Subrings and Ideals

Total Page:16

File Type:pdf, Size:1020Kb

Subrings and Ideals Chapter 2 Subrings and Ideals 2.1 INTRODUCTION In this chapter, we discuss, subrings, sub fields. Ideals and quotient ring. We begin our study by defining a subring. If (R, +, ×) is a ring and S is a non-empty subset of R, then ‘+’ and ‘×’, may induce binary operations ‘+’ and ‘×’ respectively on S. If S is a ring with respect to these induced operations, then we call S, a subring of R. 2.2 SUBRING Definition 2.1 Let (R, +, ×) be a ring and let S be a non-empty subset of R. If (S, +, ×) is a ring, then S is called a subring of R. Every non-zero ring R has two trivial subrings, viz. the ring itself and the zero ring consisting of the zero element of the ring R. {0} and R are called the improper subrings of R. If S is a subring of R, then (i) S is a subgroup of additive group R. i.e., (S, +) is a subgroup of (R, +). (ii) S is closed with respect to multiplication. éùa 0 Example 1: The set S of all 2 ´ 2 matrices of the type êú where a, b, c are ëûbc ´ integers is subring of the ring M2 of all 2 matrices over Z. Example 2: The set of integers Z is a subring of the ring of real numbers. Theorem 2.1: A non-empty subset S of a ring R is a subring of R if and only if a - b Î S and ab Î S for all a, b Î S Proof: Let S be a subring of R and let a, b Î S. Then S is a subgroup of R under addition. Hence, b Î S Þ - b Î S and, a Î S, b Î S Þ a Î S, - b Î S Þ a + (- b) Î S Þ a - b + S Chapter-02 2nd Proof Anvi T12.p6539 10/5/10, 11:53 AM Subrings and Ideals 41 Hence, S is a subring of R. Example 2: Show that S = {0, 3} is a subring of (z6, +6, x6) under the operations +6 and x6. Solution: We construct the composition tables as follows: + ´ 6 03 6 03 003 000 330 303 From the above composition tables Î Î Þ - - Î a S, b S a +6 ( b) = a b S ´ Î " Î a 6 b S a, b S Hence, S is a subring of R. Example 3: Let m be any fixed integer and let S be any subset of Z, the set of integers, such that S = {..., - 3m, - 2m, - m, 0, m, 2m, 3m, ...} show that S is a subring of (z, +, ×) Solution: Let rm, s m Î S, then r, s Î Z now rm - sm = (r - s)m Î Z (Q r - s Î Z " r, s Î Z) and, (rm) (sm)= (rsm) m Î Z (Q r s m Î Z " r, s, m Î Z) \ S is a subring of (Z, +, ×) Theorem 2.2: The necessary and sufficient conditions for a non-empty subset S of a ring R to be a subring of R are: (i) S + (- S) = S and (ii) SS Í S Solution: Let S be a subring of R Then (S, +) is a subgroup of (R, +) let a + (- b) Î S + (- S), then a + (- b) Î S + (- S) Þ a Î S, - b Î - S Þ a Î S, b Î S Þ a - b Î S Þ a + (- b) Î S Thus, S + (- S) Í S (1) 0 Î S Þ 0 Î - S Now a Î S, 0 Î - S Þ a + 0 Î ST (- S) Hence, S Í S + (- S) (2) Chapter-02 2nd Proof Anvi T12.p6541 10/5/10, 11:53 AM 42 Linear Algebra From (1) and (2), we have S + (- S)= S Again, S is a subring of R Þ S is closed under multiplication. Thus, a Î S, b Î S Þ a b Î S but ab Î SS Now ab Î SS Þ a Î S, b Î S Þ ab Î S Þ SS Í S Hence, proved. Conversely, let S + (- S) = S and SS Í S " a, b Î S, we have ab Î SS Þ ab Î S (Q SS Í S) Again S + (- S)= S Þ S + (- S) Í S we have a + (- b) Î S + (–S) Í S Thus, Þ a + (- b) Î S " a, b Î S Þ a - b Î S " a, b Î S Thus, a - b Î S, ab Î S " a, b Î S Hence, S is a subring of R. Theorem 2.3: The intersection of two subrings of a ring R is a subring of R. Proof: Let S1 and S2 be two subrings of a ring R. Î Î Î Ç 0 S1, 0 S2, therefore, 0 S1 S2 Ç ¹ f Thus, S1 S2 Î Ç Now let a, b S1 S2, then Î Ç Þ Î Î a S1 S2 a S1, a S2 Î Ç Þ Î Î b S1 S2 b S1, b S2 But S1, S2 are subrings of R, therefore, Î Î Þ - Î Î a S, b S1 a b S1, ab S1 Î Î Þ - Î Î and, a S2, b S2 a b S2, ab S2 - Î - Î Þ - Î Ç a b S1, a b S2 a b S1 S2 Î Î Þ Î Ç ab S1, ab S2 ab S1 S2 - Î Ç Î Ç " Î Ç Consequently, a b S1 S2, ab S1 S2 a, b S1 S2 Ç Hence, S1 S2 is a subring of R. È Theorem 2.4: Let R be a ring and S1, S2 be two subrings. Then S1 S2 is a Í Í subring of R if and only if S1 S2 or S2 1. Chapter-02 2nd Proof Anvi T12.p6542 10/5/10, 11:53 AM 44 Linear Algebra 3. Prove that the z of integers is a subring of R, the set real numbers under addition and multiplication. 4. Show that the set of n ´ n matrices over the rational numbers is a subring of n ´ n matrices over the real numbers under addition and multiplication matrices. ´ ´ 5. Show that ({0, 2, 4}, +6, 6) is a subring of (Z6, +6, 6) where, Z6 = {0, 1, 2, 3, 4, 5}. 6. R is an integral domain. Show that the set S = {mx : x Î R, m is a fixed integer} is a subring of R. 7. If R is a ring, then show that the set N(a)= {x Î R; ax = xa} is a subring of R. 2.3 IDEALS 2.3.1 Left Ideal Definition 2.2: A non-empty subset U of a ring R is called a left ideal if (i) a Î U, b Î U Þ a - b Î U (ii) a Î U, r Î R Þ r a Î U Example: In the ring M of 2 ´ 2 matrices over integers consider the set U ìüéùa 0 = íýêú:,abÎ Z îþïïëûb 0 éù00 êú Î U Þ U ¹ f ëû00 Let éùa 0 éùc 0 A = êú, B = êú Î U, then ëûb 0 ëûd 0 éùac- 0 A - B = êú Î U ëûbd- 0 Also éùab éùa 0 P = êú Î M, A = êú Î U ëûgd ëûb 0 éùéùaba 0 Þ PA = êúêú ëûëûgdb 0 Chapter-02 2nd Proof Anvi T12.p6544 10/5/10, 11:53 AM Subrings and Ideals 45 éùabab+ 0 = êú Î U ëûgdab+ 0 This shows that U is a left ideal of M 2.3.2 Right Ideal Definition 2.3: A non-empty set U of a ring R is called a right ideal of R if (i) a Î U, b Î U Þ a - b Î U, and (ii) a Î U, r Î R Þ ar Î U. Example: Let M be the ring of 2 ´ 2 matrices one integers. Consider ìüéùab U = íýêú:,abÎ z îþïïëû00 éù00 êú Î U Þ U ¹ f ëû00 éùab éùcd éùacbd-- A = êú Î U B = êú Î U Þ A - B = êú Î 0 ëû00 ëû00 ëû00 éùab éùa 0 and, P = êú, A = êú Î U ëûgd ëûb 0 éùéùabab we have AP = êúêú ëûëû00gd éùababag++ bd = êú Î U ëû00 Hence, U is a right ideal of M. 2.3.3 Ideal Definition 2.4: A non-empty set U of a ring R is called an ideal (two-sided ideal) of R if (i) a Î U, b Î U Þ a - b Î U, and (ii) a Î U, r Î R Þ a r Î U and r a Î U Example: The set E of even integers is an ideal of the ring Z of integers. a, b Î E Þ a = 2m, b = 2n for some integers m and n we have a - b = 2m - 2n = 2(m - n) Î E also r Î Z, a Î E Þ ra = r(2m) = 2(rm) Î E and, ar = (2m) r = 2(mr) Î E Hence, E is an ideal of Z. Chapter-02 2nd Proof Anvi T12.p6545 10/5/10, 11:53 AM Subrings and Ideals 47 Consider a(xr) a(xr)= (ax) r = 0 × r = 0 Þ Î " Î Î x r S r R1 x S Thus, S is a right ideal of R. Example 3: If R is a commutative ring with unity, then the ideal Ra is the small- est ideal containing a. Proof: Let < a > = Ç {U: U is a ideal of R and a Î U} Clearly, < a > is the smallest ideal which contains a.
Recommended publications
  • Subset Semirings
    University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2013 Subset Semirings Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebraic Geometry Commons, Analysis Commons, and the Other Mathematics Commons Recommended Citation W.B. Vasantha Kandasamy & F. Smarandache. Subset Semirings. Ohio: Educational Publishing, 2013. This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Subset Semirings W. B. Vasantha Kandasamy Florentin Smarandache Educational Publisher Inc. Ohio 2013 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: 1-866-880-5373 Copyright 2013 by Educational Publisher Inc. and the Authors Peer reviewers: Marius Coman, researcher, Bucharest, Romania. Dr. Arsham Borumand Saeid, University of Kerman, Iran. Said Broumi, University of Hassan II Mohammedia, Casablanca, Morocco. Dr. Stefan Vladutescu, University of Craiova, Romania. Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/eBooks-otherformats.htm ISBN-13: 978-1-59973-234-3 EAN: 9781599732343 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two SUBSET SEMIRINGS OF TYPE I 9 Chapter Three SUBSET SEMIRINGS OF TYPE II 107 Chapter Four NEW SUBSET SPECIAL TYPE OF TOPOLOGICAL SPACES 189 3 FURTHER READING 255 INDEX 258 ABOUT THE AUTHORS 260 4 PREFACE In this book authors study the new notion of the algebraic structure of the subset semirings using the subsets of rings or semirings.
    [Show full text]
  • Arxiv:1709.01426V2 [Math.AC] 22 Feb 2018 N Rilssc S[] 3,[]
    A FRESH LOOK INTO MONOID RINGS AND FORMAL POWER SERIES RINGS ABOLFAZL TARIZADEH Abstract. In this article, the ring of polynomials is studied in a systematic way through the theory of monoid rings. As a con- sequence, this study provides natural and canonical approaches in order to find easy and rigorous proofs and methods for many facts on polynomials and formal power series; some of them as sample are treated in this note. Besides the universal properties of the monoid rings and polynomial rings, a universal property for the formal power series rings is also established. 1. Introduction Formal power series specially polynomials are ubiquitous in all fields of mathematics and widely applied across the sciences and engineering. Hence, in the abstract setting, it is necessary to have a systematic the- ory of polynomials available in hand. In [5, pp. 104-107], the ring of polynomials is introduced very briefly in a systematic way but the de- tails specially the universal property are not investigated. In [4, Chap 3, §5], this ring is also defined in a satisfactory way but the approach is not sufficiently general. Unfortunately, in the remaining standard algebra text books, this ring is introduced in an unsystematic way. Beside some harmful affects of this approach in the learning, another defect which arises is that then it is not possible to prove many results arXiv:1709.01426v2 [math.AC] 22 Feb 2018 specially the universal property of the polynomial rings through this non-canonical way. In this note, we plan to fill all these gaps. This material will help to an interesting reader to obtain a better insight into the polynomials and formal power series.
    [Show full text]
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • Certain Ideals Related to the Strong Measure Zero Ideal
    数理解析研究所講究録 第 1595 巻 2008 年 37-46 37 Certain ideals related to the strong measure zero ideal 大阪府立大学理学系研究科 大須賀昇 (Noboru Osuga) Graduate school of Science, Osaka Prefecture University 1 Motivation and Basic Definition In 1919, Borel[l] introduced the new class of Lebesgue measure zero sets called strong measure zero sets today. The family of all strong measure zero sets become $\sigma$-ideal and is called the strong measure zero ideal. The four cardinal invariants (the additivity, covering number, uniformity and cofinal- ity) related to the strong measure zero ideal have been studied. In 2002, Yorioka[2] obtained the results about the cofinality of the strong measure zero ideal. In the process, he introduced the ideal $\mathcal{I}_{f}$ for each strictly increas- ing function $f$ on $\omega$ . The ideal $\mathcal{I}_{f}$ relates to the structure of the real line. We are interested in how the cardinal invariants of the ideal $\mathcal{I}_{f}$ behave. $Ma\dot{i}$ly, we te interested in the cardinal invariants of the ideals $\mathcal{I}_{f}$ . In this paper, we deal the consistency problems about the relationship between the cardi- nal invariants of the ideals $\mathcal{I}_{f}$ and the minimam and supremum of cardinal invariants of the ideals $\mathcal{I}_{g}$ for all $g$ . We explain some notation which we use in this paper. Our notation is quite standard. And we refer the reader to [3] and [4] for undefined notation. For sets X and $Y$, we denote by $xY$ the set of all functions $homX$ to Y.
    [Show full text]
  • The Structure Theory of Complete Local Rings
    The structure theory of complete local rings Introduction In the study of commutative Noetherian rings, localization at a prime followed by com- pletion at the resulting maximal ideal is a way of life. Many problems, even some that seem \global," can be attacked by first reducing to the local case and then to the complete case. Complete local rings turn out to have extremely good behavior in many respects. A key ingredient in this type of reduction is that when R is local, Rb is local and faithfully flat over R. We shall study the structure of complete local rings. A complete local ring that contains a field always contains a field that maps onto its residue class field: thus, if (R; m; K) contains a field, it contains a field K0 such that the composite map K0 ⊆ R R=m = K is an isomorphism. Then R = K0 ⊕K0 m, and we may identify K with K0. Such a field K0 is called a coefficient field for R. The choice of a coefficient field K0 is not unique in general, although in positive prime characteristic p it is unique if K is perfect, which is a bit surprising. The existence of a coefficient field is a rather hard theorem. Once it is known, one can show that every complete local ring that contains a field is a homomorphic image of a formal power series ring over a field. It is also a module-finite extension of a formal power series ring over a field. This situation is analogous to what is true for finitely generated algebras over a field, where one can make the same statements using polynomial rings instead of formal power series rings.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • Introduction to the P-Adic Space
    Introduction to the p-adic Space Joel P. Abraham October 25, 2017 1 Introduction From a young age, students learn fundamental operations with the real numbers: addition, subtraction, multiplication, division, etc. We intuitively understand that distance under the reals as the absolute value function, even though we never have had a fundamental introduction to set theory or number theory. As such, I found this topic to be extremely captivating, since it almost entirely reverses the intuitive notion of distance in the reals. Such a small modification to the definition of distance gives rise to a completely different set of numbers under which the typical axioms are false. Furthermore, this is particularly interesting since the p-adic system commonly appears in natural phenomena. Due to the versatility of this metric space, and its interesting uniqueness, I find the p-adic space a truly fascinating development in algebraic number theory, and thus chose to explore it further. 2 The p-adic Metric Space 2.1 p-adic Norm Definition 2.1. A metric space is a set with a distance function or metric, d(p, q) defined over the elements of the set and mapping them to a real number, satisfying: arXiv:1710.08835v1 [math.HO] 22 Oct 2017 (a) d(p, q) > 0 if p = q 6 (b) d(p,p)=0 (c) d(p, q)= d(q,p) (d) d(p, q) d(p, r)+ d(r, q) ≤ The real numbers clearly form a metric space with the absolute value function as the norm such that for p, q R ∈ d(p, q)= p q .
    [Show full text]
  • COVERING PROPERTIES of IDEALS 1. Introduction We Will Discuss The
    COVERING PROPERTIES OF IDEALS MAREK BALCERZAK, BARNABAS´ FARKAS, AND SZYMON GLA¸B Abstract. M. Elekes proved that any infinite-fold cover of a σ-finite measure space by a sequence of measurable sets has a subsequence with the same property such that the set of indices of this subsequence has density zero. Applying this theorem he gave a new proof for the random-indestructibility of the density zero ideal. He asked about other variants of this theorem concerning I-almost everywhere infinite-fold covers of Polish spaces where I is a σ-ideal on the space and the set of indices of the required subsequence should be in a fixed ideal J on !. We introduce the notion of the J-covering property of a pair (A;I) where A is a σ- algebra on a set X and I ⊆ P(X) is an ideal. We present some counterexamples, discuss the category case and the Fubini product of the null ideal N and the meager ideal M. We investigate connections between this property and forcing-indestructibility of ideals. We show that the family of all Borel ideals J on ! such that M has the J- covering property consists exactly of non weak Q-ideals. We also study the existence of smallest elements, with respect to Katˇetov-Blass order, in the family of those ideals J on ! such that N or M has the J-covering property. Furthermore, we prove a general result about the cases when the covering property \strongly" fails. 1. Introduction We will discuss the following result due to Elekes [8].
    [Show full text]
  • Factorization Theory in Commutative Monoids 11
    FACTORIZATION THEORY IN COMMUTATIVE MONOIDS ALFRED GEROLDINGER AND QINGHAI ZHONG Abstract. This is a survey on factorization theory. We discuss finitely generated monoids (including affine monoids), primary monoids (including numerical monoids), power sets with set addition, Krull monoids and their various generalizations, and the multiplicative monoids of domains (including Krull domains, rings of integer-valued polynomials, orders in algebraic number fields) and of their ideals. We offer examples for all these classes of monoids and discuss their main arithmetical finiteness properties. These describe the structure of their sets of lengths, of the unions of sets of lengths, and their catenary degrees. We also provide examples where these finiteness properties do not hold. 1. Introduction Factorization theory emerged from algebraic number theory. The ring of integers of an algebraic number field is factorial if and only if it has class number one, and the class group was always considered as a measure for the non-uniqueness of factorizations. Factorization theory has turned this idea into concrete results. In 1960 Carlitz proved (and this is a starting point of the area) that the ring of integers is half-factorial (i.e., all sets of lengths are singletons) if and only if the class number is at most two. In the 1960s Narkiewicz started a systematic study of counting functions associated with arithmetical properties in rings of integers. Starting in the late 1980s, theoretical properties of factorizations were studied in commutative semigroups and in commutative integral domains, with a focus on Noetherian and Krull domains (see [40, 45, 62]; [3] is the first in a series of papers by Anderson, Anderson, Zafrullah, and [1] is a conference volume from the 1990s).
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • Stable Rings
    Jcwnulof Acre md Applied Algebra 4 (I 974) 31 P-336. (Q North-Holland Publishing Company STABLE RINGS Judith D. SALLY Northwestern University, Evunston, Ilk 60201, U.S.A. and Wolmer V. VASCONCELKX * Rurgers Universiry, New Bmnswick, NJ. 08903, U.S.A. Communic%tcd by f-f. Bass Received 18 October 1973 Contents 0. Introduction 3iY 1. Estimates t’or numbers of generators of ideals 320 2. Stability 323 3. Twogmcrated rings 327 4. Non-Noetherian “two~enerated” rings 333 5. Non-standard stable rings 334 References 336 0. hwoduction One of the objectives of this paper is the examination of the relritionship between the following properties of a Noetherian ring A : (i) every ideal of2 can be generated by two elements; (ii) every ideal of A is projective over its endomorphism ring. Bass [3] in his study of the rings for which every torsion-free module is a direct sum of ideals, proved that if A is a t dimensional reduced ring with finite integral closure, then (i) implies (ii). Using properties of the canonical ideal, our i%st obser- vation in [22] - which we have since learned was proved earlier by Drozd and KiriEenko [9] by direct methods -.- was that, under the same conditions,(i) and (ii) are equivalent. Fn this paper we will show (Sections 3,5) that (i) and (ii) are not equivalent - even for domains - but that mild conditions on A will give (i) implies (ii). * Partially supported by National Science Foundation Grant 33 133. 319 Study of ctjndition ii) leads to more general questions involving estimates for bounds on the number of generators of certain ideals (Section I ‘) and to an exis- tence theorem far rings s;itisfying (i) (Section 3).
    [Show full text]
  • A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
    A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields).
    [Show full text]