Post Cold War Air to Air Missile Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prepared by Textore, Inc. Peter Wood, David Yang, and Roger Cliff November 2020
AIR-TO-AIR MISSILES CAPABILITIES AND DEVELOPMENT IN CHINA Prepared by TextOre, Inc. Peter Wood, David Yang, and Roger Cliff November 2020 Printed in the United States of America by the China Aerospace Studies Institute ISBN 9798574996270 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 All photos licensed under the Creative Commons Attribution-Share Alike 4.0 International license, or under the Fair Use Doctrine under Section 107 of the Copyright Act for nonprofit educational and noncommercial use. All other graphics created by or for China Aerospace Studies Institute Cover art is "J-10 fighter jet takes off for patrol mission," China Military Online 9 October 2018. http://eng.chinamil.com.cn/view/2018-10/09/content_9305984_3.htm E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the U.S. Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only. -
Pegasus Vectored-Thrust Turbofan Engine
Pegasus Vectored-thrust Turbofan Engine Matador Harrier Sea Harrier AV-8A International Historic Mechanical Engineering Landmark 24 July 1993 International Air Tattoo '93 RAF Fairford The American Society of Mechanical Engineers I MECH E I NTERNATIONAL H ISTORIC M ECHANICAL E NGINEERING L ANDMARK PEGASUS V ECTORED-THRUST T URBOFAN ENGINE 1960 T HE B RISTOL AERO-ENGINES (ROLLS-R OYCE) PEGASUS ENGINE POWERED THE WORLD'S FIRST PRACTICAL VERTICAL/SHORT-TAKEOFF-AND-LANDING JET AIRCRAFT , THE H AWKER P. 1127 K ESTREL. USING FOUR ROTATABLE NOZZLES, ITS THRUST COULD BE DIRECTED DOWNWARD TO LIFT THE AIRCRAFT, REARWARD FOR WINGBORNE FLIGHT, OR IN BETWEEN TO ENABLE TRANSITION BETWEEN THE TWO FLIGHT REGIMES. T HIS ENGINE, SERIAL NUMBER BS 916, WAS PART OF THE DEVELOPMENT PROGRAM AND IS THE EARLIEST KNOWN SURVIVOR. PEGASUS ENGINE REMAIN IN PRODUCTION FOR THE H ARRIER II AIRCRAFT. T HE AMERICAN SOCIETY OF M ECHANICAL ENGINEERS T HE INSTITUTION OF M ECHANICAL ENGINEERS 1993 Evolution of the Pegasus Vectored-thrust Engine Introduction cern resulted in a perceived need trol and stability problems associ- The Pegasus vectored for combat runways for takeoff and ated with the transition from hover thrust engine provides the power landing, and which could, if re- to wing-borne flight. for the first operational vertical quired, be dispersed for operation The concepts examined and short takeoff and landing jet from unprepared and concealed and pursued to full-flight demon- aircraft. The Harrier entered ser- sites. Naval interest focused on a stration included "tail sitting" types vice with the Royal Air Force (RAF) similar objective to enable ship- exemplified by the Convair XFY-1 in 1969, followed by the similar borne combat aircraft to operate and mounted jet engines, while oth- AV-8A with the United States Ma- from helicopter-size platforms and ers used jet augmentation by means rine Corps in 1971. -
Differential Throttling and Fluidic Thrust Vectoring in a Linear Aerospike
International Journal of Turbomachinery Propulsion and Power Article Differential Throttling and Fluidic Thrust Vectoring in a Linear Aerospike Michele Ferlauto , Andrea Ferrero * , Matteo Marsicovetere and Roberto Marsilio Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; [email protected] (M.F.); [email protected] (M.M.); [email protected] (R.M.) * Correspondence: [email protected] Abstract: Aerospike nozzles represent an interesting solution for Single-Stage-To-Orbit or clustered launchers owing to their self-adapting capability, which can lead to better performance compared to classical nozzles. Furthermore, they can provide thrust vectoring in several ways. a simple solution consists of applying differential throttling when multiple combustion chambers are used. An alternative solution is represented by fluidic thrust vectoring, which requires the injection of a secondary flow from a slot. In this work, the flow field in a linear aerospike nozzle was investigated numerically and both differential throttling and fluidic thrust vectoring were studied. The flow field was predicted by solving the Reynolds-averaged Navier–Stokes equations. The thrust vectoring performance was evaluated in terms of side force generation and axial force reduction. The effectiveness of fluidic thrust vectoring was investigated by changing the mass flow rate of secondary flow and injection location. The results show that the response of the system can be non-monotone with respect to the mass flow rate of the secondary injection. In contrast, differential throttling provides a linear behaviour but it can only be applied to configurations with multiple Citation: Ferlauto, M.; Ferrero, A.; combustion chambers. -
Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress
Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress Updated September 30, 2021 Congressional Research Service https://crsreports.congress.gov RL33745 SUMMARY RL33745 Navy Aegis Ballistic Missile Defense (BMD) September 30, 2021 Program: Background and Issues for Congress Ronald O'Rourke The Aegis ballistic missile defense (BMD) program, which is carried out by the Missile Defense Specialist in Naval Affairs Agency (MDA) and the Navy, gives Navy Aegis cruisers and destroyers a capability for conducting BMD operations. BMD-capable Aegis ships operate in European waters to defend Europe from potential ballistic missile attacks from countries such as Iran, and in in the Western Pacific and the Persian Gulf to provide regional defense against potential ballistic missile attacks from countries such as North Korea and Iran. MDA’s FY2022 budget submission states that “by the end of FY 2022 there will be 48 total BMDS [BMD system] capable ships requiring maintenance support.” The Aegis BMD program is funded mostly through MDA’s budget. The Navy’s budget provides additional funding for BMD-related efforts. MDA’s proposed FY2021 budget requested a total of $1,647.9 million (i.e., about $1.6 billion) in procurement and research and development funding for Aegis BMD efforts, including funding for two Aegis Ashore sites in Poland and Romania. MDA’s budget also includes operations and maintenance (O&M) and military construction (MilCon) funding for the Aegis BMD program. Issues for Congress regarding the Aegis BMD program include the following: whether to approve, reject, or modify MDA’s annual procurement and research and development funding requests for the program; the impact of the COVID-19 pandemic on the execution of Aegis BMD program efforts; what role, if any, the Aegis BMD program should play in defending the U.S. -
HPCR Manual on International Law Applicable to Air and Missile Warfare
Manual on International Law Applicable to Air and Missile Warfare Bern, 15 May 2009 Program on Humanitarian Policy and Conflict Research at Harvard University © 2009 The President and Fellows of Harvard College ISBN: 978-0-9826701-0-1 No part of this document may be reproduced, stored in a retrieval system, or transmitt ed in any form without the prior consent of the Program on Humanitarian Policy and Con- fl ict Research at Harvard University. This restriction shall not apply for non-commercial use. A product of extensive consultations, this document was adopted by consensus of an international group of experts on 15 May 2009 in Bern, Switzerland. This document does not necessarily refl ect the views of the Program on Humanitarian Policy and Confl ict Research or of Harvard University. Program on Humanitarian Policy and Confl ict Research Harvard University 1033 Massachusett s Avenue, 4th Floor Cambridge, MA 02138 United States of America Tel.: 617-384-7407 Fax: 617-384-5901 E-mail: [email protected] www.hpcrresearch.org | ii Foreword It is my pleasure and honor to present the HPCR Manual on International Law Applicable to Air and Missile Warfare. This Manual provides the most up-to-date restatement of exist- ing international law applicable to air and missile warfare, as elaborated by an international Group of Experts. As an authoritative restatement, the HPCR Manual contributes to the practical understanding of this important international legal framework. The HPCR Manual is the result of a six-year long endeavor led by the Program on Humanitarian Policy and Confl ict Research at Harvard University (HPCR), during which it convened an international Group of Experts to refl ect on existing rules of international law applicable to air and missile warfare. -
Air-Directed Surface-To-Air Missile Study Methodology
H. T. KAUDERER Air-Directed Surface-to-Air Missile Study Methodology H. Todd Kauderer During June 1995 through September 1998, APL conducted a series of Warfare Analysis Laboratory Exercises (WALEXs) in support of the Naval Air Systems Command. The goal of these exercises was to examine a concept then known as the Air-Directed Surface-to-Air Missile (ADSAM) System in support of Navy Overland Cruise Missile Defense. A team of analysts and engineers from APL and elsewhere was assembled to develop a high-fidelity, physics-based engineering modeling process suitable for understanding and assessing the performance of both individual systems and a “system of systems.” Results of the initial ADSAM Study effort served as the basis for a series of WALEXs involving senior Flag and General Officers and were subsequently presented to the (then) Under Secretary of Defense for Acquisition and Technology. (Keywords: ADSAM, Cruise missiles, Land Attack Cruise Missile Defense, Modeling and simulation, Overland Cruise Missile Defense.) INTRODUCTION In June 1995 the Naval Air Systems Command • Developing an analytical methodology that tied to- (NAVAIR) asked APL to examine the Air-Directed gether a series of previously distinct, “stovepiped” Surface-to-Air Missile (ADSAM) System concept for high-fidelity engineering models into an integrated their Overland Cruise Missile Defense (OCMD) doc- system that allowed the detailed analysis of a “system trine. NAVAIR was concerned that a number of impor- of systems” tant air defense–related decisions were being made -
Appearance of Apparent Antiship Missile Targets in Gobi Test Areas During 2013
Version of 2014-09-15 Appearance of Apparent Antiship Missile Targets in Gobi Test Areas during 2013 Area A Area B Area C Summary: In the course of a search for possible target areas for the failed Chinese hypersonic glide vehicle test of 2014-08-07 (*), it came to light that two and possibly three areas which appear intended to test antiship weapons recently became identifiable in an area of China previously known to have weapons targets. Although no connection could be made with the hypersonic test, the areas , arbitrarily designated A, B and C, seem to have intrinsic interest and are documented here. Any further information concerning them would be greatly appreciated. Please email it to [email protected] and indicate whether the sender wishes to be acknowledged in possible future versions of this document. (*) http://lewis.armscontrolwonk.com/archive/7443/crashing-glider-hidden-hotspring Area A 40.466 N, 93.521 E Area A, 2013-11-04 The three shapes at lower left seem clearly meant to represent ships. The dark chevron around them may represent piers. The objects above them and to the right are unidentified, but might represent shore facilities. Warships in Su-ao Harbor, Taiwan The picture scale is almost the same as in the above image of Area A. Both the pair of actual ships at center and the presumed ship targets are about 170 meters long, closely matching the dimensions of Ticonderoga-class cruisers and Kee Lung-class (ex-Kidd) destroyers. Area A, 2013-08-01 Construction of the ship targets is almost complete. -
University of Kansas – MQM-1A Road Runner
MQM-1A ROAD RUNNER Max Johnson Jacob Gorman Justin Matt Steven Meis Andrew Mills Nathan Sunnarborg 6 May 2020 Team Members Team Member AIAA Number Signature Max Johnson 1069044 Co-Author Jacob Gorman 998671 Co-Author Justin Matt 985135 Co-Author Steven Meis 985214 Co-Author Andrew Mills 980191 Co-Author Nathan Sunnarborg 1069091 Co-Author Dr. R. Barrett-Gonzalez 022393 Adviser Aerospace Engineering Department ii Table of Contents 1. Introduction .........................................................................................................................................................1 1.1 Mission Specifications & Profile ................................................................................................................1 1.2 Mission Profile ............................................................................................................................................1 1.3 Design Methods and Process ......................................................................................................................2 1.4 Conclusions and Recommendations �����������������������������������������������������������������������������������������������������������3 2. Historical Target Drone Relevant Designs ..........................................................................................................3 2.1 Orbital Sciences GQM-163 Coyote ............................................................................................................3 2.2 Lockheed Q-5/AQM-60 Kingfisher ...........................................................................................................3 -
NSIAD-90-146 Missile Procurement Executive Summary
I “1 .” II ..._ -111”1”~1~ . .. - _-.. .- _ _.._.l:rril.tvl-_._._ ._ _.._ _. Slillt3_” _.I .,..- I..-- i;tkrrtkral“1”_.1_.-..-- _..------ Ac~orlnt -.-.----.-..---._._- ing Ol’l’iw.._._..- .-...... I “. ~_I ..-.---------- ---_._--.lll__ .-..” ..” *“I,L,“^I.“m”-““-. .11it\ l’tO0. MISSILE PROCUREMENT Further Production of RAAM Should Not Be Approved Until Questions Are Resolved National Security and International Affairs Division H-22 1734 May 4,199O The Honorable Denny Smith I louse of Representatives Dear Mr. Smith: This report addresses the status of the Advanced Medium Range Air-to-Air Missile (AMRAAM) at the scheduled full-rate production milestone. As requested, we focused on the missile’s demonstrated operational performance, the contractors’ readiness to produce quality missiles at the required rates, and the latest program cost estimates. The report concludes that significant questions about AMRAAM'S performance, reliability, producibility, and affordability remain unresolved. It recommends that the Secretary of Defense not approve any additional AMRAAM production until (1) tests demonstrate that the missile can meet all of its critical performance requirements and that its reliability meets the established requirements, (2) both contractors demonstrate that they can consistently produce quality missiles at the rates required by their contracts, (3) the Air Force and the Navy complete their review of missile quantity requirements, and (4) the Department of Defense determines that the AMRAAM program is affordable within realistic future budget projections and consults with the Congress to ensure that the program complies with the adjusted statutory cost cap. The report also suggests that the Congress deny the $1.34 billion requested for AMRAAM procurement in fiscal year 1991. -
INSTITUTE of AERONAUTICAL ENGINEERING (Autonomous) DUNDIGAL, HYDERABAD - 500 043 UNIT-I INTRODUCTION
LECTURE NOTES ON LAUNCH VEHICLE MISSILE TECHNOLOGY IV B. Tech II semester (JNTUH-R13) Mr. Shiva Prasad U. Assistant Professor AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) DUNDIGAL, HYDERABAD - 500 043 UNIT-I INTRODUCTION 1.1 Introduction Launch vehicles are the rocket-powered systems that provide transportation from the earth's surface into the environment of space. In the early days of the U.S. civilian space program the term "launch vehicle" was used by NASA in preference to the term "booster" because "booster" had been associated with the development of the military missiles. "Booster" now has crept back into the vernacular of the Space Age and is used interchangeably with "launch vehicle." Space Launch Vehicles 1.2 TYPES 1. EXPANDABLE 2. REUSABLE Classification of Missile Missiles are generally classified on the basis of their Type, Launch Mode, Range, Propulsion, Warhead and Guidance Systems. Type: 1.CRUISE MISSILE 2. BALLISTIC MISSILE Launch Mode: Surface-to-Surface Missile Surface-to-Air Missile Surface (Coast)-to-Sea Missile Air-to-Air Missile Air-to-Surface Missile Sea-to-Sea Missile Sea-to-Surface (Coast) Missile 2 Anti-Tank Missile Range: Short Range Missile Medium Range Missile Intermediate Range Ballistic Missile Intercontinental Ballistic Missile Propulsion: Solid Propulsion Liquid Propulsion Hybrid Propulsion Ramjet Scramjet Cryogenic Warhead: Conventional Strategic Guidance Systems: Wire Guidance Command Guidance Terrain Comparison Guidance Terrestrial Guidance Inertial Guidance Beam Rider Guidance 3 Laser Guidance RF and GPS Reference 1.3 On the basis of Type: (i) Cruise Missile: A cruise missile is an unmanned self-propelled (till the time of impact) guided vehicle that sustains flight through aerodynamic lift for most of its flight path and whose primary mission is to place an ordnance or special payload on a target. -
Su-30MKI PROGRAM the JOINT SUCCESS of RUSSIA and INDIA
Su-30MKI PROGRAM THE JOINT SUCCESS OF RUSSIA AND INDIA www.irkut.com 2 MILESTONES www.irkut.com 1996 2000 2002 2004 2005 2007 2015 Aircraft samples of The flight Aircraft final configuration The first The first Contract for of the test aircraft samples The first aircraft delivered participation participation development Contract for of initial overhaul The first HAL- in international in international and delivery licensed configuration at HAL facility manufactured exercise in India exercise abroad production delivered aircraft delivered 3 PRIMACY www.irkut.com Joint efforts of Russia Leading companies Su-30MKI Su-30MKI and India have ensured of Russia, India, and is optimised to meet epitomises creation of the new other countries have cost/effectiveness the world benchmark fighter aircraft featuring been participating criterion of heavy multirole outstanding capabilities in creation of this fighter aircraft aircraft 4 MULTIFUNCTIONALITY www.irkut.com Su-30MKI is the first in the world fighter equipped with the phased-array radar, delivered for export Weapons control system provides: • reliable detection of aerial, ground, and water-surface targets beyond visual range • tracking of 15 aerial targets and simultaneous engagement of four of them Open architecture of avionics suite ensures enhancing its capabilities and expanding weapons set Two-pilots crew is able to perform air-to-air and air-to-ground combat tasks concurrently Front cockpit Aft cockpit 5 SUPERMANEUVERABILITY www.irkut.com Su-30MKI is the first in the world supermaneuverable -
Missilesmissilesdr Carlo Kopp in the Asia-Pacific
MISSILESMISSILESDr Carlo Kopp in the Asia-Pacific oday, offensive missiles are the primary armament of fighter aircraft, with missile types spanning a wide range of specialised niches in range, speed, guidance technique and intended target. With the Pacific Rim and Indian Ocean regions today the fastest growing area globally in buys of evolved third generation combat aircraft, it is inevitable that this will be reflected in the largest and most diverse inventory of weapons in service. At present the established inventories of weapons are in transition, with a wide variety of Tlegacy types in service, largely acquired during the latter Cold War era, and new technology 4th generation missiles are being widely acquired to supplement or replace existing weapons. The two largest players remain the United States and Russia, although indigenous Israeli, French, German, British and Chinese weapons are well established in specific niches. Air to air missiles, while demanding technologically, are nevertheless affordable to develop and fund from a single national defence budget, and they result in greater diversity than seen previously in larger weapons, or combat aircraft designs. Air-to-air missile types are recognised in three distinct categories: highly agile Within Visual Range (WVR) missiles; less agile but longer ranging Beyond Visual Range (BVR) missiles; and very long range BVR missiles. While the divisions between the latter two categories are less distinct compared against WVR missiles, the longer ranging weapons are often quite unique and usually much larger, to accommodate the required propellant mass. In technological terms, several important developments have been observed over the last decade.