Factorization Theory in Commutative Monoids 11
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields). -
Artinian Subrings of a Commutative Ring
transactions of the american mathematical society Volume 336, Number 1, March 1993 ARTINIANSUBRINGS OF A COMMUTATIVERING ROBERT GILMER AND WILLIAM HEINZER Abstract. Given a commutative ring R, we investigate the structure of the set of Artinian subrings of R . We also consider the family of zero-dimensional subrings of R. Necessary and sufficient conditions are given in order that every zero-dimensional subring of a ring be Artinian. We also consider closure properties of the set of Artinian subrings of a ring with respect to intersection or finite intersection, and the condition that the set of Artinian subrings of a ring forms a directed family. 1. Introduction Suppose R is a commutative ring with unity element. We consider here various properties of the family sf of Artinian subrings of R and the family Z of zero-dimensional subrings of R . We remark that the inclusion s? ç Z may be proper, even if R is Noetherian; for example, Corollary 3.4 implies that if K is an infinite field of positive characteristic, then the local principal ideal ring K[X]/(X2) contains a zero-dimensional subring that is not Artinian. Of course, if every subring of R were Noetherian, the families sf and Z would be identical. Thus one source of motivation for this work comes from papers such as [Gi, Wi, W2, GHi, GH3] that deal with Noetherian and zero- dimensional pairs of rings, hereditarily Noetherian rings, and hereditarily zero- dimensional rings. Another source of motivation is related to our work in [GH3], where we considered several problems concerning a direct product of zero-dimensional rings. -
Notes on Ring Theory
Notes on Ring Theory by Avinash Sathaye, Professor of Mathematics February 1, 2007 Contents 1 1 Ring axioms and definitions. Definition: Ring We define a ring to be a non empty set R together with two binary operations f,g : R × R ⇒ R such that: 1. R is an abelian group under the operation f. 2. The operation g is associative, i.e. g(g(x, y),z)=g(x, g(y,z)) for all x, y, z ∈ R. 3. The operation g is distributive over f. This means: g(f(x, y),z)=f(g(x, z),g(y,z)) and g(x, f(y,z)) = f(g(x, y),g(x, z)) for all x, y, z ∈ R. Further we define the following natural concepts. 1. Definition: Commutative ring. If the operation g is also commu- tative, then we say that R is a commutative ring. 2. Definition: Ring with identity. If the operation g has a two sided identity then we call it the identity of the ring. If it exists, the ring is said to have an identity. 3. The zero ring. A trivial example of a ring consists of a single element x with both operations trivial. Such a ring leads to pathologies in many of the concepts discussed below and it is prudent to assume that our ring is not such a singleton ring. It is called the “zero ring”, since the unique element is denoted by 0 as per convention below. Warning: We shall always assume that our ring under discussion is not a zero ring. -
Ring (Mathematics) 1 Ring (Mathematics)
Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right. -
3 Formal Power Series
MT5821 Advanced Combinatorics 3 Formal power series Generating functions are the most powerful tool available to combinatorial enu- merators. This week we are going to look at some of the things they can do. 3.1 Commutative rings with identity In studying formal power series, we need to specify what kind of coefficients we should allow. We will see that we need to be able to add, subtract and multiply coefficients; we need to have zero and one among our coefficients. Usually the integers, or the rational numbers, will work fine. But there are advantages to a more general approach. A favourite object of some group theorists, the so-called Nottingham group, is defined by power series over a finite field. A commutative ring with identity is an algebraic structure in which addition, subtraction, and multiplication are possible, and there are elements called 0 and 1, with the following familiar properties: • addition and multiplication are commutative and associative; • the distributive law holds, so we can expand brackets; • adding 0, or multiplying by 1, don’t change anything; • subtraction is the inverse of addition; • 0 6= 1. Examples incude the integers Z (this is in many ways the prototype); any field (for example, the rationals Q, real numbers R, complex numbers C, or integers modulo a prime p, Fp. Let R be a commutative ring with identity. An element u 2 R is a unit if there exists v 2 R such that uv = 1. The units form an abelian group under the operation of multiplication. Note that 0 is not a unit (why?). -
A Brief History of Ring Theory
A Brief History of Ring Theory by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005 A Brief History of Ring Theory Kristen Pollock 2 1. Introduction In order to fully define and examine an abstract ring, this essay will follow a procedure that is unlike a typical algebra textbook. That is, rather than initially offering just definitions, relevant examples will first be supplied so that the origins of a ring and its components can be better understood. Of course, this is the path that history has taken so what better way to proceed? First, it is important to understand that the abstract ring concept emerged from not one, but two theories: commutative ring theory and noncommutative ring the- ory. These two theories originated in different problems, were developed by different people and flourished in different directions. Still, these theories have much in com- mon and together form the foundation of today's ring theory. Specifically, modern commutative ring theory has its roots in problems of algebraic number theory and algebraic geometry. On the other hand, noncommutative ring theory originated from an attempt to expand the complex numbers to a variety of hypercomplex number systems. 2. Noncommutative Rings We will begin with noncommutative ring theory and its main originating ex- ample: the quaternions. According to Israel Kleiner's article \The Genesis of the Abstract Ring Concept," [2]. these numbers, created by Hamilton in 1843, are of the form a + bi + cj + dk (a; b; c; d 2 R) where addition is through its components 2 2 2 and multiplication is subject to the relations i =pj = k = ijk = −1. -
Abstract Algebra and Algebraic Number Theory
Abstract Algebra and Algebraic Number Theory Shashank Singh January 23, 2011 Contents 1 Introduction 2 2 Basic Algebraic Structures 3 2.1 Group . .3 2.2 Ring and Integral Domain . .7 2.3 Arithmetic in Rings . 14 2.4 DomainsfED,PID,UFDg ..................... 15 3 Field Extensions 17 3.1 Algebraic Extension . 18 3.2 Splitting Field and Algebraic Closure . 19 3.3 Separable Extensions . 21 3.4 Normal Extensions . 22 3.5 Galois Extension . 23 4 Algebraic Number Theory 27 4.1 Algebraic Number and Algebraic Integer . 27 4.2 Norms, Traces and Discriminants . 28 4.2.1 Discriminant . 30 4.3 Dedekind Domain . 31 4.3.1 Unique Factorization of Ideals . 32 4.4 Factorization of Primes in Extensions . 32 4.5 Norm of an Ideal . 33 4.6 Ideal Class Group . 34 1 Chapter 1 Introduction The word algebra stems out from the name of a famous book "Al-Jabr wa-al- Muqabalah" by an Arab Mathematician Alkarismi. Alkarismi lived around the year 800 A.D. In this book he described the basic algebraic techniques to simplify algebraic equations. In the Modern abstract algebra, we study the algebraic structures such as groups, rings and fields in the axiomatic and structured way. Modern abstract algebra arises in attempts to solve the polynomial equa- tions. There were exact methods to solve the polynomial equations of degree up to 4. These methods reduce the polynomial into a lower degree auxiliary equation(s), known as resolvent equation(s). Resolvent equations are then solved using existing methods. Lagrange tried to solve quintic during 1770. -
Invertible Ideals and Gaussian Semirings
ARCHIVUM MATHEMATICUM (BRNO) Tomus 53 (2017), 179–192 INVERTIBLE IDEALS AND GAUSSIAN SEMIRINGS Shaban Ghalandarzadeh, Peyman Nasehpour, and Rafieh Razavi Abstract. In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as (I + J)(I ∩J) = IJ for all ideals I, J of S. In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings. 0. Introduction Vandiver introduced the term “semi-ring” and its structure in 1934 [27], though the early examples of semirings had appeared in the works of Dedekind in 1894, when he had been working on the algebra of the ideals of commutative rings [5]. Despite the great efforts of some mathematicians on semiring theory in 1940s, 1950s, and early 1960s, they were apparently not successful to draw the attention of mathematical society to consider the semiring theory as a serious line of ma- thematical research. Actually, it was in the late 1960s that semiring theory was considered a more important topic for research when real applications were found for semirings. Eilenberg and a couple of other mathematicians started developing formal languages and automata theory systematically [6], which have strong connec- tions to semirings. -
RING THEORY 1. Ring Theory a Ring Is a Set a with Two Binary Operations
CHAPTER IV RING THEORY 1. Ring Theory A ring is a set A with two binary operations satisfying the rules given below. Usually one binary operation is denoted `+' and called \addition," and the other is denoted by juxtaposition and is called \multiplication." The rules required of these operations are: 1) A is an abelian group under the operation + (identity denoted 0 and inverse of x denoted x); 2) A is a monoid under the operation of multiplication (i.e., multiplication is associative and there− is a two-sided identity usually denoted 1); 3) the distributive laws (x + y)z = xy + xz x(y + z)=xy + xz hold for all x, y,andz A. Sometimes one does∈ not require that a ring have a multiplicative identity. The word ring may also be used for a system satisfying just conditions (1) and (3) (i.e., where the associative law for multiplication may fail and for which there is no multiplicative identity.) Lie rings are examples of non-associative rings without identities. Almost all interesting associative rings do have identities. If 1 = 0, then the ring consists of one element 0; otherwise 1 = 0. In many theorems, it is necessary to specify that rings under consideration are not trivial, i.e. that 1 6= 0, but often that hypothesis will not be stated explicitly. 6 If the multiplicative operation is commutative, we call the ring commutative. Commutative Algebra is the study of commutative rings and related structures. It is closely related to algebraic number theory and algebraic geometry. If A is a ring, an element x A is called a unit if it has a two-sided inverse y, i.e. -
Commutative Rings and Fields
Chapter 6 Commutative Rings and Fields The set of integers Z has two interesting operations: addition and multiplication, which interact in a nice way. Definition 6.1. A commutative ring consists of a set R with distinct elements 0, 1 R, and binary operations + and such that: ∈ · 1. (R, +, 0) is an Abelian group 2. is commutative and associative with 1 as the identity: x y = y x, x· (y z)=(x y) z, x 1=x. · · · · · · · 3. distributes over +: x (y + z)=x y + x z. · · · · Definition 6.2. A commutative ring R is a field if in addition, every nonzero x R possesses a multiplicative inverse, i.e. an element y R with xy =1. ∈ ∈ As a homework problem, you will show that the multiplicative inverse of x 1 is unique if it exists. We will denote it by x− . Example 6.3. Z, Q = a a, b Z, b =0 , R and C with the usual operations { b | ∈ } are all commutative rings. All but the Z are fields. The main new examples are the following: Theorem 6.4. The set Zn = 0, 1,...,n 1 is a commutative ring with addition and multiplication given{ by − } x y = x + y mod n ⊕ x y = xy mod n ⊙ Theorem 6.5. Zn is a field if and only if n is prime. 24 We will prove the second theorem, after we have developed a bit more theory. Since the symbols and are fairly cumbersome, we will often use ordinary notation with the understanding⊕ ⊙ that we’re using mod n rules. -
Studying Monoids Is Not Enough to Study Multiplicative Properties of Rings: an Elementary Approach
Arab. J. Math. (2015) 4:29–34 DOI 10.1007/s40065-014-0118-1 Arabian Journal of Mathematics Marco Fontana · Muhammad Zafrullah Studying monoids is not enough to study multiplicative properties of rings: an elementary approach Received: 15 April 2014 / Accepted: 27 August 2014 / Published online: 25 September 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The aim of these notes is to indicate, using very simple examples, that not all results in ring theory can be derived from monoids and that there are results that deeply depend on the interplay between “+”and “·”. Mathematics Subject Classification 20M14 · 20M12 · 20M25 · 13A15 · 13G05 In a commutative unitary ring (R, +, ·), with 0 = 1, there are two binary operations, denoted by “+”, addition, and by “·”, multiplication, at work. So, in particular, we can consider R as an algebraic system closed under one of the binary operations, that is (R, +) or (R, ·). In both cases, R is at least a monoid. This state of affairs could lead one to think that perhaps it is sufficient to study monoids to get a handle on ring theory. The aim of these notes is to indicate, using elementary and easily accessible results available in literature, that not all results in ring theory can be derived separately from semigroups or monoids and that there are results that deeply depend on the interplay between “+”and“·”. Following the custom, we choose to use the simplest examples that can be developed with a minimum of jargon to establish our thesis. We shall restrict our attention to integral domains and to results of multiplicative nature, as that is our area of interest. -
The Isomorphism Problem for Commutative Monoid Rings'
JOURNAL OF PURE AND APPLIED ALGEBRA ELSEVIER Journal of Pure and Applied Algebra 129 (1998) 3545 The isomorphism problem for commutative monoid rings’ Joseph Gubeladze* A. Razmadze Mathematical Institute, Georgian Academy of Sciences, Alexidze str.1, Tbilisi 380093, Georgia Communicated by CA. Weibel; received 28 February 1996; received in revised form 25 October 1996 Abstract By substantial changes and corrections in Demushkin’s old paper the essentially final positive answer to the isomorphism problem for monoid rings of submonoids of Z’ is obtained. This means that the underlying monoid is shown to be determined (up to isomorphism) by the corresponding monoid ring. Thereafter the positive answer to the analogous question for the ‘dual’ objects - descrete Hodge algebras - is derived. @ 1998 Elsevier Science B.V. All rights reserved. AMS Classification: 1411125; 13F20; 2OM25 1. Introduction The isomorphism problem for monoid rings asks whether two monoids are isomor- phic if they have isomorphic monoid rings (with coefficients in some ring). Here we are concerned with the case of commutative monoids and commutative rings. This paper contains an essentially final positive solution of the isomorphism prob- lem for finitely generated, commutative, cancellative and torsion free monoids (Theo- rem 2.1). But some remarks are in order. The problem is mentioned in the very last section of Gilmer’s book [ll]. For a decade there was no work on this problem, and it is only recently that papers related to the isomorphism problem have appeared, such as [12, 131 (related mostly to the non-commutative case) and [ 181 (where we give a positive answer in the special case of finitely generated submonoids of Z2).