Subrings and Ideals

Subrings and Ideals

Chapter 2 Subrings and Ideals 2.1 INTRODUCTION In this chapter, we discuss, subrings, sub fields. Ideals and quotient ring. We begin our study by defining a subring. If (R, +, ×) is a ring and S is a non-empty subset of R, then ‘+’ and ‘×’, may induce binary operations ‘+’ and ‘×’ respectively on S. If S is a ring with respect to these induced operations, then we call S, a subring of R. 2.2 SUBRING Definition 2.1 Let (R, +, ×) be a ring and let S be a non-empty subset of R. If (S, +, ×) is a ring, then S is called a subring of R. Every non-zero ring R has two trivial subrings, viz. the ring itself and the zero ring consisting of the zero element of the ring R. {0} and R are called the improper subrings of R. If S is a subring of R, then (i) S is a subgroup of additive group R. i.e., (S, +) is a subgroup of (R, +). (ii) S is closed with respect to multiplication. éùa 0 Example 1: The set S of all 2 ´ 2 matrices of the type êú where a, b, c are ëûbc ´ integers is subring of the ring M2 of all 2 matrices over Z. Example 2: The set of integers Z is a subring of the ring of real numbers. Theorem 2.1: A non-empty subset S of a ring R is a subring of R if and only if a - b Î S and ab Î S for all a, b Î S Proof: Let S be a subring of R and let a, b Î S. Then S is a subgroup of R under addition. Hence, b Î S Þ - b Î S and, a Î S, b Î S Þ a Î S, - b Î S Þ a + (- b) Î S Þ a - b + S Chapter-02 2nd Proof Anvi T12.p6539 10/5/10, 11:53 AM Subrings and Ideals 41 Hence, S is a subring of R. Example 2: Show that S = {0, 3} is a subring of (z6, +6, x6) under the operations +6 and x6. Solution: We construct the composition tables as follows: + ´ 6 03 6 03 003 000 330 303 From the above composition tables Î Î Þ - - Î a S, b S a +6 ( b) = a b S ´ Î " Î a 6 b S a, b S Hence, S is a subring of R. Example 3: Let m be any fixed integer and let S be any subset of Z, the set of integers, such that S = {..., - 3m, - 2m, - m, 0, m, 2m, 3m, ...} show that S is a subring of (z, +, ×) Solution: Let rm, s m Î S, then r, s Î Z now rm - sm = (r - s)m Î Z (Q r - s Î Z " r, s Î Z) and, (rm) (sm)= (rsm) m Î Z (Q r s m Î Z " r, s, m Î Z) \ S is a subring of (Z, +, ×) Theorem 2.2: The necessary and sufficient conditions for a non-empty subset S of a ring R to be a subring of R are: (i) S + (- S) = S and (ii) SS Í S Solution: Let S be a subring of R Then (S, +) is a subgroup of (R, +) let a + (- b) Î S + (- S), then a + (- b) Î S + (- S) Þ a Î S, - b Î - S Þ a Î S, b Î S Þ a - b Î S Þ a + (- b) Î S Thus, S + (- S) Í S (1) 0 Î S Þ 0 Î - S Now a Î S, 0 Î - S Þ a + 0 Î ST (- S) Hence, S Í S + (- S) (2) Chapter-02 2nd Proof Anvi T12.p6541 10/5/10, 11:53 AM 42 Linear Algebra From (1) and (2), we have S + (- S)= S Again, S is a subring of R Þ S is closed under multiplication. Thus, a Î S, b Î S Þ a b Î S but ab Î SS Now ab Î SS Þ a Î S, b Î S Þ ab Î S Þ SS Í S Hence, proved. Conversely, let S + (- S) = S and SS Í S " a, b Î S, we have ab Î SS Þ ab Î S (Q SS Í S) Again S + (- S)= S Þ S + (- S) Í S we have a + (- b) Î S + (–S) Í S Thus, Þ a + (- b) Î S " a, b Î S Þ a - b Î S " a, b Î S Thus, a - b Î S, ab Î S " a, b Î S Hence, S is a subring of R. Theorem 2.3: The intersection of two subrings of a ring R is a subring of R. Proof: Let S1 and S2 be two subrings of a ring R. Î Î Î Ç 0 S1, 0 S2, therefore, 0 S1 S2 Ç ¹ f Thus, S1 S2 Î Ç Now let a, b S1 S2, then Î Ç Þ Î Î a S1 S2 a S1, a S2 Î Ç Þ Î Î b S1 S2 b S1, b S2 But S1, S2 are subrings of R, therefore, Î Î Þ - Î Î a S, b S1 a b S1, ab S1 Î Î Þ - Î Î and, a S2, b S2 a b S2, ab S2 - Î - Î Þ - Î Ç a b S1, a b S2 a b S1 S2 Î Î Þ Î Ç ab S1, ab S2 ab S1 S2 - Î Ç Î Ç " Î Ç Consequently, a b S1 S2, ab S1 S2 a, b S1 S2 Ç Hence, S1 S2 is a subring of R. È Theorem 2.4: Let R be a ring and S1, S2 be two subrings. Then S1 S2 is a Í Í subring of R if and only if S1 S2 or S2 1. Chapter-02 2nd Proof Anvi T12.p6542 10/5/10, 11:53 AM 44 Linear Algebra 3. Prove that the z of integers is a subring of R, the set real numbers under addition and multiplication. 4. Show that the set of n ´ n matrices over the rational numbers is a subring of n ´ n matrices over the real numbers under addition and multiplication matrices. ´ ´ 5. Show that ({0, 2, 4}, +6, 6) is a subring of (Z6, +6, 6) where, Z6 = {0, 1, 2, 3, 4, 5}. 6. R is an integral domain. Show that the set S = {mx : x Î R, m is a fixed integer} is a subring of R. 7. If R is a ring, then show that the set N(a)= {x Î R; ax = xa} is a subring of R. 2.3 IDEALS 2.3.1 Left Ideal Definition 2.2: A non-empty subset U of a ring R is called a left ideal if (i) a Î U, b Î U Þ a - b Î U (ii) a Î U, r Î R Þ r a Î U Example: In the ring M of 2 ´ 2 matrices over integers consider the set U ìüéùa 0 = íýêú:,abÎ Z îþïïëûb 0 éù00 êú Î U Þ U ¹ f ëû00 Let éùa 0 éùc 0 A = êú, B = êú Î U, then ëûb 0 ëûd 0 éùac- 0 A - B = êú Î U ëûbd- 0 Also éùab éùa 0 P = êú Î M, A = êú Î U ëûgd ëûb 0 éùéùaba 0 Þ PA = êúêú ëûëûgdb 0 Chapter-02 2nd Proof Anvi T12.p6544 10/5/10, 11:53 AM Subrings and Ideals 45 éùabab+ 0 = êú Î U ëûgdab+ 0 This shows that U is a left ideal of M 2.3.2 Right Ideal Definition 2.3: A non-empty set U of a ring R is called a right ideal of R if (i) a Î U, b Î U Þ a - b Î U, and (ii) a Î U, r Î R Þ ar Î U. Example: Let M be the ring of 2 ´ 2 matrices one integers. Consider ìüéùab U = íýêú:,abÎ z îþïïëû00 éù00 êú Î U Þ U ¹ f ëû00 éùab éùcd éùacbd-- A = êú Î U B = êú Î U Þ A - B = êú Î 0 ëû00 ëû00 ëû00 éùab éùa 0 and, P = êú, A = êú Î U ëûgd ëûb 0 éùéùabab we have AP = êúêú ëûëû00gd éùababag++ bd = êú Î U ëû00 Hence, U is a right ideal of M. 2.3.3 Ideal Definition 2.4: A non-empty set U of a ring R is called an ideal (two-sided ideal) of R if (i) a Î U, b Î U Þ a - b Î U, and (ii) a Î U, r Î R Þ a r Î U and r a Î U Example: The set E of even integers is an ideal of the ring Z of integers. a, b Î E Þ a = 2m, b = 2n for some integers m and n we have a - b = 2m - 2n = 2(m - n) Î E also r Î Z, a Î E Þ ra = r(2m) = 2(rm) Î E and, ar = (2m) r = 2(mr) Î E Hence, E is an ideal of Z. Chapter-02 2nd Proof Anvi T12.p6545 10/5/10, 11:53 AM Subrings and Ideals 47 Consider a(xr) a(xr)= (ax) r = 0 × r = 0 Þ Î " Î Î x r S r R1 x S Thus, S is a right ideal of R. Example 3: If R is a commutative ring with unity, then the ideal Ra is the small- est ideal containing a. Proof: Let < a > = Ç {U: U is a ideal of R and a Î U} Clearly, < a > is the smallest ideal which contains a.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us