McClure Editor, Gem News Contributing Editor Editors, Book Reviews International James E. Shigley Susan B. Johnson Brendan M. Laurs Jana E. Miyahira-Smith Circulation Coordinator Editor-in-Chief Emeritus Martha Rivera Alice S. Keller (760) 603-4000, ext. 7142 [email protected] PRODUCTION Art Director Image Specialist G&G Online: STAFF Nanette Newbry Kevin Schumacher gia.metapress.com Studio 2055 EDITORIAL Ahmadjan Abduriyim Emmanuel Fritsch Robert E. Kane Kenneth Scarratt Tokyo, Japan Nantes, France Helena, Montana Bangkok, Thailand REVIEW BOARD Shigeru Akamatsu Jaroslav Hyršl Lore Kiefert James E. Shigley Tokyo, Japan Prague, Czech Republic Lucerne, Switzerland Carlsbad, California Edward W. Boehm A. J. A. (Bram) Janse Michael S. Krzemnicki Christopher P. Smith Chattanooga, Tennessee Perth, Australia Basel, Switzerland New York, New York James E. Butler E. Alan Jobbins Thomas M. Moses Wuyi Wang Washington, DC Caterham, UK New York, New York New York, New York Alan T. Collins Mary L. Johnson Mark Newton Christopher M. Welbourn London, UK San Diego, California Coventry, UK Reading, UK John L. Emmett Anthony R. Kampf George R. Rossman Brush Prairie, Washington Los Angeles, California Pasadena, California SUBSCRIPTIONS Copies of the current issue may be purchased for $29.95 plus shipping. Online subscriptions are $74.95 for one year (4 issues). Combination print + online subscriptions are $139.95 in the U.S. and $160 elsewhere for one year. Canadian subscribers should add GST. Discounts are available for group subscriptions, renewals, GIA alumni, and current GIA students. For institutional rates, contact the Associate Editor. Subscriptions include G&G’s monthly gemological e-newsletter, the G&G eBrief. To purchase subscriptions and single issues (print or PDF), visit store.gia.edu or contact the Circulation Coordinator. PDF versions of individual articles and sections from Spring 1981 forward can be purchased at gia.metapress.com for $12 each. Visit gia.edu/gandg for free online access to the 1934–2010 subject and author index and all 1934–1980 issues. Gems & Gemology’s five-year impact factor (for 2005–2009) is 1.737, according to the 2010 Thomson Reuters Journal DATABASE Citation Reports (issued June 2011). Gems & Gemology is abstracted in Thomson Reuters products (Current Contents: COVERAGE Physical, Chemical & Earth Sciences and Science Citation Index—Expanded, including the Web of Knowledge) and other databases. For a complete list of sources abstracting G&G, go to gia.edu/gandg. MANUSCRIPT Gems & Gemology welcomes the submission of articles on all aspects of the field. Please see the Guidelines for Authors at SUBMISSIONS gia.edu/gandg or contact the Editor. Letters on articles published in Gems & Gemology are also welcome. Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of U.S. copyright law COPYRIGHT for private use of patrons. Instructors are permitted to photocopy isolated articles for noncommercial classroom use without AND REPRINT fee. Copying of the photographs by any means other than traditional photocopying techniques (Xerox, etc.) is prohibited with- out the express permission of the photographer (where listed) or author of the article in which the photo appears (where no pho- PERMISSIONS tographer is listed). For other copying, reprint, or republication permission, please contact the Editor. Gems & Gemology is published quarterly by the Gemological Institute of America, a nonprofit educational organiza- tion for the gem and jewelry industry. Postmaster: Return undeliverable copies of Gems & Gemology to GIA, The Robert Mouawad Campus, 5345 Armada Drive, Carlsbad, CA 92008. Our Canadian goods and service registration number is 126142892RT. Any opinions expressed in signed articles are understood to be opinions of the authors and not of the publisher. ABOUT The recent appearance of purple play-of-color opal, reportedly from a new deposit in Mexico, has heightened interest in THE COVER the origin and nature of this material. In this issue, Nathan Renfro and Shane McClure offer gemological and spectro- scopic evidence that this opal is actually dyed hydrophane from Ethiopia’s Wollo Province. The fine untreated Wollo opals on the cover consist of a 35.32 ct oval cabochon in the center courtesy of William Larson (Palagems.com, Fallbrook, California) surrounded by two pieces of rough (8.16 and 12.78 g) and four polished stones (6.95–32.55 ct) that are courtesy of David Artinian (Clear Cut Inc., Poway, California). Photos by Robert Weldon. Color separations for Gems & Gemology are by Pacific Plus, Carlsbad, California. Printing is by Allen Press, Lawrence, Kansas. GIA World Headquarters The Robert Mouawad Campus 5345 Armada Drive Carlsbad, CA 92008 USA © 2011 Gemological Institute of America All rights reserved. ISSN 0016-626X GREAT EXPECTATIONS e all have great expectations for 2012. I’ve gone a step further with my New Year’s resolutions by creating a “goals” book. W Not only do I write down my goals, but I also add details such as how and when I will achieve them, and include pictures to make it more visual. So, what new things can you expect from Gems & Gemology in the year ahead? Our goal is to create an enhanced digital journal, one that offers a more interactive experience for our online audience, in support of what we already do. Digital is changing the way information is consumed, and it pro- vides a unique opportunity to reinvent the way we engage with you, our readers. Digital is beyond relevant: It is the future. But first we finish 2011. Our final issue of the year includes a report by GIA researchers on a new purple opal that’s been hitting the market. Although it was reportedly natural material from Mexico, gemological investigation identified it as dyed opal from Ethiopia. Because this hydro- phane opal can be very absorbent, Our goal is to create an enhanced digital journal, one we can expect to see many other that offers a more interactive experience for our online treatments applied to it. audience, in support of what we already do. Another piece by GIA researchers examines symmetry parameters in diamond grading. Thanks to improve- ments in measuring round brilliants with optical scanners, GIA can now evaluate symmetry more consistently. This measurement-based procedure will complement the visual assessment of symmetry, which is one of the components of GIA’s diamond cut grade. We also feature a set of six antique brooches, apparently
Recommended publications
  • Coulsonite Fev2o4—A Rare Vanadium Spinel Group Mineral in Metamorphosed Massive Sulfide Ores of the Kola Region, Russia
    minerals Article Coulsonite FeV2O4—A Rare Vanadium Spinel Group Mineral in Metamorphosed Massive Sulfide Ores of the Kola Region, Russia Alena A. Kompanchenko Geological Institute of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 14 Fersman Street, 184209 Apatity, Russia; [email protected]; Tel.: +7-921-048-8782 Received: 24 August 2020; Accepted: 21 September 2020; Published: 24 September 2020 Abstract: This work presents new data on a rare vanadium spinel group mineral, i.e., coulsonite FeV2O4 established in massive sulfide ores of the Bragino occurrence in the Kola region, Russia. Coulsonite in massive sulfide ores of the Bragino occurrence is one of the most common vanadium minerals. Three varieties of coulsonite were established based on its chemical composition, some physical properties, and mineral association: coulsonite-I, coulsonite-II, and coulsonite-III. Coulsonite-I forms octahedral crystal clusters of up to 500 µm, and has a uniformly high content of 2 Cr2O3 (20–30 wt.%), ZnO (up to 4.5 wt.%), and MnO (2.8 wt.%), high microhardness (743 kg/mm ) and coefficient of reflection. Coulsonite-II was found in relics of quartz–albite veins in association with other vanadium minerals. Its features are a thin tabular shape and enrichment in TiO2 of up to 18 wt.%. Coulsonite-III is the most common variety in massive sulfide ores of the Bragino occurrence. Coulsonite-III forms octahedral crystals of up to 150 µm, crystal clusters, and intergrowths with V-bearing ilmenite, W-V-bearing rutile, Sc-V-bearing senaite, etc. Chemical composition of coulsonite-III is characterized by wide variation of the major compounds—Fe, V, Cr.
    [Show full text]
  • Painite, Cazrblllro,Rl: Its Crystal Structure and Relation To
    American Mineralogist, Volume 61, pages 88-94, 1976 Painite, CaZrBlLlrO,rl: Its crystalstructure and relationto jeremejevite,Bu[[rAl6(OH)sO1r], and fluoborite, Br[Mgr(F, OH)rOr] Plur- BRre,uMooRE r.No TnreHnnu AnerI Department of the Geophysical Sciences, The Uniuersity of Chicago Chicago, Illinois 60637 Abstract Painite-CazrB[Al,O,s], hexagonalP6s, a :8.715(2), c : 8.472(2)A,Z : 2-possessesa rigid and dense [AlrO,r]'- octahedralframework, topologically identical to those found in jeremejevite, B'[IBAI6(OH)aO,,] and fluoborite, B,[Mg,(F,OH),O,]. R : 0.071 for l6l8 independent reflections. The octahedralframework is linked to [BOr]3 trianglesand [ZrOu]8-trigonal prismsatlf z and a largepipe at 0 0 z is cloggedwith compressed[CaO"]'0- octahedra. Average interatomic distancesareCa-O=2.398,2r-O:2.126,8-O:1.380,A1(l)-O: l.9l5,Al(2)-O: 1.918, and Al(3)-O : l.9l4A. The octahedral framework in painite, resistantto attack by acids and bases,suggests a highly refractoryphase and the possibilityof other equally resistantcompounds, hypothetical examplesbeing NaNbs+B[Alrors] and llUutB[Al"O,"]. ln the latter, thepipewould be lree from obstructions. Introduction Three-dimensionalsingle-crystal X-ray diffraction intensitiesabout the a2-rotation axis were collected Painite is a curious mineral species,first reported on a PnILnrn semi-automateddiffractometer with by Claringbull, Hey and Payne(1957) from the ruby graphite monochromatized MoKa, (tr : 0.70926A) minesof Mogok, Burma. It was found as a garnet-red radiation. With 2d-^* : 69.5", data were gathered 1.7 gram singlehexagonal crystal of hardness8. They through the k -- 0- to ll-levels.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • The New IMA List of Gem Materials – a Work in Progress – Updated: July 2018
    The New IMA List of Gem Materials – A Work in Progress – Updated: July 2018 In the following pages of this document a comprehensive list of gem materials is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on Gem Materials of the International Mineralogical Association. The list will be updated on a regular basis. Mineral names and formulae are from the IMA List of Minerals: http://nrmima.nrm.se//IMA_Master_List_%282016-07%29.pdf. Where there is a discrepancy the IMA List of Minerals will take precedence. Explanation of column headings: IMA status: A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). Gem material name: minerals are normal text; non-minerals are bold; rocks are all caps; organics and glasses are italicized. Caveat (IMPORTANT): inevitably there will be mistakes in a list of this type. We will be grateful to all those who will point out errors of any kind, including typos. Please email your corrections to [email protected]. Acknowledgments: The following persons, listed in alphabetic order, gave their contribution to the building and the update of the IMA List of Minerals: Vladimir Bermanec, Emmanuel Fritsch, Lee A.
    [Show full text]
  • Nickel Minerals from Barberton, South Africa: I
    American Mineralogist, Volume 58, pages 733-735, 1973 NickelMinerals from Barberton,South Africa: Vl. Liebenbergite,A NickelOlivine SvsneNoA. nn Wnar Nationnl Institute lor Metallurgy, I Yale Road.,Milner Park, I ohannesburg,South Alrica Lnwrs C. ClI.x Il. S. GeologicalSuruey, 345 Middlefield Road, Menlo Park, California 94025 Abstract Liebenbergite, a nickel olivine from the mineral assemblage trevorite-liebenbergite-nickel serpentine-nickel ludwigite-bunsenite-violarite-millerite-gaspeite-nimite, is described mineral- ogically.Ithasa-1.820,P-1.854,7-1.888,ZVa-88",specificgravity-4'60,Mohs hardness- 6 to 6.5, a - 4.727, b - 10.191,c = 5.955A, and Z - 4. X-ray powder data (48 lines) were indexed according to the space grottp Pbnm. The mean chemical composi- tion, calculated from electron microprobe analyses of eight separate liebenbergite grains, gives the mineral formula: (NL eMgoaCoo,sFeo o)Sio "nOn The name is for W. R. Liebenberg, Deputy Director-General of the National Institute for Metallurgy, South Africa. Introduction mission on New Minerals and Mineral Names (rMA). A re-investigationof the trevorite deposit at Bon Accord in the Barberton Mountain Land, South Experimental Methods Africa, led to the discovery of two peculiar but distinct nickel mineral assemblages.Minerals from The refractive indices were determined by the the assemblagewillemseite-nimite-feroan trevorite- conventional liquid immersion method using a reevesite-millerite-violarite-goethitehave been de- sodium lamp as light source.The optical and crystal scribed in earlier papers in this series (de Waal, morphologicalparameters were studiedwith the aid 1969, l97oa, 1970b;de Waal and Viljoen, I97L). of a universal stage.
    [Show full text]
  • Gem Water Cover:Fa 17/5/09 23:06 Page 1 GEM WATER Adding Crystals to Water Is Both Visually Appealing and Healthy
    Gem Water cover:fa 17/5/09 23:06 Page 1 GEM WATER Adding crystals to water is both visually appealing and healthy. The water becomes infused with crystalline energy. It is a known fact that water carries mineral information and Gem Water provides effective remedies, acting quickly on a physical level. It is similar and complementary to wear- ing crystals, but the effects are not necessarily the same. The introduction to the book tells you all you need to know about the correct way to prepare Gem Water and pro- vides important information on which crystals to use and which not to prepare as Gem Water. The concept may appear simple at first, but you need to apply it with care, and the book explains all the facts you need to know before getting started. The second part of the book features more than 100 Michael Joachim Goebel Gienger, Crystals and 34 special mixtures with their effects as Gem Water remedies. Gem Water How to prepare and use EARTHDANCER more than 130 crystal waters for therapeutic treatments A FINDHORN PRESS IMPRINT MichaelMichael GiengerGienger JoachimJoachim GoebelGoebel Gem Water 96:– 17/5/09 23:13 Page 1 Gem Water How to prepare and use more than 130 crystal waters for therapeutic treatments Michael Gienger Joachim Goebel EARTHDANCER A FINDHORN PRESS IMPRINT Gem Water 96:– 17/5/09 23:13 Page 2 Publishers’ Note The information in this book was produced according to our best knowledge and belief, and the healing effects of the gem waters described have been tried and tested many times.
    [Show full text]
  • The Telephone City Crystal Brantford Lapidary & Mineral Society
    THE TELEPHONE CITY CRYSTAL BRANTFORD LAPIDARY & MINERAL SOCIETY JANUARY 2017 Volume 71 Issue 1 INSIDE THIS ISSUE: JANUARY MEETING— 2 EARTH ON THE MOVE& ARAGONITE UPCOMING EVENTS & 3 CLUB INFO PIECE OF DINOSAUR 4 TAIL IN AMBER RARE GEM MINE 5 & TUMBLER GRIT ROCK TUMBLING 6 MONTHLY MINERAL - 7 APATITE 2016 EXECUTIVE & 8 MISC. December Meeting Highlight Photo- listing on page 2 1 THE TELEPHONE CITY CRYSTAL DATE: FRIDAY JANUARY 20, 2017 TIME: 7:30 PM WHERE: TB COSTAIN/S.C. JOHNSON COMMUNITY CENTER, 16 MORRELL ST. BRANTFORD, ONT. PROGRAM: RENE PERRIN: “EARTH ON THE MOVE” “The title is "Earth on the Move" featuring how the earth has moved and is mov- ing now at both the large scale as in India moving North with various other big and much smaller ex- amples with a beautiful graphic showing all of the global movements as tracked by stations all over the world. This is a great image showing the movement directions with arrows.” THE MINERAL ARAGONITE Calcium carbonate forms as both Aragonite and Calcite, and these two minerals only differ in theircrystallization. Cal- cite, the more common mineral, forms in trigonal crystals, whereas Aragonite forms orthorhombic crystals. On occasion, crystals of Aragonite and Calcite are too small to be individually determined, and it is only possible to distinguish these two minerals with optical or x-ray testing. The true identity of microcrystalline forms of Aragonite or Calcite may also not be known without complex testing, and this can also cause a confusion between these species. Most large Aragonite crystals are twinned growths of three individual crystals that form pseudohexagonal trillings.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Gem-Quality Chrysoprase from Haneti-Itiso Area, Central Tanzania
    GEM-QUALITY CHRYSOPRASE FROM HANETI-ITISO AREA, CENTRAL TANZANIA KARI A. KINNUNEN and ELIAS J. MALISA KINNUNEN, KARI A. and MALISA ELIAS J., 1990: Gem-quality Chrysoprase from Haneti-Itiso area, Central Tanzania. Bull. Geol. Soc. Finland 62, Part 2, 157—166. Gem-quality, apple-green, Ni-bearing chalcedonic quartz occurs as near-surface veins in silicified serpentinite in the Haneti-Itiso area, Central Tanzania. AAS de- terminations revealed a high Ni content, 0.55 wt.%, and low Co and Cr contents of 120 and 1 ppm respectively. NAA determination revealed near chondritic REE contents. X-ray diffraction determinations showed that the Chrysoprase consists main- ly of alpha quartz with some opal-CT. The gemmological properties are: refractive indices from 1.548 to 1.553 (±0.002), mean specific gravity 2.56, hardness about 7 on Moh's scale, inert to ultraviolet radiation, green through Chelsea filter, and absorption in the deep red and violet part of the optical absorption spectrum. The results confirm the identity of the material as Chrysoprase. Microscopically the Tanzanian Chrysoprase consists of spherules which are high- ly disordered, concentric, and composed of bipyramidal quartz, chalcedony, quart- zine, and opal-A. They were classified into four main types according to the shell arrangement. The diameter of the spherules ranged from 40 um to 77 um. Fluid inclusion types in the bipyramidal quartz were monophasic, low-temperature type. The spherules, silica types and REE contents suggest that this Chrysoprase was deposited by evaporation of surface waters connected with the silicification of the serpentinites. Genetically analogous formations, common in Africa, include M-fabric type, weathering profile silcretes.
    [Show full text]
  • Turquoise in the Burro Mountains, New Mexico
    TURQUOISE IN THE BURRO MOUNTAINS, NEW MEXICO. EDWARD R. ZALINSKI. [The following notes are from data collected during the year •9o5 while the writer was superintendent of the Azure Mining Company's property near Silver City. It was his intention to make a detailed study of the sub- ject, but this professional duties have hitherto prevented and in the following pages are presented the tentative conclusionsof an unfinished investigation.] HISTORY AND LOCALITIES. Turquoiseoriginally came fr4m' Persia by wayof Turkeyand was importedby the Venetians,who called it Turchesa,of which its presentname is the French variation. In America it has long been known to the southwesternIndians and was used by them for ornaments and mosaic work. Professor W. P. Blake, in •858 and '59, called attention to its occurrence at Cerrillos, New Mexico, where it had been mined by the aboriginesand early Spaniards. This locality has producedsome valuable gems, but the mines are not at present worked. Turquoise has been found also at Turquoise Moun- tain, CochiseCounty, and Mineral Park, Mohave County, Ari- zona; near Columbus and near Crescent, in southern Nevada; in Fresno County, California; and in Colorado. In New Mexico, besides Cerrillos mentioned above, it is known at Hachiti; in the Burro Mountains, Grant County; and in the Jarrilla Moun- tains, Otero County. The modern discovery of turquoise in the Burro Mountains dates from •875, but these depositswere known to the Indians and were worked by them. Remains of ancient operationsare still to be seen, while stone hammers, implements and fragments of pottery have been found near the old excavations.
    [Show full text]
  • New Data on Painite
    MINERALOGICAL MAGAZINE, JUNE 1986, VOL. 50, PP. 267 70 New data on painite JAMES E. SHIGLEY Research Department, Gemological Institute of America, 1660 Stewart Street, Santa Monica, California 90404 ANTHONY R. KAMPF Mineralogy Section, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, California 90007 AND GEORGE R. ROSSMAN Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA ABSTRACT. A crystal of painite discovered in 1979 in a structure and reported its space group as P63. parcel of rough gem spinel from Burma represents the Powder diffraction data for the 1979 crystal were third known crystal of the species. This crystal is similar to obtained using a Debye-Scherrer camera and the type crystal in most respects. Chemical analyses of Cu-Kcz radiation. They confirmed its identity and both the new crystal and the type crystal confirmed the least squares refinement provided the cell constants essential constituents reported by Moore and Araki (1976) and showed in addition the presence of trace given in Table I. These are slightly larger than the amounts of Fe, Cr, V, Ti, Na, and Hf. Optical absorption cell constants determined by Claringbull et al. spectra suggest that the red colour of painite is caused (1957) and Moore and Araki (1976) for the type principally by Cr 3§ and V3 +. crystal. KEYWORDS: painite, new data, colour, Mogok, Burma. PAINITE is one of the rarest minerals, known Table I. Physical properties and unit previously in only two crystals. This paper cell parameters of painite describes a third known crystal of the species, and Type painite 1 1979 painite provides additional data for the type specimen.
    [Show full text]
  • Nomenclature of the Garnet Supergroup
    American Mineralogist, Volume 98, pages 785–811, 2013 IMA REPORT Nomenclature of the garnet supergroup EDWARD S. GREW,1,* ANDREW J. LOCOCK,2 STUART J. MILLS,3,† IRINA O. GALUSKINA,4 EVGENY V. GALUSKIN,4 AND ULF HÅLENIUS5 1School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 3Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia 4Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland 5Swedish Museum of Natural History, Department of Mineralogy, P.O. Box 50 007, 104 05 Stockholm, Sweden ABSTRACT The garnet supergroup includes all minerals isostructural with garnet regardless of what elements occupy the four atomic sites, i.e., the supergroup includes several chemical classes. There are pres- ently 32 approved species, with an additional 5 possible species needing further study to be approved. The general formula for the garnet supergroup minerals is {X3}[Y2](Z3)ϕ12, where X, Y, and Z refer to dodecahedral, octahedral, and tetrahedral sites, respectively, and ϕ is O, OH, or F. Most garnets are cubic, space group Ia3d (no. 230), but two OH-bearing species (henritermierite and holtstamite) have tetragonal symmetry, space group, I41/acd (no. 142), and their X, Z, and ϕ sites are split into more symmetrically unique atomic positions. Total charge at the Z site and symmetry are criteria for distinguishing groups, whereas the dominant-constituent and dominant-valency rules are critical in identifying species. Twenty-nine species belong to one of five groups: the tetragonal henritermierite group and the isometric bitikleite, schorlomite, garnet, and berzeliite groups with a total charge at Z of 8 (silicate), 9 (oxide), 10 (silicate), 12 (silicate), and 15 (vanadate, arsenate), respectively.
    [Show full text]