Air-To-Air Missile [UPSC Notes for GS III]

Total Page:16

File Type:pdf, Size:1020Kb

Air-To-Air Missile [UPSC Notes for GS III] Air-to-Air Missile [UPSC Notes for GS III] An air-to-air missile (AAM) is a missile fired from an aircraft for the purpose of destroying another aircraft. AAMs are typically powered by one or more rocket motors, usually solid fueled but sometimes liquid- fueled. The topic finds relevance in GS-3 of the UPSC exam. Types of Air-to-Air Missiles Air-to-air missiles are broadly categorized into two groups: “Short range missiles” and “medium or long range missiles”. o The missiles designed to engage opposing aircraft at a range of less than 30 km are known as short-range or "within visual range" missiles. o The medium- or long-range missiles, both fall under the category of “beyond visual range” missiles, and often rely upon radar guidance. The short-range missiles are sometimes called "dogfight" missiles because they are designed to optimize their agility rather than range. Astra Air-to-Air Missile It is an all-weather missile developed by the Defence Research and Development Organisation, and its production began in 2017. Astra is the smallest missile in terms of size and weight, developed by the DRDO. Type of missile: It is a Beyond-Visual Range Air-to-Air indigenously developed missile (BVRAAM). Specifications: o It has a terminal Active Radar Homing (ARH). ARH is a missile guidance method in which a missile contains a radar transceiver and the electronics necessary for it to find and track its target autonomously. o The missile is capable of engaging targets at varying ranges and altitudes for engagement with short-range and long-range targets. o Astra's design resembles Matra Super 530D and Vympel R-77 in a few aspects. o The missile has high maneuverability and capability to engage and destroy aerial targets at supersonic speeds. o The maximum range is achieved when the missile is launched from an altitude of 15 km. Unique feature: The 60-km plus range missile possesses Single Shot Kill Probability (SSKP) making it one of the most reliable in its class of weapon systems. The missile has been integrated with Sukhoi Su-30 and, there’s a plan to integrate it with other fighter aircraft including HAL Tejas, Dassault Mirage 2000, and Mikoyan MiG-29 in the future. Derby Air-to-Air Missile Derby missile is also known as Alto. It has been developed by the Israeli defence company Rafael Advanced Defense Systems. The missile is an enlarged version of the Python 4. Type of missile: It is a Beyond-Visible-Range (BVR) missile. Derby can also be configured as a surface-to-air missile (SAM). Specifications: o The missile is equipped with four main wings and four conventional planar fins in the tail assembly. o It weighs 118kg and is armed with a 23kg warhead. o The seeker and guidance system are fitted in the front of the missile, while the rocket motor is placed at the rear. Unique feature: The missile has been designed specifically to offer an enhanced operational flexibility and multi-shot capability. The missile can also operate in Lock-on Before Launch (LOBL) and Lock-on After Launch (LOAL) modes. The Derby AAM can be integrated onto a variety of fighter aircraft. MICA Air-to-Air Missile The MBDA MICA is an anti-air multi-target missile system. It is designed and developed by European missile systems producer, Matra BAE Dynamics Alenia (MBDA). It is a replacement for both the Super 530, in the interception role, and the Magic II, in the dogfighting role. Type of Missile: It is a short and medium-range missile. MICA can also be employed as a short- range surface-to-air missile. Specifications: o The MICA air-to-air missile is powered by a low-smoke solid propellant with high impulse. o It has a compact design with long chord wings. o There are two MICA variants - MICA RF and MICA IR. o MICA RF has an active radar homing seeker and MICA IR has an imaging infra-red homing seeker. o Both the seekers are designed to filter out counter-measures such as chaff and decoy flares. o The missile can operate in Lock-on Before Launch (LOBL) and Lock-on After Launch (LOAL). An Infrared Search and Track (IRST) system in the seeker allows the missile to autonomously detect, track and lock-on the targets. o The missile’s high-explosive warhead is triggered by RF proximity fuse, direct impact fuse and focused splinters. Unique Feature: Four control surfaces are located on its tail to provide high speed and improved aerodynamic capabilities. 'Tigers', the first squadron of the Indian Air Force, successfully fired the recently acquired long range 'Beyond Visual Range' Air-to-Air MICA missile on a manoeuvring target from Mirage-2000 Upgrade aircraft. It was a Direct Hit and the target was destroyed. The operational success of this mission confirms a critical capability of the Indian Air Force. The MICA will be mounted on the 36 Rafale combat jets that India is purchasing from France. .
Recommended publications
  • Prepared by Textore, Inc. Peter Wood, David Yang, and Roger Cliff November 2020
    AIR-TO-AIR MISSILES CAPABILITIES AND DEVELOPMENT IN CHINA Prepared by TextOre, Inc. Peter Wood, David Yang, and Roger Cliff November 2020 Printed in the United States of America by the China Aerospace Studies Institute ISBN 9798574996270 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 All photos licensed under the Creative Commons Attribution-Share Alike 4.0 International license, or under the Fair Use Doctrine under Section 107 of the Copyright Act for nonprofit educational and noncommercial use. All other graphics created by or for China Aerospace Studies Institute Cover art is "J-10 fighter jet takes off for patrol mission," China Military Online 9 October 2018. http://eng.chinamil.com.cn/view/2018-10/09/content_9305984_3.htm E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the U.S. Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only.
    [Show full text]
  • A Clean Slate Airbus Pivots to Hydrogen For
    November 2020 HOW NOT TO DEVELOP DEVELOP TO NOT HOW FIGHTERYOUR OWN SPACE THREATS SPACE AIR GETSCARGO LIFT A A CLEAN SLATE AIRBUS HYDROGEN TO PIVOTS FOR ZERO-CARBON ‘MOONSHOT’ www.aerosociety.com AEROSPACE November 2020 Volume 47 Number 11 Royal Aeronautical Society 11–15 & 19–21 JANUARY 2021 | ONLINE REIMAGINED The 2021 AIAA SciTech Forum, the world’s largest event for aerospace research and development, will be a comprehensive virtual experience spread over eight days. More than 2,500 papers will be presented across 50 technical areas including fluid dynamics; applied aerodynamics; guidance, navigation, and control; and structural dynamics. The high-level sessions will explore how the diversification of teams, industry sectors, technologies, design cycles, and perspectives can all be leveraged toward innovation. Hear from high-profile industry leaders including: Eileen Drake, CEO, Aerojet Rocketdyne Richard French, Director, Business Development and Strategy, Space Systems, Rocket Lab Jaiwon Shin, Executive Vice President, Urban Air Mobility Division, Hyundai Steven Walker, Vice President and CTO, Lockheed Martin Corporation Join fellow innovators in a shared mission of collaboration and discovery. SPONSORS: As of October 2020 REGISTER NOW aiaa.org/2021SciTech SciTech_Nov_AEROSPACE PRESS.indd 1 16/10/2020 14:03 Volume 47 Number 11 November 2020 EDITORIAL Contents Drone wars are here Regulars 4 Radome 12 Transmission What happens when ‘precision effects’ from the air are available to everyone? The latest aviation and Your letters, emails, tweets aeronautical intelligence, and social media feedback. Nagorno-Karabakh is now the latest conflict where a new way of remote analysis and comment. war is evolving with cheap persistent UAVs, micro-munitions and loitering 58 The Last Word anti-radar drones, striking tanks, vehicles, artillery pieces and even SAM 11 Pushing the Envelope Keith Hayward considers sites with lethal precision.
    [Show full text]
  • Creating a Competitive Environment for Defense Aerospace in a Protectionist Multipolar World: a Study of India and Israel
    Beyond: Undergraduate Research Journal Volume 4 Article 1 Creating a Competitive Environment for Defense Aerospace in a Protectionist Multipolar World: A Study of India and Israel Shlok Misra Embry-Riddle Aeronautical University, [email protected] Tanish Jain University of California San Diego, [email protected] Follow this and additional works at: https://commons.erau.edu/beyond Part of the Technology and Innovation Commons Recommended Citation Misra, Shlok and Jain, Tanish () "Creating a Competitive Environment for Defense Aerospace in a Protectionist Multipolar World: A Study of India and Israel," Beyond: Undergraduate Research Journal: Vol. 4 , Article 1. Available at: https://commons.erau.edu/beyond/vol4/iss1/1 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Beyond: Undergraduate Research Journal by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Creating a Competitive Environment for Defense Aerospace in a Protectionist Multipolar World: A Study of India and Israel Cover Page Footnote Shlok Misra is an undergraduate at Embry-Riddle Aeronautical University, Daytona Beach. He is currently pursuing a Bachelor of Science in Aeronautical Science, with a minor in Airline Operations and Business Administration. Shlok is passionate about using technology for enhancing airspace efficiency and safety. Shlok’s research also focuses on studying human factors to enhance aviation safety. Shlok is currently a Commercial Pilot with an instrument rating. Tanish Jain is an undergraduate at the University of California, San Diego. He is currently pursuing a Bachelor of Science in Electrical Engineering, with a focus on Machine Learning and Controls.
    [Show full text]
  • Missilesmissilesdr Carlo Kopp in the Asia-Pacific
    MISSILESMISSILESDr Carlo Kopp in the Asia-Pacific oday, offensive missiles are the primary armament of fighter aircraft, with missile types spanning a wide range of specialised niches in range, speed, guidance technique and intended target. With the Pacific Rim and Indian Ocean regions today the fastest growing area globally in buys of evolved third generation combat aircraft, it is inevitable that this will be reflected in the largest and most diverse inventory of weapons in service. At present the established inventories of weapons are in transition, with a wide variety of Tlegacy types in service, largely acquired during the latter Cold War era, and new technology 4th generation missiles are being widely acquired to supplement or replace existing weapons. The two largest players remain the United States and Russia, although indigenous Israeli, French, German, British and Chinese weapons are well established in specific niches. Air to air missiles, while demanding technologically, are nevertheless affordable to develop and fund from a single national defence budget, and they result in greater diversity than seen previously in larger weapons, or combat aircraft designs. Air-to-air missile types are recognised in three distinct categories: highly agile Within Visual Range (WVR) missiles; less agile but longer ranging Beyond Visual Range (BVR) missiles; and very long range BVR missiles. While the divisions between the latter two categories are less distinct compared against WVR missiles, the longer ranging weapons are often quite unique and usually much larger, to accommodate the required propellant mass. In technological terms, several important developments have been observed over the last decade.
    [Show full text]
  • Greece's Unlikely Compellence Air Force
    REPORT GREECE’S UNLIKELY COMPELLENCE AIR FORCE MODERNIZATION & DIPLOMATIC ASSERTIVENESS REPORT RIFAT ÖNCEL After a decade-long financial crisis, Greece recently initiated a comprehensive military modernization program. The country has undertaken a significant upgrade of its air force COMPELLENCE GREECE’S UNLIKELY inventory and is purchasing new fighter jets. Beside arms build-up, Greece is working hard to expand its alliance network in the Middle East while increasing its anti-Turkish pressure campaign across Europe and the United States. Although this policy has peaked recently, it is not a new phenomenon in the Greek security mindset. Originating from the so-called “Turkish threat”, this twofold effort has become the foundational element of Greek foreign and security strategies since Turkey’s Cyprus Peace Operation in 1974. Recent Greek military modernization and diplomatic activism is a clear demonstration of its decades-old compellence strategy, rather than a deterrence which its official disco- urse claims. If it were a policy of deterrence, it is consistently failing because Greece also claims that the regional status-quo is always changing, against its national interests, in favor of Turkey. Its strong emphasis on deterrence, in fact, belies its real strategy, one that is designed not to deter Turkey by dissuading it from taking a specific action but rather force it to renounce something that is already in process. In contemporary geopolitics, contrary to Greek demands, Turkey has been conducting seismic research, in the Aegean and Eastern Mediterranean Seas, under the protection of its navy and air force. Against this backdrop, Greece wants to boost its offensive capabilities, expand the num- ber of its allies, and ensure an international embargo on Turkey to force the latter to back down from its vital interests in the region.
    [Show full text]
  • Advances in Inertial Guidance Technology for Aerospace Systems
    AIAA 2013-5123 August 19-22, 2013, Boston, MA AIAA Guidance, Navigation, and Control (GNC) Conference Advances in Inertial Guidance Technology for Aerospace Systems Robert D. Braun1, Zachary R. Putnam2, Bradley A. Steinfeldt3, Georgia Institute of Technology, Atlanta, GA, 30332 and Michael J. Grant4 Purdue University, West Lafayette, IN,47907 The origin, evolution, and outlook of guidance as a path and trajectory manager for aerospace systems is addressed. A survey of theoretical developments in the field is presented demonstrating the advances in guidance system functionality built upon inertial navigation technology. Open-loop and closed-loop approaches for short-range systems, long-range systems and entry systems are described for both civilian and military applications. Over time, guidance system development has transitioned from passive and open-loop systems to active, closed-loop systems. Significant advances in onboard processing power have improved guidance system capabilities, shifting the algorithmic computational burden to onboard systems and setting the stage for autonomous aerospace systems. Seminal advances in aerospace guidance are described, highlighting the advancements in guidance and resulting performance improvements in aerospace systems. Nomenclature aT = Thrust acceleration vector D = Drag f1 = Proportional gain f2 = Derivative gain f4 = Integral gain g = Acceleration due to gravity H = Altitude m = Mass v = Velocity vg = Velocity-to-be-gained vector Q = Gain matrix Downloaded by PURDUE UNIVERSITY on January 13, 2014 | http://arc.aiaa.org DOI: 10.2514/6.2013-5123 R = Slant range T = Thrust magnitude ( )0 = Reference value I. Introduction HE objective of guidance is to modify the trajectory of a vehicle in order to reach a target1.
    [Show full text]
  • Post Cold War Air to Air Missile Evolution
    Post Cold War Air to Air Missile evolution Dr Carlo Kopp defence focus THE AIR-TO-AIR MISSILE (AAM) IS THE BACKBONE OF MODERN WEAPON SUITES CARRIED BY FIGHTER AIRCRAFT. THERE HAS BEEN considerable evolution since the first AAMs deployed operationally in the late 1950s, and that evolution continues unabated. The past decade has been especially important, with the shift away from analogue guidance systems to digital, the appearance of Focal Plane Array imaging seekers, the commodification of Gallium Arsenide technology monolithic microwave integrated circuits, and the emergence of solid propellant ramjet engines – all impacting on the capabilities of these missiles. The matter of AAM effectiveness and lethality remains controversial and steeped in as much mythology as fact, as competing players and Services market the virtues of their favoured designs. Little has changed since the early 1960s when guided missile proponents declared that fighter performance was irrelevant in the face of the then new US AIM-9B Sidewinder missile and its UK sibling, the DH Firestreak. But the Vietnam war proved this prediction to be just fantasy. Today we see the same arguments, now peddled by bureaucratic and industry proponents of aerodynamically or stealth-wise underperforming fighters. The most widely used Beyond Visual Range missile in the Western world, the US AIM-120A/ B/C AMRAAM, has achieved a success rate in real combat of around 50 per cent, but this has been against Third World targets without modern countermeasures, modern warning systems, MBDA Meteor. or indeed pilot evasive skills. While test range claims for the latest AIM-120 variants sit around 85 per cent, these involved shots against QF-4 drones, which are not representative in turning target performs a major change in trajectory, which technologies used in the design of missiles, as performance of today’s targets, such as Sukhoi puts it outside of the kinematic envelope while the they reflect the competitive pressures of defeating Flanker fighters.
    [Show full text]
  • 2019 Mistral MANPADS Datasheet
    MISTRAL MANPADS LIGHTWEIGHT, MAN PORTABLE VSHORAD WEAPON Mistral MANPADS is a highly portable, easy-to-use fire-and-forget VSHORAD system featuring a Mistral Operational advantages missile launcher mounted on a tripod that can be • Fire-and-forget allowing engagement of multiple, operated from the ground, a vehicle or a vessel. simultaneous threats The easy to load launcher accommodates a single, • Enhanced ability to engage low IR signature targets ready-to-fire Mistral missile. (eg. drones) • Unequalled performance against the latest Mistral is a man-portable, fully digital, heat-seeking fire-and-forget countermeasures missile designed to meet the requirements of all branches of the • Easy to use, rapid reloading armed forces. It boasts a 96% proven success rate and higher • Can be operated day and night, in severe weather reliability than any other existing low-level air defence missile. and regardless of terrain conditions It integrates ultimate state-of-the-art technology to ensure optimum • Lightweight and easily man-portable by a two-person effectiveness. This includes a full imaging seeker providing high team (one for the firing post and one for the missiles) resistance to IR countermeasures and the ability to engage low IR • Can be integrated within a wider defence network signature targets. The missile’s large 3kg warhead associated with a laser proximity fuze combine to provide an impressive kill probability. MBDA contacts 1 ave Réaumur 92350 Le Plessis Robinson France GROUND BASED Tel: +33 1 71 54 10 00 AIR DEFENCE www.mbda-systems.com
    [Show full text]
  • समाचार प से च यत अंश Newspapers Clippings
    Dec 2020 समाचार प से चयत अशं Newspapers Clippings A Daily service to keep DRDO Fraternity abreast with DRDO Technologies, Defence Technologies, Defence Policies, International Relations and Science & Technology खंड : 45 अंक : 283 10 दसंबर 2020 Vol.: 45 Issue : 283 10 December 2020 ररा ववानान प ुपतकालयु तकालय DefenceDefence Science Science Library Library रार वैा वैानाकन कस चूसनूचान ाए एवव ं ं लेखनलेखन कक DefenceDefence Scientific Scientific Information Information & & Documentation Documentation Centre Centre , 110 054 मेटकॉफ हाउसहाउस, ददलल - - 110 054 MetcalfeMetcalfe House, House, Delhi Delhi - -110 110 054 054 CONTENTS S. No. TITLE Page No. DRDO News 1-11 DRDO Technology News 1-11 1. Quantum Communication between two DRDO Laboratories 1 2. दो डीआरडीओ योगशालाओं के बीच वांटम संचार 2 3. ' ' 3 ండ ఆఓ ప గాలల మధ ాంట కమష 4. DRDO successfully tests quantum key distribution tech for secure communication 4 between 2 facilities 5. डीआरडीओ ने दो योगशालाओं के बीच वांटम संचार का सफल परण कया 5 6. Bringing together top Scientists, Researchers on one platform 6 7. India offers LCA Tejas trainer variant to US Navy: Report 8 8. Big 2020 for Indian Armed Forces: China escalation to indigenisation push, 10 9 developments Defence News 11-15 Defence Strategic National/International 11-15 9. With China factor in play, Modi govt now open to Navy’s third aircraft carrier 11 demand 10. Submarine Day, celebrating the memory of INS Kalvari 12 11.
    [Show full text]
  • MAPPING the DEVELOPMENT of AUTONOMY in WEAPON SYSTEMS Vincent Boulanin and Maaike Verbruggen
    MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen November 2017 STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Ambassador Jan Eliasson, Chair (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Espen Barth Eide (Norway) Ambassador Wolfgang Ischinger (Germany) Dr Radha Kumar (India) The Director DIRECTOR Dan Smith (United Kingdom) Signalistgatan 9 SE-169 72 Solna, Sweden Telephone: +46 8 655 97 00 Email: [email protected] Internet: www.sipri.org © SIPRI 2017 Contents Acknowledgements v About the authors v Executive summary vii Abbreviations x 1. Introduction 1 I. Background and objective 1 II. Approach and methodology 1 III. Outline 2 Figure 1.1. A comprehensive approach to mapping the development of autonomy 2 in weapon systems 2. What are the technological foundations of autonomy? 5 I. Introduction 5 II. Searching for a definition: what is autonomy? 5 III. Unravelling the machinery 7 IV. Creating autonomy 12 V. Conclusions 18 Box 2.1. Existing definitions of autonomous weapon systems 8 Box 2.2. Machine-learning methods 16 Box 2.3. Deep learning 17 Figure 2.1. Anatomy of autonomy: reactive and deliberative systems 10 Figure 2.2.
    [Show full text]
  • Worldwide Equipment Guide Volume 2: Air and Air Defense Systems
    Dec Worldwide Equipment Guide 2016 Worldwide Equipment Guide Volume 2: Air and Air Defense Systems TRADOC G-2 ACE–Threats Integration Ft. Leavenworth, KS Distribution Statement: Approved for public release; distribution is unlimited. 1 UNCLASSIFIED Worldwide Equipment Guide Opposing Force: Worldwide Equipment Guide Chapters Volume 2 Volume 2 Air and Air Defense Systems Volume 2 Signature Letter Volume 2 TOC and Introduction Volume 2 Tier Tables – Fixed Wing, Rotary Wing, UAVs, Air Defense Chapter 1 Fixed Wing Aviation Chapter 2 Rotary Wing Aviation Chapter 3 UAVs Chapter 4 Aviation Countermeasures, Upgrades, Emerging Technology Chapter 5 Unconventional and SPF Arial Systems Chapter 6 Theatre Missiles Chapter 7 Air Defense Systems 2 UNCLASSIFIED Worldwide Equipment Guide Units of Measure The following example symbols and abbreviations are used in this guide. Unit of Measure Parameter (°) degrees (of slope/gradient, elevation, traverse, etc.) GHz gigahertz—frequency (GHz = 1 billion hertz) hp horsepower (kWx1.341 = hp) Hz hertz—unit of frequency kg kilogram(s) (2.2 lb.) kg/cm2 kg per square centimeter—pressure km kilometer(s) km/h km per hour kt knot—speed. 1 kt = 1 nautical mile (nm) per hr. kW kilowatt(s) (1 kW = 1,000 watts) liters liters—liquid measurement (1 gal. = 3.785 liters) m meter(s)—if over 1 meter use meters; if under use mm m3 cubic meter(s) m3/hr cubic meters per hour—earth moving capacity m/hr meters per hour—operating speed (earth moving) MHz megahertz—frequency (MHz = 1 million hertz) mach mach + (factor) —aircraft velocity (average 1062 km/h) mil milliradian, radial measure (360° = 6400 mils, 6000 Russian) min minute(s) mm millimeter(s) m/s meters per second—velocity mt metric ton(s) (mt = 1,000 kg) nm nautical mile = 6076 ft (1.152 miles or 1.86 km) rd/min rounds per minute—rate of fire RHAe rolled homogeneous armor (equivalent) shp shaft horsepower—helicopter engines (kWx1.341 = shp) µm micron/micrometer—wavelength for lasers, etc.
    [Show full text]
  • C795ef75a891098c3298
    2016 UPSC Civil Services Exam [SCIENCE & TECH + INTERNAL SECURITY] A Brief Overview and Conceptual Guide © Nitin Sangwan Beginner’s Note: On Science and Technology: 1. It is advisable that you read some NCERTs if you are not comfortable in science and technology section. But let me assure you, science and technology questions that are asked in UPSC are not questions of science and technology per se, but are more of current events. So, those from arts background need not panic about this portion of syllabus. UPSC now a days asks only some conceptual contemporary questions which are not at all difficult to understand. 2. When you come across any news item regarding some significant scientific development, just google it to have a better understanding. Since this portion is a dynamic one, read newspaper continuously to be fully aware. So far in past couple of years the questions which have been asked relate to very prominent scientific developments or some basic contemporary scientific concepts. On Internal Security 1. ‘India’ is a god source of having a good overview of our defence and security forces. Read its relevant chapters. 2. However, the questions which are likely to be asked in this section, will be more or less from current events or our historical policy related to some countries like Pakistan, China, USSR, USA etc. So, it is advisable that newspaper is read thoroughly. 3. Relevant summaries of 2nd ARC can also be read (if you have time, just glance through the relevant sections of the full report) – ‘Capacity Building for Conflict Resolution' (7th Report) ‘Combating Terrorism-Protecting By Righteousness’ (8th Report) Always keep things manageable.
    [Show full text]