Pharmaceutical-Microbiology.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Pharmaceutical-Microbiology.Pdf This page intentionally left blank Copyright © 2008 New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers All rights reserved. No part of this ebook may be reproduced in any form, by photostat, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of the publisher. All inquiries should be emailed to [email protected] ISBN (13) : 978-81-224-2867-4 PUBLISHING FOR ONE WORLD NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS 4835/24, Ansari Road, Daryaganj, New Delhi - 110002 Visit us at www.newagepublishers.com In the recent past, the world has witnessed the smooth transition of the ‘quantum state’ of a trapped Ca2+ ion to another Ca2+ ion via meticulously teleported means in a critically controlled manner thereby mustering enough hope that in the near future ‘teleportation’ of individual atoms and molecules would pave the way to teleportation of molecules and ‘microorganisms’. ‘‘Dreams will only help you actualize your goals. I started dreaming when I was a child..... I became a scientist because I dreamt’’. —APJ Abdul Kalam Hon’ble President of India This page intentionally left blank PREFACE The textbook of ‘Pharmaceutical Microbiology’ specifically aims at the ever demanding thoughtful need of an absolutely well-documented compilation of factual details related to : theoritical principles, classifications, diagramatic profiles, graphic presentations, critical explanation, latest examples for the Pharmacy Degree (B. Pharm.,) throughout the Indian Universities, SAARC-countries, and similar curricula adopted abroad. Modern invigorative society, based on the overwhelming and overemphasized broad-spectrum importance vis-a-vis utilities of ‘Microbiology’ profusely gets benefited from the intricate species of scores of microorganisms in several ways and means, namely : antibiotics, vaccines, enzymes, vitamins etc. Nevertheless, a quantum-leap-forward in the field of ‘Modern Biotechnology’ rests predominantly upon reasonably sound microbiological foundation. Besides, microorganisms do modulate a plethora of vital and critical functionalities, such as : (a) enable completion of cycles of C, O, N and S which essentially occur in both terrestrial and aquatic systems ; (b) provide absolutely indispensable components of prevailing ecosystem ; and (c) serve as a critical source of ‘nutrients’ occurring at the grass-root of practically a large segment of ecological food webs and chains. The entire course-content presented in ‘Pharmaceutical Microbiology’ has been meticulously and painstakingly developed and expanded as per the AICTE-Approved Syllabus–2000. Each chapter has been duly expatiated in a simple, lucid, and crisp language easily comprehensible by its august readers. A unique largely acceptable style of presentation has been adopted, viz., brief introduction, principles, labeled figures, graphics, diagrams of equipments, descriptions, explanations, pharmaceutical applications, and selected classical examples. Each chapter is duly elaborated with adequate foot-notes, references, and ‘further reading references’ at the end. An exhaustive ‘Glossary of Important Microbiological Terminologies’ has been duly annexed at the end of the textbook. A fairly up to date computer-generated ‘Index’ in the textbook will surely enlarge the vision of its readers in gaining an easy access of subject enriched well documented text materials. Pharmaceutical Microbiology consists of Ten Chapters : (1) Introduction and Scope ; (2) Structure and Function : Bacterial Cells ; (3) Characterization, Classification and Taxonomy of Microbes ; (4) Identification of Microorganisms ; (5) Nutrition, Cultivation and Isolation : Bacteria- Actinomycetes-Fungi-Viruses ; (6) Microbial Genetics and Variations ; (7) Microbial Control by Physical and Chemical Methods ; (8) Sterility Testing : Pharmaceutical Products ; (9) Immune Systems ; and (10) Microbiological (Microbial) Assays : Antibiotics–Vitamins–Amino Acids. The text material essentially embodies not only an ample emphasis on the vivid coverage of fundamental principles of microbiology as a scientific discipline but also maintains a manageable length for the apprehension of brilliant students. (vii) (viii) Microbial assays for antibiotics, vitamins, and amino acids have been treated at length with sufficient experimental details to enable students, research scholars, and budding scientists to pursue their objectives in the field of Pharmaceutical Microbiology. The author earnestly believes that ‘Pharmaceutical Microbiology’ may prove to be of paramount importance for B. Pharm. (Pharmacy Degree), M. Sc., (Food Microbiology), M. Sc., (Microbiology), and M. Sc., (Environmental Science) students as well. I extend my sincere thanks to Shri Saumya Gupta, MD and his excellent production wing to have the project completed in a record time frame. Gurgaon Ashutosh Kar CONTENTS 1. Introduction and Scope ... 1 1.1 Introduction ... 1 1.2 Historical Development of Microbiology ... 3 1.2.1. The Microscope ... 3 1.2.2. Spontaneous Generation Vs Biogenesis ... 4 1.2.3. Fermentation ... 6 1.2.4. Germ Theory ... 6 1.2.5. Classical Laboratory Methods and Pure Cultures ... 7 1.2.6. Immunity ... 8 1.2.7. Medical Microbiology ... 9 1.2.8. Pharmaceutical Microbiology ... 10 1.2.9. Industrial Microbiology ... 14 1.2.10. Emergence of Molecular Biology ... 15 1.2.11. Emergence of Virology ... 17 1.2.12. Microorganisms as Geochemical Agents ... 19 1.2.13. Microbiology in the New Millennium ... 19. 2. Structure and Function : Bacterial Cells ... 23 2.1 Introduction ... 23 2.2 Characteristic Features ... 23 2.2.1. Shape ... 23 2.2.2. Size ... 23 2.2.3. Reproduction ... 24 2.2.4. Formation of Colony ... 24 2.2.5. Mutation ... 24 2.2.6. Motility ... 24 2.2.7. Food and Oxygen Requirements ... 24 2.2.8. Temperature Requirements ... 24 2.3 Activities ... 25 2.4 Organization of Microbial Cells ... 25 2.4.1. Type of Cells ... 26 2.4.1.1. Eukaryotic Cells ... 27 2.4.1.2. Prokaryotic Cells ... 33 2.5 Archaeobacteria and Eubacteria ... 37 2.5.1. Methanogenic Bacteria [Methanogens] ... 38 2.5.2. Extreme Halophiles ... 40 (ix) (x) 2.5.3. Thermoacidophiles ... 41 2.5.3.1. Thermoplasma ... 41 2.5.3.2. Sulfolobus ... 41 2.6 The Bacterial Cells ... 42 2.6.1. Typical Bacterial Cells ... 43 2.6.2. Capsules and Slimes ... 44 2.6.3. Flagella and Fimbria ... 46 2.6.3.1. Flagella ... 46 2.6.3.2. Fimbria [or Pili] ... 48 2.6.4. Cell Envelope ... 49 2.6.5. Gram-Positive and Gram-Negative Bacteria ... 51 2.6.6. Significance of Teichoic Acids ... 53 2.6.7. The Cell Membrane ... 54 2.6.8. Bacterial Cytoplasm ... 55 2.6.9. Ribosomes ... 57 2.6.10. Cellular Reserve Materials ... 58 3. Characterization, Classification and Taxonomy of Microbes ... 62 3.1 Introduction ... 62 3.2 Characterization ... 62 3.2.1. Morphological Characteristics ... 63 3.2.2. Chemical Characteristics ... 64 3.2.3. Cultural Characteristics ... 64 3.2.4. Metabolic Characteristics ... 66 3.2.5. Antigenic Characteristics ... 66 3.2.6. Genetic Characteristics ... 67 3.2.6.1. DNA Base Composition ... 67 3.2.6.2. Sequence of Nucleotide Bases in DNA ... 68 3.2.7. Pathogenecity ... 69 3.2.8. Ecological Characteristics ... 69 3.3 Classificiation ... 70 3.3.1. Difficulties Encountered in Classification of Microorganisms ... 70 3.3.2. Objectives of Classification ... 70 3.3.3. Genetic Methods of Classifying Microbes ... 71 3.3.3.1. Genetic Relatedness ... 71 3.3.3.2. The Intuitive Method ... 72 3.3.3.3. Numerical Taxonomy ... 72 3.3.4. Systemetized Classification ... 75 3.3.4.1. Natural Classification ... 75 3.3.4.2. Phyletic Calssification ... 75 (xi) 3.3.4.3. Linnear Binomial Scheme ... 76 3.3.4.4. Phenotypic Classification ... 77 3.3.4.5. Microscopic Examination ... 79 3.3.4.6. Cataloguing rRNA ... 80 3.3.4.7. Computer Aided Classification ... 81 3.3.4.8. Bacterial Classification ... 82 3.4 Taxonomy ... 87 3.5 The Kingdom Prokaryotae ... 88 3.5.1. Actinomyctes ... 89 3.5.1.1. General Characteristics ... 89 3.5.1.2. Significance of Actinomycetes ... 90 3.5.1.3. Classification ... 91 3.5.1.3.1. Whole Cell Carbohydrate Patterns of Aerobic Actinomycetes ... 91 3.5.1.3.2. Major Constituents of Cell Wall Types of Actinomycetes ... 91 3.5.1.3.3. Groups of Actinomycetes Based on Whole Cell Carbohydrate Pattern and Cell Wall Type ... 92 3.5.1.3.4. Actinomycetes with Multiocular Sporangia ... 92 3.5.1.4. Actinomycetes and Related Organisms ... 93 3.5.1.4.1. Group ... 93 3.5.1.4.2. Genus ... 94 3.5.1.4.3. Order ... 97 3.5.1.4.4. Family ... 98 3.5.2. Bacteria ... 102 3.5.2.1. Salient Features ... 103 3.5.2.2. Structure and Form of the Bacterial Cell ... 104 3.5.2.2.1. Size and Shape ... 105 3.5.2.2.2. Structure ... 105 3.5.3. Rickettsia and Coxiella ... 107 3.5.4. Spirochaetes ... 108 4. Identification of Microorganisms ... 112 4.1 Introduction ... 112 4.2 Morphology ... 113 4.3 Selective and Diagnostic Media ... 113 4.3.1. Differential Media ... 116 4.3.1.1. Eosin Methylene Blue Agar [EMB-Agar] ... 116 (xii) 4.3.1.2. MacConkey Agar ... 116 4.3.1.3. Hektoen Enteric Agar [HE-Agar] ... 116 4.3.2. Enrichment Media ... 116 4.3.2.1. Blood Agar ... 116 4.3.2.2. Chocolate Agar ... 117 4.3.3. Characteristic Media ... 117 4.3.3.1. Triple Sugar Iron Agar [TSI-Agar] ... 117 4.4 Cultural Characteristics ... 119 4.5 Biochemical Tests (or Properties) ... 120 4.5.1. Carbohydrate (Sugar) Fermentation ... 120 4.5.2. Litmus Milk ... 120 4.5.3. Indole Production ... 120 4.5.4. Methyl Red Test [MR-Test] ... 121 4.5.5. Voges-Proskauer Test [VP-Test] ... 121 4.5.6. Citrate Utilization ... 121 4.5.7. Nitrate Reduction ... 122 4.5.8. Ammonia Production ... 122 4.5.9. Urease Test ... 122 4.5.10. Production of Hydrogen Sulphide ... 123 4.5.11. Reduction of Methylene Blue ... 123 4.5.12. Production of Catalase [Tube Catalase Test] ..
Recommended publications
  • Medical Directors Arup Medical Directors and Consulting Faculty | 2015
    MEDICAL DIRECTORS ARUP MEDICAL DIRECTORS AND CONSULTING FACULTY | 2015 MAY 2015 www.aruplab.com Information in this brochure is current as of May 2015. All content is subject to change. Please contact ARUP Client Services at (800) 522-2787 with any questions or concerns. ARUP LABORATORIES ARUP Laboratories is a national clinical and anatomic pathology reference laboratory and a nonprofit enterprise of the University of Utah and its Department of Pathology. Located in Salt Lake City, Utah, ARUP offers in excess of 3,000 tests and test combinations, ranging from routine screening tests to esoteric molecular and genetic assays. Rather than competing with its clients for physician office business, ARUP chooses instead to support clients’ existing test menus by offering complex and unique tests, with accompanying consultative support, to enhance their abilities to provide local and regional laboratory services. ARUP’s clients include many of the nation’s university teaching hospitals and children’s hospitals, as well as multihospital groups, major commercial laboratories, group purchasing organizations, military and other government facilities, and major clinics. In addition, ARUP is a worldwide leader in innovative laboratory research and development, led by the efforts of the ARUP Institute for Clinical and Experimental Pathology®. Since its formation in 1984 by the Department of Pathology at the University of Utah, ARUP has founded its reputation on reliable and consistent laboratory testing and service. This simple strategy contributes significantly to client satisfaction. When ARUP conducts surveys, clients regularly rate ARUP highly and respond that they would recommend ARUP to others. As the most responsive source of quality information and knowledge, ARUP strives to be the reference laboratory of choice for community healthcare systems.
    [Show full text]
  • Job Posting Clinical Microbiology Final
    The Department of Pathology & Cell Biology at Columbia University Irving Medical Center (CUIMC) is recruiting for an MD, MD/PhD, or PhD academic clinical microbiologist of any rank to join our faculty as a Medical Director of the NewYork-Presbyterian/CUIMC Clinical Microbiology Laboratory. Applicants should have an established track record of accomplishment within the field of clinical microbiology and a demonstrated ability to lead an experienced group of laboratory technologists, supervisors, and staff. In addition to strong clinical and technical skills, particular emphasis is placed on candidates with a demonstrated record of collegiality and inter-departmental collaboration. Applicants must have completed a fellowship in clinical microbiology and be board-certified/board-eligible in Medical and Public Health Microbiology through the American Board of Medical Microbiology (ABMM) or board-certified/board- eligible in Clinical Pathology with subspecialty certification in Medical Microbiology through the American Board of Pathology (ABP). The applicant must also be able to satify clinical licensing requirements to serve as a Laboratory Director in New York State. The successful applicant will help oversee diagnostic testing in the areas of Bacteriology, Virology, Mycobacteriology, Mycology, and Parasitology. The position also includes responsibilities for teaching of pathology residents, medical students, infectious diseases fellows, and technical staff. Applicants must be currently involved in ongoing research with a track record of publications in the field. The position offers a competitive salary commensurate with training and experience, and an appointment to the faculty of the Columbia University Vagelos College of Physicians & Surgeons. The Clinical Microbiology Laboratory at NewYork-Presbyterian/CUIMC is located in the Washington Heights neighborhood of New York City, offering unparalleled opportunities to work and live in a thriving, diverse, metropolitan environment with access to world-class cultural institutions, restaurants, and entertainment.
    [Show full text]
  • DUKE UNIVERSITY School of Medicine Pathologists' Assistant
    DUKE UNIVERSITY School of Medicine Pathologists’ Assistant Program Department of Pathology Academic Programs The Department of Pathology at Duke University offers a wide array of training programs to fit individual requirements and goals. The Residency Training program is an ACGME approved program and is available as an Anatomic Pathology/Clinical Pathology combined program, a shorter Anatomic Pathology only program, or an Anatomic Pathology/Neuropathology program. Subspecialty fellowships in Cytopathology, Dermatopathology, Hematopathology, Medical Microbiology, and Neuropathology are also ACGME approved. These programs provide the highest quality of graduate medical education by drawing on the depth and breadth of faculty expertise in the Department in all aspects of anatomic and clinical pathology and the availability of a wide variety of often complex clinical cases seen at Duke University Health System. For medical students interested in a career in Pathology pre-doctoral fellowships, internships and externships are available. Research Training in Experimental pathology can be obtained through Pre- and postdoctoral fellowships of one to five years. All pre-doctoral fellows are candidates for the Ph.D. degree in pathology. The Ph.D. is optional in postdoctoral programs, which provide didactic and research training in various aspects of modern experimental pathology. A two year NAACLS accredited Pathologists’ Assistant Program leads to a Master of Health Science degree, certifies graduates to sit for the ASCP Board of Certification examination, and leads to exciting career opportunities in a variety of anatomic pathology laboratory settings. Pathologists’ assistants are analogous to physician assistants, but with highly specialized training in autopsy and surgical pathology. This profession was pioneered in the Duke Department of Pathology 50 years ago, and is one of only twelve such programs in existence today.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • XL Agar Base • XLD Agar
    XL Agar Base • XLD Agar clinical evaluations have supported the claim for the relatively Intended Use high efficiency of XLD Agar in the primary isolation ofShigella XL (Xylose Lysine) Agar Base is used for the isolation and and Salmonella.5-9 differentiation of enteric pathogens and, when supplemented with appropriate additives, as a base for selective enteric media. XLD Agar is a selective and differential medium used for the isolation and differentiation of enteric pathogens from clinical XLD Agar is the complete Xylose Lysine Desoxycholate Agar, specimens.10-12 The value of XLD Agar in the clinical laboratory a moderately selective medium recommended for isolation and is that the medium is more supportive of fastidious enteric organ- differentiation of enteric pathogens, especially Shigella species. isms such as Shigella.12 XLD Agar is also recommended for the XLD Agar meets United States Pharmacopeia (USP), European testing of food, dairy products and water in various industrial Pharmacopoeia (EP) and Japanese Pharmacopoeia (JP)1-3 standard test methods.13-17 General Chapter <62> of the USP performance specifications, where applicable. describes the test method for the isolation of Salmonella from nonsterile pharmaceutical products using XLD Agar as the solid Summary and Explanation culture medium.1 A wide variety of media have been developed to aid in the selective isolation and differentiation of enteric pathogens. Due Principles of the Procedure to the large numbers of different microbial species and strains Xylose is incorporated into the medium because it is fermented with varying nutritional requirements and chemical resistance by practically all enterics except for the shigellae.
    [Show full text]
  • Diverse Allochthonous Resource Quality Effects on Headwater Stream Communities Through Insect-Microbe Interactions
    DIVERSE ALLOCHTHONOUS RESOURCE QUALITY EFFECTS ON HEADWATER STREAM COMMUNITIES THROUGH INSECT-MICROBE INTERACTIONS By Courtney Larson A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Entomology—Doctor of Philosophy Ecology, Evolutionary Biology and Behavior—Dual Major 2020 ABSTRACT DIVERSE ALLOCHTHONOUS RESOURCE QUALITY EFFECTS ON HEADWATER STREAM COMMUNITIES THROUGH INSECT-MICROBE INTERACTIONS By Courtney Larson Freshwater resources are vital to environmental sustainability and human health; yet, they are inundated by multiple stressors, leaving aquatic communities to face unknown consequences. Headwater streams are highly reliant on allochthonous sources of energy. Riparian trees shade the stream, limiting primary production, causing macroinvertebrates to consume an alternative food source. Traditionally, leaf litter fallen from riparian trees is the primary allochthonous resource, but other sources, such as salmon carrion associated with annual salmon runs, may also be important. An alteration in the quantity or quality of these sources may have far reaching effects not only on the organisms that directly consume the allochthonous resource (shredders), but also on other functional feeding groups. Allochthonous resources directly and indirectly change stream microbial communities, which are used by consumers with potential changes to their life histories and behavior traits. The objective of my research was to determine the influence allochthonous resources have on stream
    [Show full text]
  • Representatives of the Prokaryotic (Chapter 12) and Archaeal (Chapter 13) Domains (Bergey's Manual of Determinative Bacteriology
    Representatives of the Prokaryotic (Chapter 12) and Archaeal (Chapter 13) Domains (Bergey's Manual of Determinative Bacteriology: Kingdom: Procaryotae (9th Edition) XIII Kingdoms p. 351-471 Sectn. Group of Bacteria Subdivisions(s) Brock Text Examples of Genera Gram Stain Morphology (plus distinguishing characteristics) Important Features Phototrophic bacteria Chromatiaceae 356 Purple sulfur bacteria Gram Anoxygenic photosynthesis Bacterial chl. a and b Purple nonsulfur bacteria; photoorganotrophic for reduced nucleotides; oxidize 12.2 Anaerobic (Chromatiun; Allochromatium) Negative Spheres, rods, spirals (S inside or outside)) H2S as electron donor for CO2 anaerobic photosynthesis for ATP Purple Sulfur Bacteria Anoxic - develop well in meromictic lakes - layers - fresh S inside the cells except for Ectothiorhodospira 354 Table 12.2 p.354 above sulfate layers - Figs. 12.4, 12.5 Major membrane structures Fig.12..3 -- light required. Purple Non-Sulfur Rhodospirillales 358 Rhodospirillum, Rhodobacter Gram Diverse morphology from rods (Rhodopseudomonas) to Anoxygenic photosynthesis Bacteria Table 12.3 p. 354, 606 Rhodopseudomonas Negative spirals Fig. 12.6 H2, H2S or S serve as H donor for reduction of CO2; 358 82-83 Photoheterotrophy - light as energy source but also directly use organics 12.3 Nitrifying Bacteria Nitrobacteraceae Nitrosomonas Gram Wide spread , Diverse (rods, cocci, spirals); Aerobic Obligate chemolithotroph (inorganic eN’ donors) 6 Chemolithotrophic (nitrifying bacteria) 361 Nitrosococcus oceani - Fig.12.7 negative ! ammonia [O] = nitrosofyers - (NH3 NO2) Note major membranes Fig. 12,7) 6 359 bacteria Inorganic electron (Table 12.4) Nitrobacterwinograskii - Fig.12.8 ! nitrite [O]; = nitrifyers ;(NO2 NO3) Soil charge changes from positive to negative donors Energy generation is small Difficult to see growth. - Use of silica gel.
    [Show full text]
  • Regras Entre Assembléias De Espécies: Relação Entre Biodiversidade E Funcionamento Do Ecossistema
    Santos, G.A.P. dos UNIVERSIDADE FEDERAL DE PERNAMBUCO Chapter: Open letter. DOUTORADO EM CIÊNCIAS BIOLÓGICAS REGRAS ENTRE ASSEMBLÉIAS DE ESPÉCIES: RELAÇÃO ENTRE BIODIVERSIDADE E FUNCIONAMENTO DO ECOSSISTEMA. GIOVANNI AMADEU PAIVA DOS SANTOS I TÍTULO: Species assembly rules and the biodiversity-ecosystem functioning relationship CCB, Recife-PE, 2007. Santos, G.A.P. dos UNIVERSIDADE FEDERAL DE PERNAMBUCO Chapter: Sub-Cover. DOUTORADO EM CIÊNCIAS BIOLÓGICAS Universidade Federal de Pernambuco Doutorado em Ciências Biológicas Centro de Ciências Biológicas Regras entre assembléias de espécies: Relação entre biodiversidade e funcionamento do ecossistema. Species assembly rules and the biodiversity- ecosystem functioning relationship. Giovanni Amadeu Paiva dos Santos Tese apresentada ao Doutorado de Ciências Biológicas da UFPE, como requisito necessário para o recebimento do título de Doutor em Ciências Biológicas. RECIFE, JULHO DE 2007. II TÍTULO: Species assembly rules and the biodiversity-ecosystem functioning relationship CCB, Recife-PE, 2007. 1.1.1 1.1.2 1.1.3 Santos, Giovanni Amadeu Paiva dos Regras entre assembléias de espécies: relação entre biodiversidade e funcionamento do ecossistema / Giovanni Amadeu Paiva dos Santos. – Recife: O Autor, 2009. 263 folhas: fig., tab. Tese (doutorado) – Universidade Federal de Pernambuco. CCB. Departamento de Ciências Biológicas, 2009. 1.1.3.1.1.1 Inclui bibliografia. 1. Biodiversidade 2. Funcionamento dos ecossistemas I Título. 574 CDU (2.ed.) UFPE 1.2 577 CDD (22.ed.) CCB – 2009- 043 COMISSAO EXAMINADORA "Regras entre assemblfHas de especies: rela~ao entre biodiversidade e funcionamento do ecossistema" TITULARES ,Ore c'~~ l .l;/'>1i( Ji /',- C'"'-~" -- ia Tereza dos Santos Correia (OrientadorIlJFPE) /~-/z:; , ~ Prof. L Ricardo Coutinho - (IEAPM/RJ) om Gilbert Willem Moens (Ghent UniversityIBelgica) SUPLENTES , " ' '/l{ ) c::< \, /,_k".
    [Show full text]
  • OXOID MANUAL PRELIMS 16/6/06 12:18 Pm Page 1
    OXOID MANUAL PRELIMS 16/6/06 12:18 pm Page 1 The OXOID MANUAL 9th Edition 2006 Compiled by E. Y. Bridson (substantially revised) (former Technical Director of Oxoid) Price: £50 OXOID MANUAL PRELIMS 16/6/06 12:18 pm Page 2 The OXOID MANUAL 9th Edition 2006 Compiled by E. Y. Bridson (substantially revised) (former Technical Director of Oxoid) 9th Edition 2006 Published by OXOID Limited, Wade Road, Basingstoke, Hampshire RG24 8PW, England Telephone National: 01256 841144 International: +44 1256 841144 Email: [email protected] Facsimile National: 01256 463388 International: +44 1256 463388 Website http://www.oxoid.com OXOID SUBSIDIARIES AROUND THE WORLD AUSTRALIA DENMARK NEW ZEALAND Oxoid Australia Pty Ltd Oxoid A/S Oxoid NZ Ltd 20 Dalgleish Street Lunikvej 28 3 Atlas Place Thebarton, Adelaide DK-2670 Greve, Denmark Mairangi Bay South Australia 5031, Australia Tel: 45 44 97 97 35 Auckland 1333, New Zealand Tel: 618 8238 9000 or Fax: 45 44 97 97 45 Tel: 00 64 9 478 0522 Tel: 1 800 331163 Toll Free Email: [email protected] NORWAY Fax: 618 8238 9060 or FRANCE Oxoid AS Fax: 1 800 007054 Toll Free Oxoid s.a. Nils Hansen vei 2, 3 etg Email: [email protected] 6 Route de Paisy BP13 0667 Oslo BELGIUM 69571 Dardilly Cedex, France PB 6490 Etterstad, 0606 Oxoid N.V./S.A. Tel: 33 4 72 52 33 70 Oslo, Norway Industriepark, 4E Fax: 33 4 78 66 03 76 Tel: 47 23 03 9690 B-9031 Drongen, Belgium Email: [email protected] Fax: 47 23 09 96 99 Tel: 32 9 2811220 Email: [email protected] GERMANY Fax: 32 9 2811223 Oxoid GmbH SPAIN Email: [email protected] Postfach 10 07 53 Oxoid S.A.
    [Show full text]
  • Salmonella Enterica and the Specific Interaction with Lactuca Sativa
    Quantitative detection of Salmonella enterica and the specific interaction with Lactuca sativa Michel M. Klerks 2007 Promotor: Prof. Dr. Ir. A. H. C. van Bruggen Hoogleraar in de Biologische Landbouwsystemen Wageningen Universiteit Co-promotor: Dr. Ir. C. Zijlstra Clusterleider Moleculaire Phytopathologie Wageningen UR, Plant Research International BV Promotie commissie: Prof. Dr. Ir. P. J. G. M. de Wit, Wageningen Universiteit Prof. Dr. Ir. M. H. Zwietering, Wageningen Universiteit Prof. Dr. Ir. J. D. van Elsas, Rijksuniversiteit Groningen Dr. Ir. H.J. M. Aarts, RIKILT, Instituut voor voedselveiligheid Dit onderzoek is uitgevoerd binnen de C.T. de Wit Onderzoekschool ‘Productie Ecologie en Beheer van Natuurlijke Hulpbronnen’ Quantitative detection of Salmonella enterica and the specific interaction with Lactuca sativa Michel M. Klerks Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. Dr. M. J. Kropff, in het openbaar te verdedigen op woensdag 20 juni 2007 des namiddags te 13.30 uur in de Aula Michel M. Klerks (2007) Quantitative detection of Salmonella enterica and the specific interaction with Lactuca sativa. Doctoral thesis - Biological Farming Systems Group - Wageningen University - The Netherlands. Subject headings: Salmonella enterica, Escherichia coli, detection, lettuce, plant response, pathogenicity, route of infection ISBN: 978-90-8504-674-5 Contents Abstract Chapter 1 General introduction 9 Chapter 2 Comparison of real-time PCR methods for detection of 39
    [Show full text]
  • Tales of Diversity: Genomic and Morphological Characteristics of Forty-Six Arthrobacter Phages
    RESEARCH ARTICLE Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages Karen K. Klyczek1☯, J. Alfred Bonilla1☯, Deborah Jacobs-Sera2☯, Tamarah L. Adair3, Patricia Afram4, Katherine G. Allen5, Megan L. Archambault1, Rahat M. Aziz6, Filippa G. Bagnasco3, Sarah L. Ball7, Natalie A. Barrett8, Robert C. Benjamin6, Christopher J. Blasi9, Katherine Borst10, Mary A. Braun10, Haley Broomell4, Conner B. Brown5, Zachary S. Brynell3, Ashley B. Bue1, Sydney O. Burke3, William Casazza10, Julia A. Cautela8, Kevin Chen10, Nitish S. Chimalakonda3, Dylan Chudoff4, Jade A. Connor3, Trevor S. Cross4, Kyra N. Curtis3, Jessica A. Dahlke1, Bethany M. Deaton3, Sarah J. Degroote1, Danielle M. DeNigris8, Katherine C. DeRuff9, Milan Dolan5, David Dunbar4, Marisa a1111111111 S. Egan8, Daniel R. Evans10, Abby K. Fahnestock3, Amal Farooq6, Garrett Finn1, a1111111111 Christopher R. Fratus3, Bobby L. Gaffney5, Rebecca A. Garlena2, Kelly E. Garrigan8, Bryan 3 5 2 4 a1111111111 C. Gibbon , Michael A. Goedde , Carlos A. Guerrero Bustamante , Melinda Harrison , 8 11 10 6 a1111111111 Megan C. Hartwell , Emily L. Heckman , Jennifer Huang , Lee E. Hughes , Kathryn 8 8 10 3 a1111111111 M. Hyduchak , Aswathi E. Jacob , Machika Kaku , Allen W. Karstens , Margaret A. Kenna11, Susheel Khetarpal10, Rodney A. King5, Amanda L. Kobokovich9, Hannah Kolev10, Sai A. Konde3, Elizabeth Kriese1, Morgan E. Lamey8, Carter N. Lantz3, Jonathan S. Lapin2, Temiloluwa O. Lawson1, In Young Lee2, Scott M. Lee3, Julia Y. Lee- Soety8, Emily M. Lehmann1, Shawn C. London8, A. Javier Lopez10, Kelly C. Lynch5, Catherine M. Mageeney11, Tetyana Martynyuk8, Kevin J. Mathew6, Travis N. Mavrich2, OPEN ACCESS Christopher M. McDaniel5, Hannah McDonald10, C. Joel McManus10, Jessica E.
    [Show full text]
  • Superficieibacter Electus Gen. Nov., Sp. Nov., an Extended-Spectrum β
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Commons@Becker Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 Superficieibacter electus gen. nov., sp. nov., an extended-spectrum β-lactamase possessing member of the enterobacteriaceae family, isolated from Intensive Care Unit surfaces Robert F. Potter Washington University School of Medicine in St. Louis Alaric W. D-Souza Washington University School of Medicine in St. Louis Meghan A. Wallace Washington University School of Medicine in St. Louis Angela Shupe Washington University School of Medicine in St. Louis Sanket Patel Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Potter, Robert F.; D-Souza, Alaric W.; Wallace, Meghan A.; Shupe, Angela; Patel, Sanket; Gul, Danish; Kwon, Jennie H.; Beatty, Wandy; Andleeb, Saadia; Burnham, Carey-Ann D.; and Dantas, Gautam, ,"Superficieibacter electus gen. nov., sp. nov., an extended- spectrum β-lactamase possessing member of the enterobacteriaceae family, isolated from Intensive Care Unit surfaces." Frontiers in Microbiology.9,. 1629. (2018). https://digitalcommons.wustl.edu/open_access_pubs/7020 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Robert F. Potter, Alaric W. D-Souza, Meghan A. Wallace, Angela Shupe, Sanket Patel, Danish Gul, Jennie H. Kwon, Wandy Beatty, Saadia Andleeb, Carey-Ann D.
    [Show full text]