University of Kansas – MQM-1A Road Runner

Total Page:16

File Type:pdf, Size:1020Kb

University of Kansas – MQM-1A Road Runner MQM-1A ROAD RUNNER Max Johnson Jacob Gorman Justin Matt Steven Meis Andrew Mills Nathan Sunnarborg 6 May 2020 Team Members Team Member AIAA Number Signature Max Johnson 1069044 Co-Author Jacob Gorman 998671 Co-Author Justin Matt 985135 Co-Author Steven Meis 985214 Co-Author Andrew Mills 980191 Co-Author Nathan Sunnarborg 1069091 Co-Author Dr. R. Barrett-Gonzalez 022393 Adviser Aerospace Engineering Department ii Table of Contents 1. Introduction .........................................................................................................................................................1 1.1 Mission Specifications & Profile ................................................................................................................1 1.2 Mission Profile ............................................................................................................................................1 1.3 Design Methods and Process ......................................................................................................................2 1.4 Conclusions and Recommendations �����������������������������������������������������������������������������������������������������������3 2. Historical Target Drone Relevant Designs ..........................................................................................................3 2.1 Orbital Sciences GQM-163 Coyote ............................................................................................................3 2.2 Lockheed Q-5/AQM-60 Kingfisher ...........................................................................................................3 2.3 Beechcraft AQM-37 Jayhawk ....................................................................................................................4 2.4 Nord CT41 Narwhal ...................................................................................................................................4 2.5 BrahMos Supersonic Cruise Missile ..........................................................................................................4 2.6 MBDA Meteor Air-to-Air Missile ��������������������������������������������������������������������������������������������������������������5 2.7 Rim-67 Standard ER ...................................................................................................................................5 2.8 Conclusions and Recommendations �����������������������������������������������������������������������������������������������������������6 3. Design Vector and Weights Establishment .........................................................................................................6 3.1 Objective Function .....................................................................................................................................6 3.2 Weighting Survey .......................................................................................................................................7 3.3 Conclusions and Recommendations �����������������������������������������������������������������������������������������������������������7 4. STAMPED Analysis ...........................................................................................................................................7 4.1 STAMPED Analysis Technique �����������������������������������������������������������������������������������������������������������������8 4.2 STAMPED for Major Design Drivers ........................................................................................................9 4.3 Conclusions and Recommendations ���������������������������������������������������������������������������������������������������������10 5. Weight Sizing ....................................................................................................................................................10 5.1 Tentative Selection of Preliminary Design Weights .................................................................................10 5.2 Iterative Design of Preliminary Design Weights using Fuel Fractions ....................................................11 5.3 Conclusions and Recommendations ���������������������������������������������������������������������������������������������������������11 6. Wing and Powerplant Sizing .............................................................................................................................11 6.1 Performance Constraints ..........................................................................................................................12 6.2 Preliminary Drag Polar .............................................................................................................................12 6.3 Sizing Chart Analysis ...............................................................................................................................12 Aerospace Engineering Department iii 6.4 Conclusions and Recommendations ���������������������������������������������������������������������������������������������������������13 7. Class I Configuration Matrix and Initial Downselections .................................................................................15 7.1 Major Impacts on Configuration Design ..................................................................................................15 7.2 Concept of Operations ..............................................................................................................................15 7.3 Configuration Matrix ................................................................................................................................16 7.4 Conclusions and Recommendations ���������������������������������������������������������������������������������������������������������17 8. Class I Cockpit and Fuselage Layout Designs ..................................................................................................18 8.1 Conclusions and Recommendations ���������������������������������������������������������������������������������������������������������18 8.2 Fuselage Summary and Recommendations ..............................................................................................19 9. Class I Engine Installations ...............................................................................................................................20 9.1 Fuselage Summary and Recommendations ..............................................................................................20 9.2 Propulsion Design, Mounting, and CG Location .....................................................................................20 9.3 Propulsion Conclusion and Recommendations ........................................................................................22 10. Class I Wing Layout Designs .....................................................................................................................23 10.1 Wing Design Layout ...............................................................................................................................23 10.2 Wing Design Layout ...............................................................................................................................24 11. Class I High Lift Device Sizing .................................................................................................................25 11.1 Design of High Maneuverability Devices ����������������������������������������������������������������������������������������������25 11.2 Conclusions and Recommendations .......................................................................................................25 12. Class I Empennage Sizing ..........................................................................................................................25 12.1 Design Process ........................................................................................................................................25 12.2 Design of the Empennage .......................................................................................................................26 12.3 Design of the Empennage .......................................................................................................................26 13. Class I Launcher Design ............................................................................................................................27 13.1 Surveying Launchers of Similar Systems ...............................................................................................27 13.2 Constraints and Considerations ..............................................................................................................28 13.3 Layout of Launcher ................................................................................................................................29 13.4 Conclusions and Recommendations �������������������������������������������������������������������������������������������������������29 14. Class I Weight and Balance Analysis .........................................................................................................30 14.1 Class I Weights Breakdowns ..................................................................................................................30 14.2 Class I Weight and Balance Calculation .................................................................................................31 14.3 CG Excursion .........................................................................................................................................32
Recommended publications
  • Prepared by Textore, Inc. Peter Wood, David Yang, and Roger Cliff November 2020
    AIR-TO-AIR MISSILES CAPABILITIES AND DEVELOPMENT IN CHINA Prepared by TextOre, Inc. Peter Wood, David Yang, and Roger Cliff November 2020 Printed in the United States of America by the China Aerospace Studies Institute ISBN 9798574996270 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 All photos licensed under the Creative Commons Attribution-Share Alike 4.0 International license, or under the Fair Use Doctrine under Section 107 of the Copyright Act for nonprofit educational and noncommercial use. All other graphics created by or for China Aerospace Studies Institute Cover art is "J-10 fighter jet takes off for patrol mission," China Military Online 9 October 2018. http://eng.chinamil.com.cn/view/2018-10/09/content_9305984_3.htm E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the U.S. Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only.
    [Show full text]
  • Pegasus Vectored-Thrust Turbofan Engine
    Pegasus Vectored-thrust Turbofan Engine Matador Harrier Sea Harrier AV-8A International Historic Mechanical Engineering Landmark 24 July 1993 International Air Tattoo '93 RAF Fairford The American Society of Mechanical Engineers I MECH E I NTERNATIONAL H ISTORIC M ECHANICAL E NGINEERING L ANDMARK PEGASUS V ECTORED-THRUST T URBOFAN ENGINE 1960 T HE B RISTOL AERO-ENGINES (ROLLS-R OYCE) PEGASUS ENGINE POWERED THE WORLD'S FIRST PRACTICAL VERTICAL/SHORT-TAKEOFF-AND-LANDING JET AIRCRAFT , THE H AWKER P. 1127 K ESTREL. USING FOUR ROTATABLE NOZZLES, ITS THRUST COULD BE DIRECTED DOWNWARD TO LIFT THE AIRCRAFT, REARWARD FOR WINGBORNE FLIGHT, OR IN BETWEEN TO ENABLE TRANSITION BETWEEN THE TWO FLIGHT REGIMES. T HIS ENGINE, SERIAL NUMBER BS 916, WAS PART OF THE DEVELOPMENT PROGRAM AND IS THE EARLIEST KNOWN SURVIVOR. PEGASUS ENGINE REMAIN IN PRODUCTION FOR THE H ARRIER II AIRCRAFT. T HE AMERICAN SOCIETY OF M ECHANICAL ENGINEERS T HE INSTITUTION OF M ECHANICAL ENGINEERS 1993 Evolution of the Pegasus Vectored-thrust Engine Introduction cern resulted in a perceived need trol and stability problems associ- The Pegasus vectored for combat runways for takeoff and ated with the transition from hover thrust engine provides the power landing, and which could, if re- to wing-borne flight. for the first operational vertical quired, be dispersed for operation The concepts examined and short takeoff and landing jet from unprepared and concealed and pursued to full-flight demon- aircraft. The Harrier entered ser- sites. Naval interest focused on a stration included "tail sitting" types vice with the Royal Air Force (RAF) similar objective to enable ship- exemplified by the Convair XFY-1 in 1969, followed by the similar borne combat aircraft to operate and mounted jet engines, while oth- AV-8A with the United States Ma- from helicopter-size platforms and ers used jet augmentation by means rine Corps in 1971.
    [Show full text]
  • Differential Throttling and Fluidic Thrust Vectoring in a Linear Aerospike
    International Journal of Turbomachinery Propulsion and Power Article Differential Throttling and Fluidic Thrust Vectoring in a Linear Aerospike Michele Ferlauto , Andrea Ferrero * , Matteo Marsicovetere and Roberto Marsilio Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; [email protected] (M.F.); [email protected] (M.M.); [email protected] (R.M.) * Correspondence: [email protected] Abstract: Aerospike nozzles represent an interesting solution for Single-Stage-To-Orbit or clustered launchers owing to their self-adapting capability, which can lead to better performance compared to classical nozzles. Furthermore, they can provide thrust vectoring in several ways. a simple solution consists of applying differential throttling when multiple combustion chambers are used. An alternative solution is represented by fluidic thrust vectoring, which requires the injection of a secondary flow from a slot. In this work, the flow field in a linear aerospike nozzle was investigated numerically and both differential throttling and fluidic thrust vectoring were studied. The flow field was predicted by solving the Reynolds-averaged Navier–Stokes equations. The thrust vectoring performance was evaluated in terms of side force generation and axial force reduction. The effectiveness of fluidic thrust vectoring was investigated by changing the mass flow rate of secondary flow and injection location. The results show that the response of the system can be non-monotone with respect to the mass flow rate of the secondary injection. In contrast, differential throttling provides a linear behaviour but it can only be applied to configurations with multiple Citation: Ferlauto, M.; Ferrero, A.; combustion chambers.
    [Show full text]
  • INSTITUTE of AERONAUTICAL ENGINEERING (Autonomous) DUNDIGAL, HYDERABAD - 500 043 UNIT-I INTRODUCTION
    LECTURE NOTES ON LAUNCH VEHICLE MISSILE TECHNOLOGY IV B. Tech II semester (JNTUH-R13) Mr. Shiva Prasad U. Assistant Professor AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) DUNDIGAL, HYDERABAD - 500 043 UNIT-I INTRODUCTION 1.1 Introduction Launch vehicles are the rocket-powered systems that provide transportation from the earth's surface into the environment of space. In the early days of the U.S. civilian space program the term "launch vehicle" was used by NASA in preference to the term "booster" because "booster" had been associated with the development of the military missiles. "Booster" now has crept back into the vernacular of the Space Age and is used interchangeably with "launch vehicle." Space Launch Vehicles 1.2 TYPES 1. EXPANDABLE 2. REUSABLE Classification of Missile Missiles are generally classified on the basis of their Type, Launch Mode, Range, Propulsion, Warhead and Guidance Systems. Type: 1.CRUISE MISSILE 2. BALLISTIC MISSILE Launch Mode: Surface-to-Surface Missile Surface-to-Air Missile Surface (Coast)-to-Sea Missile Air-to-Air Missile Air-to-Surface Missile Sea-to-Sea Missile Sea-to-Surface (Coast) Missile 2 Anti-Tank Missile Range: Short Range Missile Medium Range Missile Intermediate Range Ballistic Missile Intercontinental Ballistic Missile Propulsion: Solid Propulsion Liquid Propulsion Hybrid Propulsion Ramjet Scramjet Cryogenic Warhead: Conventional Strategic Guidance Systems: Wire Guidance Command Guidance Terrain Comparison Guidance Terrestrial Guidance Inertial Guidance Beam Rider Guidance 3 Laser Guidance RF and GPS Reference 1.3 On the basis of Type: (i) Cruise Missile: A cruise missile is an unmanned self-propelled (till the time of impact) guided vehicle that sustains flight through aerodynamic lift for most of its flight path and whose primary mission is to place an ordnance or special payload on a target.
    [Show full text]
  • Su-30MKI PROGRAM the JOINT SUCCESS of RUSSIA and INDIA
    Su-30MKI PROGRAM THE JOINT SUCCESS OF RUSSIA AND INDIA www.irkut.com 2 MILESTONES www.irkut.com 1996 2000 2002 2004 2005 2007 2015 Aircraft samples of The flight Aircraft final configuration The first The first Contract for of the test aircraft samples The first aircraft delivered participation participation development Contract for of initial overhaul The first HAL- in international in international and delivery licensed configuration at HAL facility manufactured exercise in India exercise abroad production delivered aircraft delivered 3 PRIMACY www.irkut.com Joint efforts of Russia Leading companies Su-30MKI Su-30MKI and India have ensured of Russia, India, and is optimised to meet epitomises creation of the new other countries have cost/effectiveness the world benchmark fighter aircraft featuring been participating criterion of heavy multirole outstanding capabilities in creation of this fighter aircraft aircraft 4 MULTIFUNCTIONALITY www.irkut.com Su-30MKI is the first in the world fighter equipped with the phased-array radar, delivered for export Weapons control system provides: • reliable detection of aerial, ground, and water-surface targets beyond visual range • tracking of 15 aerial targets and simultaneous engagement of four of them Open architecture of avionics suite ensures enhancing its capabilities and expanding weapons set Two-pilots crew is able to perform air-to-air and air-to-ground combat tasks concurrently Front cockpit Aft cockpit 5 SUPERMANEUVERABILITY www.irkut.com Su-30MKI is the first in the world supermaneuverable
    [Show full text]
  • Induction of French Rafale Aircrafts in IAF
    Induction of French Rafale Aircrafts in IAF drishtiias.com/printpdf/induction-of-french-rafale-aircrafts-in-iaf Why in News Recently, Indian Air Force (IAF) has received its first batch (5 out of 36) of French Rafale aviation combat aircraft at Ambala Air base (Haryana). The Rafales are India's first major acquisition of fighter planes in 23 years after the Sukhoi jets were imported from Russia. All the 36 jets will be delivered to India by the end of 2021. 1/6 Rafales Introduced in 2001, the Rafale is a French twin-engine and multirole fighter aircraft designed and built by Dassault Aviation being produced for both the French Air Force and for carrier-based operations in the French Navy. India has inked a Rs 59,000-crore deal in 2016 to procure 36 Rafale jets from French aerospace major Dassault Aviation after a nearly seven-year exercise to procure 126 Medium Multi-Role Combat Aircraft (MMRCA) for the Indian Air Force did not fructify. The MMRCA deal was stalled due to disagreements over production in India. In comparison to the earlier deal i.e. MMRCA, Rafale has much technological advancement, lower life cycle cost and specifications according to the warfare needs of India. Specification 2/6 Air Supremacy: Equipped with a wide range of weapons, the Rafale is intended to perform air supremacy, interdiction (act of disrupting), aerial reconnaissance (observation to locate an enemy), ground support, in-depth strike, anti-ship strike and nuclear deterrence missions. Wide Range of Weapons: Meteor missile, Scalp cruise missile and MICA weapons system will be the mainstay of the weapons package of the Rafale jets.
    [Show full text]
  • Thrust Vectoring Nozzle for Military Aircraft Engines
    ICAS 2000 CONGRESS Industria de Turbo Propulsores, S.A. THRUST VECTORING NOZZLE FOR MILITARY AIRCRAFT ENGINES Daniel Ikaza Industria de Turbo Propulsores S.A. (ITP) Parque Tecnológico, edificio 300 48170 Zamudio, Spain [email protected] number of actuators, which, in turn, leads to an optimized mass and overall engine efficiency. ITP has dedicated a research programme on Thrust Vectoring technology which started back in 1991, and which met an important milestone as is the ground testing of a prototype nozzle at ITP. Fig. 1.- CFD Model of a TVN ABSTRACT Even though Thrust Vectoring is a relatively new technology, it has been talked about for some time, and several programmes worldwide have explored its Fig. 2.- TVN ground tests at ITP application and benefits. Thrust Vectoring can provide modern military aircraft with a number of advantages The next major goal will be the realisation of a flight regarding performance and survivability, all of which has programme, in order to validate the system in flight, and an influence upon Life Cycle Cost. evaluate the capabilities and performance of the system as a means of primary flight control. There are several types of Thrust Vectoring Nozzles. For example, there are 2-D and 3-D Thrust Vectoring A decisive contribution is being done by ITP’s partner Nozzles. The ITP Nozzle is a 3-D Vectoring Nozzle. company MTU of Munich, Germany, by developing the Also, there are different ways to achieve the deflection of electronic Control System. the gas jet: the most efficient one is by mechanically This programme is making the Thrust Vectoring deflecting the divergent section only, hence minimizing technology available in Europe for existing military the effect on the engine upstream of the throat (sonic) aircraft such as Eurofighter, in which the introduction of section.
    [Show full text]
  • The Raf Harrier Story
    THE RAF HARRIER STORY ROYAL AIR FORCE HISTORICAL SOCIETY 2 The opinions expressed in this publication are those of the contributors concerned and are not necessarily those held by the Royal Air Force Historical Society. Copyright 2006: Royal Air Force Historical Society First published in the UK in 2006 by the Royal Air Force Historical Society All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without permission from the Publisher in writing. ISBN 0-9530345-2-6 Printed by Advance Book Printing Unit 9 Northmoor Park Church Road Northmoor OX29 5UH 3 ROYAL AIR FORCE HISTORICAL SOCIETY President Marshal of the Royal Air Force Sir Michael Beetham GCB CBE DFC AFC Vice-President Air Marshal Sir Frederick Sowrey KCB CBE AFC Committee Chairman Air Vice-Marshal N B Baldwin CB CBE FRAeS Vice-Chairman Group Captain J D Heron OBE Secretary Group Captain K J Dearman Membership Secretary Dr Jack Dunham PhD CPsychol AMRAeS Treasurer J Boyes TD CA Members Air Commodore H A Probert MBE MA *J S Cox Esq BA MA *Dr M A Fopp MA FMA FIMgt *Group Captain N Parton BSc (Hons) MA MDA MPhil CEng FRAeS RAF *Wing Commander D Robertson RAF Wing Commander C Cummings Editor & Publications Wing Commander C G Jefford MBE BA Manager *Ex Officio 4 CONTENTS EARLY HISTORICAL PERSPECTIVES AND EMERGING 8 STAFF TARGETS by Air Chf Mshl Sir Patrick Hine JET LIFT by Prof John F Coplin 14 EVOLUTION OF THE PEGASUS VECTORED
    [Show full text]
  • ORI( Tnalpage'l$ Pooe Oualn' 292 Proceedings of the NA3A/USRA Advanced Design Program 6Th Summer Conference
    t P,/o 291 PRELIMINARY DESIGN OF A SUPERSONIC SHORT-TAKEOFF AND VERTICAL-LANDING (STOVL) FIGHTER MRCRAFT UNIVERSITY OF KANSAS, LAWRENCE N 91-18165 A preliminary design study of a supersonic short-takeoff and vcrticaHanding (STOVL) fighter is presented. Three configurations (a lift + lift/cruise concept, a hybrid fan-vectored thrust concept, and a rnLxed-flow-vectored thrust concept) were initially investigated with one configuration .selected for further design analysis. The selected configuration (the lift + lift/cruise concept) was successfully integrated to accommodate the powered-lift short takeoff and vertical landing requirements as well a,s the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capabilit T using the lift + lift/cruise engine concept seems a viable option for the next generation fighter. NOMENCIATImE PHASE I AIRCRAFT STUDY BAi Battlefield Air Interdiction Mission Prof'des and Specification CA Counter Air e.g. Center of Gravity, The mission profiles for the Phase I study (Figs. I and 2) FS Fuselage Station show the design defensive counter air superiority mission and HFVT Hybrid Fan-Vectored Thrust the fallout battlefield air interdiction mis,sion. The mis.sion LIFT I.ift + IJft/Crui_ specification (Table l ) shows the armament carried for each MFVT Mixed-Flow-Vectored Thrust mission and the point performance requirements. n.m Nautical Mile STOVL Short Takeoff, Vertical Landing 8 INTRODUCTION 5 6 7 9 I0 The sur_ivability of long, hard-surface runways at Air Force Main Operating Bases is fundamental to the current operations • I . 2 3_ -- 151) NM_50 NMi [50 NMb_---_IS0 NM_ of the Air Force Tactical Air Command.
    [Show full text]
  • Greece's Unlikely Compellence Air Force
    REPORT GREECE’S UNLIKELY COMPELLENCE AIR FORCE MODERNIZATION & DIPLOMATIC ASSERTIVENESS REPORT RIFAT ÖNCEL After a decade-long financial crisis, Greece recently initiated a comprehensive military modernization program. The country has undertaken a significant upgrade of its air force COMPELLENCE GREECE’S UNLIKELY inventory and is purchasing new fighter jets. Beside arms build-up, Greece is working hard to expand its alliance network in the Middle East while increasing its anti-Turkish pressure campaign across Europe and the United States. Although this policy has peaked recently, it is not a new phenomenon in the Greek security mindset. Originating from the so-called “Turkish threat”, this twofold effort has become the foundational element of Greek foreign and security strategies since Turkey’s Cyprus Peace Operation in 1974. Recent Greek military modernization and diplomatic activism is a clear demonstration of its decades-old compellence strategy, rather than a deterrence which its official disco- urse claims. If it were a policy of deterrence, it is consistently failing because Greece also claims that the regional status-quo is always changing, against its national interests, in favor of Turkey. Its strong emphasis on deterrence, in fact, belies its real strategy, one that is designed not to deter Turkey by dissuading it from taking a specific action but rather force it to renounce something that is already in process. In contemporary geopolitics, contrary to Greek demands, Turkey has been conducting seismic research, in the Aegean and Eastern Mediterranean Seas, under the protection of its navy and air force. Against this backdrop, Greece wants to boost its offensive capabilities, expand the num- ber of its allies, and ensure an international embargo on Turkey to force the latter to back down from its vital interests in the region.
    [Show full text]
  • The Jet Generations Photo by Russ Rogers Via Warren Thompson
    A 21-year-old RAF pilot and a German graduate student got the whole thing going 70 years ago. The Jet Generations Photo by Russ Rogers via Warren Thompson By Bruce D. Callander N the last months of World War II, was losing the war but was still able self. Within a decade, the propel- Allied bombers were jumped by to inflict damage. ler-driven fighters of the major pow- German interceptors that had no These desperation weapons ar- ers would become virtually obso- propellers but could outrun any rived too late to have any substan- lete, their successors powered by conventional fighter. In the Pa- tial impact on the outcome of the “reaction engines.” cific, the Japanese sent piloted war, but they foreshadowed a post- At the time of the Wright brothers’ Iglide bombs against ships and air- war transformation in military tech- first flight in 1903, a relatively light craft, their suicide dives boosted by nology as dramatic in its way as the internal combustion engine was avail- rocket or turbojet engines. The Axis invention of the flying machine it- able. For the next three decades, pis- A four-ship of F-80 fighters. The Shooting Star was the nation’s first combat jet fighter. 68 AIR FORCE Magazine / October 2002 AIR FORCE Magazine / October 2002 68 A 21-year-old RAF pilot and a German graduate student got the whole thing going 70 years ago. The Jet Generations Photo by Russ Rogers via Warren Thompson By Bruce D. Callander N the last months of World War II, was losing the war but was still able self.
    [Show full text]
  • Towards a Tier One Royal Air Force
    TOWARDS A TIER ONE ROYAL AIR FORCE MARK GUNZINGER JACOB COHN LUKAS AUTENRIED RYAN BOONE TOWARDS A TIER ONE ROYAL AIR FORCE MARK GUNZINGER JACOB COHN LUKAS AUTENRIED RYAN BOONE 2019 ABOUT THE CENTER FOR STRATEGIC AND BUDGETARY ASSESSMENTS (CSBA) The Center for Strategic and Budgetary Assessments is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s analysis focuses on key questions related to existing and emerging threats to U.S. national security, and its goal is to enable policymakers to make informed decisions on matters of strategy, security policy, and resource allocation. ©2019 Center for Strategic and Budgetary Assessments. All rights reserved. ABOUT THE AUTHORS Mark Gunzinger is a Senior Fellow at the Center for Strategic and Budgetary Assessments. Mr. Gunzinger has served as the Deputy Assistant Secretary of Defense for Forces, Transformation and Resources. A retired Air Force Colonel and Command Pilot, he joined the Office of the Secretary of Defense in 2004 and was appointed to the Senior Executive Service and served as Principal Director of the Department’s central staff for the 2005–2006 Quadrennial Defense Review (QDR). He served as Director for Defense Transformation, Force Planning and Resources on the National Security Council staff. Mr. Gunzinger holds an M.S. in National Security Strategy from the National War College, a Master of Airpower Art and Science degree from the School of Advanced Air and Space Studies, an M.P.A. from Central Michigan University, and a B.S. in Chemistry from the United States Air Force Academy.
    [Show full text]