Introduction to the P-Adic Space

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to the P-Adic Space Introduction to the p-adic Space Joel P. Abraham October 25, 2017 1 Introduction From a young age, students learn fundamental operations with the real numbers: addition, subtraction, multiplication, division, etc. We intuitively understand that distance under the reals as the absolute value function, even though we never have had a fundamental introduction to set theory or number theory. As such, I found this topic to be extremely captivating, since it almost entirely reverses the intuitive notion of distance in the reals. Such a small modification to the definition of distance gives rise to a completely different set of numbers under which the typical axioms are false. Furthermore, this is particularly interesting since the p-adic system commonly appears in natural phenomena. Due to the versatility of this metric space, and its interesting uniqueness, I find the p-adic space a truly fascinating development in algebraic number theory, and thus chose to explore it further. 2 The p-adic Metric Space 2.1 p-adic Norm Definition 2.1. A metric space is a set with a distance function or metric, d(p, q) defined over the elements of the set and mapping them to a real number, satisfying: arXiv:1710.08835v1 [math.HO] 22 Oct 2017 (a) d(p, q) > 0 if p = q 6 (b) d(p,p)=0 (c) d(p, q)= d(q,p) (d) d(p, q) d(p, r)+ d(r, q) ≤ The real numbers clearly form a metric space with the absolute value function as the norm such that for p, q R ∈ d(p, q)= p q . | − | 1 We can modify the distance function to alter the notion of distance within a space, thus redefin- ing closeness. In the reals, two numbers are close together if their decimal representation is similar towards the right. For example, 3.1, 3.14, 3.141, 3.1415, ... are all growing closer to each other, while 15, 315, 1415, 31415, ... are all growing further apart. This is simply because appending a number n digits to the right of the decimal place only modifies its distance from another real number by 10−n, while appending a number n digits to the left of the decimal place alters its distance from another real by 10n. The p-adic numbers are quite the opposite. The p-adic space redefines the distance function, informally, such that two numbers are far if they are similar towards the right and close if they are similar towards the left. This is made rigorous through the p-adic norm. pnm Definition 2.2. We can represent any rational number n as n = n where p, m, and n are coprime. Z n Then, the p-adic valuation vp (n) = p . Formally, the p-adic valuation over the integers is a function vZ(n): Z N such that p → + n =0 Z v (n) := ∞ p max v : pv n, v N n =0 { | ∈ } 6 The p-adic valuation can be extended to the rationals as well, and the function vp(n): Q Z is → a Z Z defined as vp( )= v (a) v (b). b p − p Definition 2.3. The p-adic valuation is an auxillary function. It is used to clarify the definition of the p-adic norm, which is defined as p : Q N such that | · | → 0 n =0 n p := | | vp(n) p− n =0 6 By establishing the definition of the p-adic norm, we are now able to form a metric space over the p- adic numbers with the distance function defined as d(p, q)= p q p. We can now make some observations | − | about the nature of this space. The size of a p-adic number can be informally summarized as inversely proportional to the exponent of p in its prime factorization. It is clear that numbers that are larger in the real number space, per the absolute value function, tend to be smaller under the p-adic metric, since these numbers will be divisible by greater powers of p. Note that any number that is coprime to p will have size 1, since the valuation returns 0. 2.2 Completion of Q The set of rational numbers is the fundamental structure underlying much of number theory and math- ematics as a whole. 2 p Q = p, q Z, q =0 . q | ∈ 6 The rationals form a field under the addition and multiplication, satisfying the field axioms for each operation: commutativity, associativity, existence of an identity element, existence of an inverse element, and closure. However, upon examination we quickly discover inefficiencies in this field; for example, there does not exist a rational m such that m2 =2. An irrational number, √2 is one of the many gaps in the rational field, since we can get arbitrarily close to it from within the rationals but never reach it exactly. Closing these gaps under the real distance function yields the real numbers, while closing these gaps using the p-adic distance function yields the p-adic numbers. Before we can complete the rations, however, we must introduce some important definitions relating to elementary topology. Definition 2.4. For a metric space X, we define an open ball to be an open set B(x0, r) of all points x X centered around a point x with radius r such that d(x , x) < r. The corresponding closed ball is ∈ 0 0 said to be the closure of an open ball. Definition 2.5. A neighborhood of x0 is said to be an open ball Nr(x0) centered around a point x0 with radius r. Definition 2.6. A limit point of a set X is point p if every neighborhood of p overlaps with X, that is, for every neighborhood of p, there exists a point q = p such that q X Nr(p). 6 ∈ ∩ Definition 2.7. A Cauchy sequence is any sequence xi such that for every positive real number ǫ, there exists a natural number m such that d(xm, xm n) <ǫ for any n N. + ∈ Consider the sequence X = 1, 1, 6, 1.61, 1.614, ... in the real number space with each term including { } a subsequence digit of the decimal representation of √2. We can show that this is a Cauchy sequence by 1−i noting that all terms in the subsequence of X beginning with xi are within 10 of each other. Thus, for any ǫ, we can choose i such that 1 log ǫ i, which would give us a sequence xi, xi , ... such − ≤ { +1 } 1−i that for any n N, d(xi, xi n) 10 ǫ. A limit point of this Cauchy sequence is therefore √2 ∈ + ≤ ≤ since for any r > 0, we can choose an α > 0 and construct a neighborhood centered around √2 such that d(√2, √2 r α) = r α X. This is because of the fact for the nth term in the sequence is − − | − | ∈ 1−n within √2 xn 10 . In the rational space, all the limit points such as √2 that are formed under | − |≤ the absolute value function are contained in the set of irrational numbers. As such, we may construct the real numbers by completing the rationals, that is, including all the limit points of Q to yield R. This proof is quite complex and thus will not be covered in this paper, however, the general structure of the argument behind this proof is important since the p-adic numbers are constructed in the same fashion. While the real numbers represent the completion of Q under the the absolute value function which is the distance in the reals, the completion of Q induced by the p-adic metric forms the p-adic number set, 3 denoted by Qp. If we only consider integral numbers, we arrive at the set of p-adic integers, a subring of Qp denoted by Zp. The formal representation of a p-adic number is very similar to that of a p-ary number (a number in base p), as both are represented by a power series expansion of p. Definition 2.8. A p-adic number α can be represented, uniquely, for 0 ai <p as ≤ ∞ i α = aip Xi=n where the p-adic norm of α, α = p−n. | | 2.3 Arithmetic Operations One interesting consequence of the p-adic metric is that numbers no longer require a sign. That is, negative numbers are defined without the need for a negative sign. To illustrate this property, consider the 10-adic metric. In this space, considering a series of x 9s for increasing values of x, our number approaches 1. This is because − − − − 9 ( 1) = 9 = 10 1, 99 ( 1) = 102 = 10 2, ... 10x 1 ( 1) = 10x = 10 x | − − |10 | | | − − |10 | | | − − − | | | −x lim 10 10 =0 x→∞ | | . Thus, the distance between 999...9 and 1 is considered to be 0. Since this technique involves − constantly appending to the left, in the 10-adic system, we can represent this same process involving x limx→∞ 10 1 as ...999 = 1. | − |10 − This ring of 10-adic (decadic) numbers is very useful to demonstrate the relationship between the real numbers and the p-adic numbers. Let us now explore the function of transformations via the fundamental operations in 10-adic space. We can define the basic operations in the 10-adic space: addition and multiplication, thus they form a commutative ring (note that while p-adic spaces form fields for some values of p, all p-adic spaces form rings). Addition and multiplication with p-adic numbers function the same as with real numbers, the only difference being that p-adic numbers can extend infinitely to the left.
Recommended publications
  • Subset Semirings
    University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2013 Subset Semirings Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebraic Geometry Commons, Analysis Commons, and the Other Mathematics Commons Recommended Citation W.B. Vasantha Kandasamy & F. Smarandache. Subset Semirings. Ohio: Educational Publishing, 2013. This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Subset Semirings W. B. Vasantha Kandasamy Florentin Smarandache Educational Publisher Inc. Ohio 2013 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: 1-866-880-5373 Copyright 2013 by Educational Publisher Inc. and the Authors Peer reviewers: Marius Coman, researcher, Bucharest, Romania. Dr. Arsham Borumand Saeid, University of Kerman, Iran. Said Broumi, University of Hassan II Mohammedia, Casablanca, Morocco. Dr. Stefan Vladutescu, University of Craiova, Romania. Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/eBooks-otherformats.htm ISBN-13: 978-1-59973-234-3 EAN: 9781599732343 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two SUBSET SEMIRINGS OF TYPE I 9 Chapter Three SUBSET SEMIRINGS OF TYPE II 107 Chapter Four NEW SUBSET SPECIAL TYPE OF TOPOLOGICAL SPACES 189 3 FURTHER READING 255 INDEX 258 ABOUT THE AUTHORS 260 4 PREFACE In this book authors study the new notion of the algebraic structure of the subset semirings using the subsets of rings or semirings.
    [Show full text]
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • An Introduction to Skolem's P-Adic Method for Solving Diophantine
    An introduction to Skolem's p-adic method for solving Diophantine equations Josha Box July 3, 2014 Bachelor thesis Supervisor: dr. Sander Dahmen Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit van Amsterdam Abstract In this thesis, an introduction to Skolem's p-adic method for solving Diophantine equa- tions is given. The main theorems that are proven give explicit algorithms for computing bounds for the amount of integer solutions of special Diophantine equations of the kind f(x; y) = 1, where f 2 Z[x; y] is an irreducible form of degree 3 or 4 such that the ring of integers of the associated number field has one fundamental unit. In the first chapter, an introduction to algebraic number theory is presented, which includes Minkovski's theorem and Dirichlet's unit theorem. An introduction to p-adic numbers is given in the second chapter, ending with the proof of the p-adic Weierstrass preparation theorem. The theory of the first two chapters is then used to apply Skolem's method in Chapter 3. Title: An introduction to Skolem's p-adic method for solving Diophantine equations Author: Josha Box, [email protected], 10206140 Supervisor: dr. Sander Dahmen Second grader: Prof. dr. Jan de Boer Date: July 3, 2014 Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Science Park 904, 1098 XH Amsterdam http://www.science.uva.nl/math 3 Contents Introduction 6 Motivations . .7 1 Number theory 8 1.1 Prerequisite knowledge . .8 1.2 Algebraic numbers . 10 1.3 Unique factorization . 15 1.4 A geometrical approach to number theory .
    [Show full text]
  • Local-Global Methods in Algebraic Number Theory
    LOCAL-GLOBAL METHODS IN ALGEBRAIC NUMBER THEORY ZACHARY KIRSCHE Abstract. This paper seeks to develop the key ideas behind some local-global methods in algebraic number theory. To this end, we first develop the theory of local fields associated to an algebraic number field. We then describe the Hilbert reciprocity law and show how it can be used to develop a proof of the classical Hasse-Minkowski theorem about quadratic forms over algebraic number fields. We also discuss the ramification theory of places and develop the theory of quaternion algebras to show how local-global methods can also be applied in this case. Contents 1. Local fields 1 1.1. Absolute values and completions 2 1.2. Classifying absolute values 3 1.3. Global fields 4 2. The p-adic numbers 5 2.1. The Chevalley-Warning theorem 5 2.2. The p-adic integers 6 2.3. Hensel's lemma 7 3. The Hasse-Minkowski theorem 8 3.1. The Hilbert symbol 8 3.2. The Hasse-Minkowski theorem 9 3.3. Applications and further results 9 4. Other local-global principles 10 4.1. The ramification theory of places 10 4.2. Quaternion algebras 12 Acknowledgments 13 References 13 1. Local fields In this section, we will develop the theory of local fields. We will first introduce local fields in the special case of algebraic number fields. This special case will be the main focus of the remainder of the paper, though at the end of this section we will include some remarks about more general global fields and connections to algebraic geometry.
    [Show full text]
  • Discriminants and the Monoid of Quadratic Rings
    DISCRIMINANTS AND THE MONOID OF QUADRATIC RINGS JOHN VOIGHT Abstract. We consider the natural monoid structure on the set of quadratic rings over an arbitrary base scheme and characterize this monoid in terms of discriminants. Quadratic field extensions K of Q are characterized by their discriminants. Indeed, there is a bijection 8Separable quadratic9 < = ∼ × ×2 algebras over Q −! Q =Q : up to isomorphism ; p 2 ×2 Q[ d] = Q[x]=(x − d) 7! dQ wherep a separable quadratic algebra over Q is either a quadratic field extension or the algebra Q[ 1] ' Q × Q of discriminant 1. In particular, the set of isomorphism classes of separable quadratic extensions of Q can be given the structure of an elementary abelian 2-group, with identity element the class of Q × Q: we have simply p p p Q[ d1] ∗ Q[ d2] = Q[ d1d2] p × ×2 up to isomorphism. If d1; d2; dp1d2 2pQ n Q then Q( d1d2) sits as the third quadratic subfield of the compositum Q( d1; d2): p p Q( d1; d2) p p p Q( d1) Q( d1d2) Q( d2) Q p Indeed, ifpσ1 isp the nontrivial elementp of Gal(Q( d1)=Q), then therep is a unique extension of σ1 to Q( d1; d2) leaving Q( d2) fixed, similarly with σ2, and Q( d1d2) is the fixed field of the composition σ1σ2 = σ2σ1. This characterization of quadratic extensions works over any base field F with char F 6= 2 and is summarized concisely in the Kummer theory isomorphism H1(Gal(F =F ); {±1g) = Hom(Gal(F =F ); {±1g) ' F ×=F ×2: On the other hand, over a field F with char F = 2, all separable quadratic extensions have trivial discriminant and instead they are classified by the (additive) Artin-Schreier group F=}(F ) where }(F ) = fr + r2 : r 2 F g Date: January 17, 2021.
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • Geometry, Combinatorial Designs and Cryptology Fourth Pythagorean Conference
    Geometry, Combinatorial Designs and Cryptology Fourth Pythagorean Conference Sunday 30 May to Friday 4 June 2010 Index of Talks and Abstracts Main talks 1. Simeon Ball, On subsets of a finite vector space in which every subset of basis size is a basis 2. Simon Blackburn, Honeycomb arrays 3. G`abor Korchm`aros, Curves over finite fields, an approach from finite geometry 4. Cheryl Praeger, Basic pregeometries 5. Bernhard Schmidt, Finiteness of circulant weighing matrices of fixed weight 6. Douglas Stinson, Multicollision attacks on iterated hash functions Short talks 1. Mari´en Abreu, Adjacency matrices of polarity graphs and of other C4–free graphs of large size 2. Marco Buratti, Combinatorial designs via factorization of a group into subsets 3. Mike Burmester, Lightweight cryptographic mechanisms based on pseudorandom number generators 4. Philippe Cara, Loops, neardomains, nearfields and sets of permutations 5. Ilaria Cardinali, On the structure of Weyl modules for the symplectic group 6. Bill Cherowitzo, Parallelisms of quadrics 7. Jan De Beule, Large maximal partial ovoids of Q−(5, q) 8. Bart De Bruyn, On extensions of hyperplanes of dual polar spaces 1 9. Frank De Clerck, Intriguing sets of partial quadrangles 10. Alice Devillers, Symmetry properties of subdivision graphs 11. Dalibor Froncek, Decompositions of complete bipartite graphs into generalized prisms 12. Stelios Georgiou, Self-dual codes from circulant matrices 13. Robert Gilman, Cryptology of infinite groups 14. Otokar Groˇsek, The number of associative triples in a quasigroup 15. Christoph Hering, Latin squares, homologies and Euler’s conjecture 16. Leanne Holder, Bilinear star flocks of arbitrary cones 17. Robert Jajcay, On the geometry of cages 18.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • Arxiv:1709.01693V2 [Math.AC] 14 May 2018 Togypiaymnis Rl Ood,C-Monoids
    PUISEUX MONOIDS AND TRANSFER HOMOMORPHISMS FELIX GOTTI Abstract. There are several families of atomic monoids whose arithmetical invari- ants have received a great deal of attention during the last two decades. The factoriza- tion theory of finitely generated monoids, strongly primary monoids, Krull monoids, and C-monoids are among the most systematically studied. Puiseux monoids, which are additive submonoids of Q≥0 consisting of nonnegative rational numbers, have only been studied recently. In this paper, we provide evidence that this family com- prises plenty of monoids with a basically unexplored atomic structure. We do this by showing that the arithmetical invariants of the well-studied atomic monoids men- tioned earlier cannot be transferred to most Puiseux monoids via homomorphisms that preserve atomic configurations, i.e., transfer homomorphisms. Specifically, we show that transfer homomorphisms from a non-finitely generated atomic Puiseux monoid to a finitely generated monoid do not exist. We also find a large family of Puiseux monoids that fail to be strongly primary. In addition, we prove that the only nontrivial Puiseux monoid that accepts a transfer homomorphism to a Krull monoid is N0. Finally, we classify the Puiseux monoids that happen to be C-monoids. 1. Introduction The study of the phenomenon of non-unique factorizations in the ring of integers OK of an algebraic number field K was initiated by L. Carlitz in the 1950’s, and it was later carried out on more general integral domains. As a result, many techniques to measure the non-uniqueness of factorizations in several families of integral domains were sys- tematically developed during the second half of the last century (see [2] and references therein).
    [Show full text]
  • Formal Power Series Rings, Inverse Limits, and I-Adic Completions of Rings
    Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely many variables over a ring R, and show that it is Noetherian when R is. But we begin with a definition in much greater generality. Let S be a commutative semigroup (which will have identity 1S = 1) written multi- plicatively. The semigroup ring of S with coefficients in R may be thought of as the free R-module with basis S, with multiplication defined by the rule h k X X 0 0 X X 0 ( risi)( rjsj) = ( rirj)s: i=1 j=1 s2S 0 sisj =s We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s 2 S, f(s1; s2) 2 S × S : s1s2 = sg is finite. Thus, each element of S has only finitely many factorizations as a product of two k1 kn elements. For example, we may take S to be the set of all monomials fx1 ··· xn : n (k1; : : : ; kn) 2 N g in n variables. For this chocie of S, the usual semigroup ring R[S] may be identified with the polynomial ring R[x1; : : : ; xn] in n indeterminates over R. We next construct a formal semigroup ring denoted R[[S]]: we may think of this ring formally as consisting of all functions from S to R, but we shall indicate elements of the P ring notationally as (possibly infinite) formal sums s2S rss, where the function corre- sponding to this formal sum maps s to rs for all s 2 S.
    [Show full text]
  • Subrings, Ideals and Quotient Rings the First Definition Should Not Be
    Section 17: Subrings, Ideals and Quotient Rings The first definition should not be unexpected: Def: A nonempty subset S of a ring R is a subring of R if S is closed under addition, negatives (so it's an additive subgroup) and multiplication; in other words, S inherits operations from R that make it a ring in its own right. Naturally, Z is a subring of Q, which is a subring of R, which is a subring of C. Also, R is a subring of R[x], which is a subring of R[x; y], etc. The additive subgroups nZ of Z are subrings of Z | the product of two multiples of n is another multiple of n. For the same reason, the subgroups hdi in the various Zn's are subrings. Most of these latter subrings do not have unities. But we know that, in the ring Z24, 9 is an idempotent, as is 16 = 1 − 9. In the subrings h9i and h16i of Z24, 9 and 16 respectively are unities. The subgroup h1=2i of Q is not a subring of Q because it is not closed under multiplication: (1=2)2 = 1=4 is not an integer multiple of 1=2. Of course the immediate next question is which subrings can be used to form factor rings, as normal subgroups allowed us to form factor groups. Because a ring is commutative as an additive group, normality is not a problem; so we are really asking when does multiplication of additive cosets S + a, done by multiplying their representatives, (S + a)(S + b) = S + (ab), make sense? Again, it's a question of whether this operation is well-defined: If S + a = S + c and S + b = S + d, what must be true about S so that we can be sure S + (ab) = S + (cd)? Using the definition of cosets: If a − c; b − d 2 S, what must be true about S to assure that ab − cd 2 S? We need to have the following element always end up in S: ab − cd = ab − ad + ad − cd = a(b − d) + (a − c)d : Because b − d and a − c can be any elements of S (and either one may be 0), and a; d can be any elements of R, the property required to assure that this element is in S, and hence that this multiplication of cosets is well-defined, is that, for all s in S and r in R, sr and rs are also in S.
    [Show full text]