Habitats of Frogs and Toads That Consists of the Combination of a Paddy Field with an Irrigation Canal, a Levee Embankment Grass
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Miracle Wetland the Ramsar Sites "Nakaikemi-Shicchi" Mt.Tezutsuyama
Miracle Wetland the Ramsar sites "Nakaikemi-Shicchi" Mt.Tezutsuyama Nakaikemi-Shicchi Mt. Nakayama Ushirodani valley Mt.Miyama Unique worldwide, a hundred thousand year history of peat sediments Nakaikemi-Shicchi is located in the east of Tsuruga City, which is the central part of Fukui Prefecture. The wetland is about 25ha-size, surrounded by mountains. Since its landscape, it is defined as a sac-like waste-filled valley according to topographical classification, and an approximately 40m deep peat sediments* is found, which represents a record of the nature for a hundred thousand years. This type of peat Mt.Nakayama layer cannot be seen in other areas of the world, and is identified as an important Mt.Tezutsu field scientifically, where history of nature’s changes and climate change can be observed. The wetland and the surrounding mountains of total 87ha was registered as protected area under the Ramsar Convention* in July 2012. The area is also Visitor center conserved as the Echizen-Kaga Kaigan Quasi-National Park in Japan. Mt.Miyama * Peat sediments * The Ramsar Convention The red line shows the registered area under This is made from undegraded It is an intergovernmental treaty, the official name is ”The the Ramsar Convention, and the Class Ⅱ plants. Usually,the depth of this Convention on Wetlands of International Importance especially Special Zone of Echizen Kaga Quasi-National Park. sediments around 3-5m,however as Waterfowl Habitat.” The aim of the treaty is the conservation Nakaikemi-shicchi has 40m deep and wise use of wetlands for not only waterbirds but also all peat sediments. -
Amphibiaweb's Illustrated Amphibians of the Earth
AmphibiaWeb's Illustrated Amphibians of the Earth Created and Illustrated by the 2020-2021 AmphibiaWeb URAP Team: Alice Drozd, Arjun Mehta, Ash Reining, Kira Wiesinger, and Ann T. Chang This introduction to amphibians was written by University of California, Berkeley AmphibiaWeb Undergraduate Research Apprentices for people who love amphibians. Thank you to the many AmphibiaWeb apprentices over the last 21 years for their efforts. Edited by members of the AmphibiaWeb Steering Committee CC BY-NC-SA 2 Dedicated in loving memory of David B. Wake Founding Director of AmphibiaWeb (8 June 1936 - 29 April 2021) Dave Wake was a dedicated amphibian biologist who mentored and educated countless people. With the launch of AmphibiaWeb in 2000, Dave sought to bring the conservation science and basic fact-based biology of all amphibians to a single place where everyone could access the information freely. Until his last day, David remained a tirelessly dedicated scientist and ally of the amphibians of the world. 3 Table of Contents What are Amphibians? Their Characteristics ...................................................................................... 7 Orders of Amphibians.................................................................................... 7 Where are Amphibians? Where are Amphibians? ............................................................................... 9 What are Bioregions? ..................................................................................10 Conservation of Amphibians Why Save Amphibians? ............................................................................. -
Summary Conservation Action Plans for Mongolian Reptiles and Amphibians
Summary Conservation Action Plans for Mongolian Reptiles and Amphibians Compiled by Terbish, Kh., Munkhbayar, Kh., Clark, E.L., Munkhbat, J. and Monks, E.M. Edited by Munkhbaatar, M., Baillie, J.E.M., Borkin, L., Batsaikhan, N., Samiya, R. and Semenov, D.V. ERSITY O IV F N E U D U E T C A A T T S I O E N H T M ONGOLIA THE WORLD BANK i ii This publication has been funded by the World Bank’s Netherlands-Mongolia Trust Fund for Environmental Reform. The fi ndings, interpretations, and conclusions expressed herein are those of the author(s) and do not necessarily refl ect the views of the Executive Directors of the International Bank for Reconstruction and Development / the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colours, denominations, and other information shown on any map in this work do not imply any judgement on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. The World Conservation Union (IUCN) have contributed to the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, providing technical support, staff time, and data. IUCN supports the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, but the information contained in this document does not necessarily represent the views of IUCN. Published by: Zoological Society of London, Regent’s Park, London, NW1 4RY Copyright: © Zoological Society of London and contributors 2006. -
Phylogeography Reveals an Ancient Cryptic Radiation in East-Asian Tree
Dufresnes et al. BMC Evolutionary Biology (2016) 16:253 DOI 10.1186/s12862-016-0814-x RESEARCH ARTICLE Open Access Phylogeography reveals an ancient cryptic radiation in East-Asian tree frogs (Hyla japonica group) and complex relationships between continental and island lineages Christophe Dufresnes1, Spartak N. Litvinchuk2, Amaël Borzée3,4, Yikweon Jang4, Jia-Tang Li5, Ikuo Miura6, Nicolas Perrin1 and Matthias Stöck7,8* Abstract Background: In contrast to the Western Palearctic and Nearctic biogeographic regions, the phylogeography of Eastern-Palearctic terrestrial vertebrates has received relatively little attention. In East Asia, tectonic events, along with Pleistocene climatic conditions, likely affected species distribution and diversity, especially through their impact on sea levels and the consequent opening and closing of land-bridges between Eurasia and the Japanese Archipelago. To better understand these effects, we sequenced mitochondrial and nuclear markers to determine phylogeographic patterns in East-Asian tree frogs, with a particular focus on the widespread H. japonica. Results: We document several cryptic lineages within the currently recognized H. japonica populations, including two main clades of Late Miocene divergence (~5 Mya). One occurs on the northeastern Japanese Archipelago (Honshu and Hokkaido) and the Russian Far-East islands (Kunashir and Sakhalin), and the second one inhabits the remaining range, comprising southwestern Japan, the Korean Peninsula, Transiberian China, Russia and Mongolia. Each clade further features strong allopatric Plio-Pleistocene subdivisions (~2-3 Mya), especially among continental and southwestern Japanese tree frog populations. Combined with paleo-climate-based distribution models, the molecular data allowed the identification of Pleistocene glacial refugia and continental routes of postglacial recolonization. Phylogenetic reconstructions further supported genetic homogeneity between the Korean H. -
Fundamental Experiments to Develop Eco-Friendly Techniques for Conserving Frog Habitat in Paddy Areas Escape Countermeasures for Frogs Falling Into Agricultural Concrete Canals
JARQ 44 (4), 405 – 413 (2010) http://www.jircas.affrc.go.jpFundamental Experiment of Eco-friendly Techniques for Frogs in Paddy Areas Fundamental Experiments to Develop Eco-friendly Techniques for Conserving Frog Habitat in Paddy Areas: Escape Countermeasures for Frogs Falling into Agricultural Concrete Canals Keiji WATABE*, Atsushi MORI, Noriyuki KOIZUMI and Takeshi TAKEMURA Department of Rural Environment, National Institute for Rural Engineering, National Agriculture and Food Research Organization (Tsukuba, Ibaraki 305–8609, Japan) Abstract Frogs often drown in agricultural canals with deep concrete walls that are installed commonly in paddy areas after land consolidation projects in Japan because they cannot escape after falling into the canal. We propose a partial concrete canal with gently sloped walls as a countermeasure for frogs to escape the canal and investigated the preferable angle of the sloped walls, water depth and flow ve- locity for Rana porosa porosa. Our experiments showed that only 13 individuals (2%) escaped by leaping out of the canal, indicating that climbing up is the main escape behavior of R. p. porosa. Walls with slopes of 30–45 degrees allowed 50–60% of frogs to escape from experimental canals, the frogs especially easily climbed up walls with a 30 degree slope. Adjusting water depth to 5 cm or more would assist the frogs in reaching the escape countermeasures because at such depths frogs are not able to stand on the canal bottom and to move freely about. Flow velocity should be slower around the countermeasures because R. p. porosa is not good at long-distance swimming and cannot remain under running water for a long time. -
The Spemann Organizer Meets the Anterior‐
The Japanese Society of Developmental Biologists Develop. Growth Differ. (2015) 57, 218–231 doi: 10.1111/dgd.12200 Original Article The Spemann organizer meets the anterior-most neuroectoderm at the equator of early gastrulae in amphibian species Takanori Yanagi,1,2† Kenta Ito,1,2† Akiha Nishihara,1† Reika Minamino,1,2 Shoko Mori,1 Masayuki Sumida3 and Chikara Hashimoto1,2* 1JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, 2Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, and 3Institute for Amphibian Biology, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan The dorsal blastopore lip (known as the Spemann organizer) is important for making the body plan in amphibian gastrulation. The organizer is believed to involute inward and migrate animally to make physical contact with the prospective head neuroectoderm at the blastocoel roof of mid- to late-gastrula. However, we found that this physical contact was already established at the equatorial region of very early gastrula in a wide variety of amphibian species. Here we propose a unified model of amphibian gastrulation movement. In the model, the organizer is present at the blastocoel roof of blastulae, moves vegetally to locate at the region that lies from the blastocoel floor to the dorsal lip at the onset of gastrulation. The organizer located at the blastocoel floor con- tributes to the anterior axial mesoderm including the prechordal plate, and the organizer at the dorsal lip ends up as the posterior axial mesoderm. During the early step of gastrulation, the anterior organizer moves to estab- lish the physical contact with the prospective neuroectoderm through the “subduction and zippering” move- ments. -
Yosemite Toad Conservation Assessment
United States Department of Agriculture YOSEMITE TOAD CONSERVATION ASSESSMENT A Collaborative Inter-Agency Project Forest Pacific Southwest R5-TP-040 January Service Region 2015 YOSEMITE TOAD CONSERVATION ASSESSMENT A Collaborative Inter-Agency Project by: USDA Forest Service California Department of Fish and Wildlife National Park Service U.S. Fish and Wildlife Service Technical Coordinators: Cathy Brown USDA Forest Service Amphibian Monitoring Team Leader Stanislaus National Forest Sonora, CA [email protected] Marc P. Hayes Washington Department of Fish and Wildlife Research Scientist Science Division, Habitat Program Olympia, WA Gregory A. Green Principal Ecologist Owl Ridge National Resource Consultants, Inc. Bothel, WA Diane C. Macfarlane USDA Forest Service Pacific Southwest Region Threatened Endangered and Sensitive Species Program Leader Vallejo, CA Amy J. Lind USDA Forest Service Tahoe and Plumas National Forests Hydroelectric Coordinator Nevada City, CA Yosemite Toad Conservation Assessment Brown et al. R5-TP-040 January 2015 YOSEMITE TOAD WORKING GROUP MEMBERS The following may be the contact information at the time of team member involvement in the assessment. Becker, Dawne Davidson, Carlos Harvey, Jim Associate Biologist Director, Associate Professor Forest Fisheries Biologist California Department of Fish and Wildlife Environmental Studies Program Humboldt-Toiyabe National Forest 407 West Line St., Room 8 College of Behavioral and Social Sciences USDA Forest Service Bishop, CA 93514 San Francisco State University 1200 Franklin Way (760) 872-1110 1600 Holloway Avenue Sparks, NV 89431 [email protected] San Francisco, CA 94132 (775) 355-5343 (415) 405-2127 [email protected] Boiano, Daniel [email protected] Aquatic Ecologist Holdeman, Steven J. Sequoia/Kings Canyon National Parks Easton, Maureen A. -
Social-Ecological Restoration in Paddy-Dominated Landscapes Ecological Research Monographs
Ecological Research Monographs Nisikawa Usio · Tadashi Miyashita Editors Social-Ecological Restoration in Paddy-Dominated Landscapes Ecological Research Monographs Series Editor: Yoh Iwasa More information about this series at http://www.springer.com/series/8852 Nisikawa Usio • Tadashi Miyashita Editors Social-Ecological Restoration in Paddy- Dominated Landscapes Editors Nisikawa Usio Tadashi Miyashita Center for Toki and Ecological Graduate School of Agricultural and Life Restoration (CTER) Sciences Niigata University The University of Tokyo Sado, Japan Tokyo, Japan Institute of Nature and Environmental Technology (K-INET) Kanazawa University Kanazawa, Japan ISSN 2191-0707 ISSN 2191-0715 (electronic) Ecological Research Monographs ISBN 978-4-431-55329-8 ISBN 978-4-431-55330-4 (eBook) DOI 10.1007/978-4-431-55330-4 Library of Congress Control Number: 2014958758 Springer Tokyo Heidelberg New York Dordrecht London © Springer Japan 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
1 Freeze Tolerance and Cryoprotection Of
FREEZE TOLERANCE AND CRYOPROTECTION OF ERYTHROCYTES FROM DRYOPHYTES CHRYSOSCELIS Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Biology By Loren Geiss Dayton, Ohio August 2018 1 FREEZE TOLERANCE AND CRYOPROTECTION OF ERYTHROCYTES FROM DRYOPHYTES CHRYSOSCELIS Name: Geiss, Loren Vanessa APPROVED BY: ________________________ Carissa M. Krane, Ph.D. Professor, Dept. of Biology, University of Dayton Faculty Advisor ________________________ Amit Singh, Ph.D. Associate Professor, Dept. of Biology, University of Dayton Committee Member ________________________ Yvonne Sun, Ph.D. Assistant Professor, Dept. of Biology, University of Dayton Committee Member ________________________ David L. Goldstein, Ph.D. Professor, Dept. of Biological Sciences, Wright State University Committee Member ii ABSTRACT FREEZE TOLERANCE AND CRYOPROTECTION OF ERYTHROCYTES FROM DRYOPHYTES CHRYSOSCELIS Name: Geiss, Loren Vanessa University of Dayton Advisor: Dr. Carissa M. Krane Dryophytes chrysoscelis (Cope’s gray treefrog) is a freeze-tolerant anuran that survives the freezing of its extracellular fluids. Treefrogs accumulate glycerol and urea in the plasma during cold acclimation and at the onset of freezing. It is hypothesized that glycerol and urea function as cryoprotectants by minimizing osmotically induced cell damage during freezing and thawing; and therefore, the post-freeze viability of red blood cells (RBCs) would improve when frozen in phosphate buffered saline (PBS) containing glycerol or urea. In the present study, erythrocytes were obtained from warm (22°C) and cold-acclimated (4°C) frogs and suspended in PBS. RBCs were frozen in PBS that ranged in osmolarity: PBS at 230 mM is hypoosmotic/hypotonic, 280 mM PBS is isosmotic/isotonic, and PBS was made hyperosmotic/hypertonic by the addition of 150 mM solutes. -
Prey Consumption of the Neotropical Frog Engystomops Pustulosus (Anura: Leptodactylidae) in Northwestern Venezuela
Herpetological Conservation and Biology 15(2):272–283. Submitted: 16 January 2020; Accepted: 14 April 2020; Published: 31 August 2020. PREY CONSUMPTION OF THE NEOTROPICAL FROG ENGYSTOMOPS PUSTULOSUS (ANURA: LEPTODACTYLIDAE) IN NORTHWESTERN VENEZUELA JOSÉ LUIS VIÑA-ALBORNOZ1,2, CESAR MOLINA1,3, AND ZAIDA TÁRANO2,4 1Laboratorio de Biología y Conservación de Anfibios y Reptiles, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela, Paseo Los Ilustres, Caracas 1041, Venezuela 2Laboratorio de Comportamiento Animal, Instituto de Biología Experimental, Universidad Central de Venezuela, Calle Suapure, Colinas de Bello Monte, Caracas 1041-A, Venezuela 3Deceased 4Corresponding author, e-mail: [email protected] Abstract.—We describe the diet of Engystomops pustulosus (Túngara Frog) during the reproductive season. We tested the hypotheses of a relationship between frog mouth width (MW) and prey size, and between the lack of teeth and diet specialization in this genus. We also explored sexual differences in diet composition, and the relationship betwen female fecundity (number of ova and volume of the ova mass) and the total volume of prey in the stomach. We analyzed stomach contents, identified prey items according to class, subclass, order, or family level, and measured their maximum length and width. Three categories of arthropods dominated the diet: Termitidae (termites), Parasintengona (mites), and Formicidae (ants). Both sexes ate Termitidae and Parasintengona in larger proportions than expected by chance, but only females ate more Formicidae than expected. Males ate more items and more prey categories than females. We found no association between MW (all together and by sex) and prey size or between female fecundity and total volume of prey in the stomach. -
Genetic Distance and Social Compatibility in the Aggregation Behavior of Japanese
bioRxiv preprint doi: https://doi.org/10.1101/453316; this version posted October 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Original Article 2 3 Genetic distance and social compatibility in the aggregation behavior of Japanese 4 toad tadpoles 5 6 Running title: 7 Genetic influence in tadpole’s aggregation 8 9 Kazuko Hase1,2, Masato S. Abe1,3, and Masakazu Shimada1 10 1Department of General Systems Studies, The University of Tokyo, Meguro, Tokyo 153- 11 8902, Japan 12 2Department of Evolutionary Studies of Biosystems, The Graduate University for 13 Advanced Studies [SOKENDAI], Shonan Village, Hayama, Kanagawa 240-0193, Japan 14 3 RIKEN AIP, Nihonbashi 1-chome Mitsui Building, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103- 15 0027, Japan. 16 17 Corresponding: 18 Kazuko Hase, Department of Evolutionary Studies of Biosystems, The Graduate University 19 for Advanced Studies [SOKENDAI] 20 Shonan Village, Hayama, Kanagawa 240-0193, Japan 21 TEL: 81-46-858-1617 22 E-mail: [email protected] 23 24 25 bioRxiv preprint doi: https://doi.org/10.1101/453316; this version posted October 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 26 Abstract 27 From microorganism to vertebrates, living things often exhibit social aggregation. One of 28 anuran larvae, dark-bodied toad tadpoles (genus Bufo) are known to aggregate against 29 predators. When individuals share genes from a common ancestor for whom social 30 aggregation was a functional trait, they are also likely to share common recognition cues 31 regarding association preferences, while greater genetic distances make cohesive aggregation 32 difficult. -
Vertebrate Natural History Lab Manual John W. Bickham Michael J. Smolen Christopher R. Harrison 1997 Revision Departme
WFSC 302: Vertebrate Natural History Lab Manual John W. Bickham Michael J. Smolen Christopher R. Harrison 1997 Revision Department of Wildlife & Fisheries Sciences Texas A&M University Spring 2009 Revision by Toby Hibbitts Acknowedgements The authors would like to acknowledge all those students and teaching assistants who have contributed to the continuing evolution of this lab manual. We would also like to thank Eduardo G. Salcedo for his excellent drawings of the fish, herps and protochordates. 1 Kingdom Animalia Phylum Hemichordata Class Enteropneusta Acorn Worms Class Pterobranchia Phylum Chordata Subphylum Urochordata Class Ascidiacea Benthic Tunicates Class Larvacea Pelagic Tunicates Class Thaliacea Salps Subphylum Cephalochordata Amphioxus Order Myxiniformes Family Myxinidae Hagfish Subphylum Vertebrata Superclass Agnatha Class Cephalaspidomorphi Order Petromyzontiformes Family Petromyzontidae Lampreys Superclass Gnathostomata Class Chondrichthyes Subclass Holocephali Order Chimaeriformes Family Chimaeridae Ratfish Subclass Elasmobranchii Order Pristiformes Family Pristidae Sawfishes Order Carcharhiniformes Family Sphyrnidae Hammerheads Order Orectolobiformes Family Ginglymostomatidae Nurse Shark Order Torpediniformes Family Torpedinidae Electric Rays Order Myliobatiformes Family Dasyatidae Stingrays Order Rajiformes Family Rajidae Skates Class Osteichthyes Subclass Sarcopterygii Order Lepidosireniformes Family Lepidosirenidae African Lungfishes Subclass Actinopterygii Order Polypteriformes Family Polypteridae Bichirs Order Acipenseriformes