Computational Analysis of the Mammalian Cis-Regulatory Landscape a Dissertation Submitted to the Department of Computer Science

Total Page:16

File Type:pdf, Size:1020Kb

Computational Analysis of the Mammalian Cis-Regulatory Landscape a Dissertation Submitted to the Department of Computer Science COMPUTATIONAL ANALYSIS OF THE MAMMALIAN CIS-REGULATORY LANDSCAPE A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Cory Yuen Fu McLean May 2011 © 2011 by Cory Yuen Fu McLean. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/jh459nm5080 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Gill Bejerano, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Serafim Batzoglou I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. David Kingsley Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Improvements in DNA sequencing technologies have made it possible to determine the genetic makeup of many organisms. Computational analyses of the massive amounts of sequence data available have produced many insights into evolutionary and devel- opmental biology. For example, comparison of the full genome sequences of human and mouse discovered that the majority of functional sequence in the human genome does not code for protein. Much of this functional non-coding sequence appears to act in a regulatory role, dictating the precise tissues and developmental time points in which each protein should be produced. This dissertation describes three major contributions to the computational anal- ysis of regulatory elements. First, I describe the Genomic Regions Enrichment of Annotations Tool (GREAT), a novel statistical method and associated web-based tool developed to infer the biological functions of regulatory elements based on the functions of their putative target genes. I demonstrate its marked improvement over current methods at interpreting functional enrichment signals for a variety of regula- tory element types. Next, I discuss a computational methodology developed to identify medium- to large-scale (10-100,000 nucleotide) genomic deletions from whole genome sequences of multiple mammals. Using this methodology, I quantify the dispensability of highly conserved non-coding elements (CNEs) as their likelihood to be deleted in a subset of species. Despite their genomic prevalence and apparent redundancy in function, CNEs are very rarely lost in extant species. Even more surprisingly, there is a very weak relationship between dispensability and nucleotide conservation level. Sequences under purifying selection at moderate levels of nucleotide conservation are lost at a iv rate similar to those at perfect sequence conservation. Instead, evolutionary resis- tance to loss is more strongly correlated with depth of sequence homology, as ancient enhancers are more resistant to deletion than ones that arose more recently in evolu- tion. Finally, I present the discovery and analysis of human-specific genomic deletions. By comparing the genome sequences of five species including human and our nearest ape relative, the chimpanzee, I identified 583 regions present in non-human species that contain highly-conserved sequence but are surprisingly deleted in humans. Sta- tistical analyses indicate that these deletions occur preferentially near steroid hormone receptor genes and brain-expressed genes that are known to inhibit proliferation. Ex- perimental results provide particular examples that may have contributed to unique human traits: the loss of an AR enhancer is correlated with the human loss of penile spines and sensory vibrissae, and the loss of a GADD45G enhancer is correlated with the human expansion of the cerebral cortex. v Acknowledgments Foremost, I would like to thank my advisor, Gill Bejerano, for all of his guidance and support during my graduate career. He introduced me to computational biology and played an active role in all stages of my research. His ideas and opinions often caused me to think in new ways, and my research usually improved because of them. Through our work together I grew a lot as a scientist and as a person. I would also like to thank everyone in the Bejerano lab: Saatvik Agarwal, Jenny Chen, Tisha Chung, Shoa Clarke, Andrew Doxey, Harendra Guturu, Michael Hiller, Jim Notwell, Bruce Schaar, Sushant Shankar, Geetu Tuteja, and Aaron Wenger. I appreciate their friendship and all of the interesting discussions we had. Three lab members had particularly strong influences on my graduate experience and warrant special mention. Aaron Wenger was an ideal collaborator and source of immense technical knowledge, and provided many useful critiques of GREAT in all stages of its development. Michael Hiller was a great colleague both for our brainstorming sessions to develop various genomic data analysis methodologies and for his compan- ionship on hikes in Yosemite National Park. Bruce Schaar was a source of many exciting discussions as well as a great collaborator with a knack for identifying good experiments and the tenacity to see them through. I feel very lucky to have been able to spend much of my graduate career in close collaboration with the Kingsley lab. David Kingsley is an inspiring scientist who provided many insights and ideas during our collaboration. He also took time to discuss important personal decisions with me. I am very grateful for his informal mentorship. Alex Pollen was a great friend whose endless enthusiasm I admire, Phil Reno and Terry Capellini were sources of ideas and advice, and Craig Lowe provided vi much technical knowledge about the UCSC codebase. The support of my friends and family has been very important to me during my entire time at Stanford. Mark Sellmyer was a great source of laughs and big con- versations. Vincent Chu, Eu-Jin Goh, and Justin Brockman were awesome climbing partners. Doug Allaire was someone I could count on to listen during rough patches. My parents and siblings George and Ren´ee were constant sources of unflinching love, support, and encouragement. My wife Laura has always been there for me, in good times and bad. She is a source of inspiration to me both professionally and personally and without her this work would not have been possible. The results presented in Chapters 3–5 of this dissertation all derive from previously published articles: 1. Cory Y. McLean, Dave Bristor, Michael Hiller, Shoa L. Clarke, Bruce T. Schaar, Craig B. Lowe, Aaron M. Wenger and Gill Bejerano. GREAT improves func- tional interpretation of cis-regulatory regions. Nature Biotechnology, 28, 495– 501 (2010). 2. Cory McLean and Gill Bejerano. Dispensability of mammalian DNA. Genome Research, 18, 1743–1751 (2008). 3. Cory Y. McLean*, Philip L. Reno*, Alex A. Pollen*, Abraham I. Bassan, Ter- ence D. Capellini, Catherine Guenther, Vahan B. Indjeian, Xinhong Lim, Dou- glas B. Menke, Bruce T. Schaar, Aaron M. Wenger, Gill Bejerano, and David M. Kingsley. Human-specific loss of regulatory DNA and the evolution of human- specific traits. Nature, 472, 216–219 (2011). * Authors contributed equally. In the Chapter 3 work, Dave Bristor and Aaron Wenger designed and developed the web interface of the tool. Michael Hiller found and parsed 75% of the ontologies into a format usable by the tool. Shoa Clarke performed much of the analysis of the Serum Response Factor data. Bruce Schaar provided input on the analysis of the p300 data. I designed and developed the core calculation engine, processed the GO, InterPro, and Pathway Commons ontologies, analyzed and interpreted all data sets, and wrote the manuscript with my advisor Gill Bejerano. vii In the Chapter 4 work, I designed and implemented the methodologies used, per- formed the analyses, interpreted the results, and wrote the manuscript, all in concert with my advisor Gill Bejerano. In the Chapter 5 work, Philip Reno performed all experimental work associated with the AR hCONDEL. Alex Pollen performed all experimental work associated with the GADD45G hCONDEL. I designed and implemented the computational method- ologies used and performed the computational analyses. Philip Reno, Alex Pollen, Gill Bejerano, David Kingsley, and I interpreted the results and wrote the manuscript. viii Contents Abstract iv Acknowledgments vi 1 Introduction 1 1.1 Organization . 2 2 Cis-regulatory elements 3 2.1 Background . 3 2.2 Cis-regulatory element identification . 4 2.3 Cis-regulatory element function . 5 2.4 Cis-regulatory element composition . 6 2.5 Cis-regulatory elements in disease . 6 2.6 Cis-regulatory elements in trait evolution . 8 3 Regulatory element functional analysis 9 3.1 Results . 11 3.1.1 A genomic region-based binomial test for long-range gene reg- ulatory domains . 11 3.1.2 Comparison of enrichment tests and gene regulatory domain ranges . 14 3.1.3 Serum Response Factor binding in human Jurkat cells . 21 3.1.4 P300 binding in the developing mouse limbs . 25 3.1.5 P300 binding in the developing mouse forebrain and midbrain 30 ix 3.1.6 Evaluation of GREAT usage patterns . 32 3.2 Discussion . 36 3.3 Methods . 37 3.3.1 Gene set definition . 37 3.3.2 Association rules from genomic regions to genes . 38 3.3.3 Binomial test over genomic regions . 40 3.3.4 Hypergeometric test over genes . 41 3.3.5 Foreground/background hypergeometric test over genomic re- gions .
Recommended publications
  • Anti-HABP2 Monoclonal Antibody, Clone FQS25662 (DCABH-7346) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-HABP2 monoclonal antibody, clone FQS25662 (DCABH-7346) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit monoclonal to HABP2 Antigen Description Cleaves the alpha-chain at multiple sites and the beta-chain between Lys-53 and Lys-54 but not the gamma-chain of fibrinogen and therefore does not initiate the formation of the fibrin clot and does not cause the fibrinolysis directly. It does not cleave (activate) prothrombin and plasminogen but converts the inactive single chain urinary plasminogen activator (pro-urokinase) to the active two chain form. Activates coagulation factor VII. Immunogen Synthetic peptide (the amino acid sequence is considered to be commercially sensitive) within Human HABP2 aa 350-450. The exact sequence is proprietary.Database link: Q14520 Isotype IgG Source/Host Rabbit Species Reactivity Mouse, Rat, Human Clone FQS25662 Purity Tissue culture supernatant Conjugate Unconjugated Applications WB, IHC-P, ICC/IF Positive Control Human fetal liver, HepG2, MCF-7 and A549 lysate. Rat liver tissue. HepG2 cells. Format Liquid Size 100 μl Buffer Preservative: 0.01% Sodium azide; Constituents: 40% Glycerol, 59% PBS, 0.05% BSA Preservative 0.01% Sodium Azide Storage Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C long term. Avoid freeze / thaw cycle. Ship Shipped at 4°C. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Genomic Analysis of Estrogen Cascade Reveals Histone Variant H2A.Z Associated with Breast Cancer Progression
    Molecular Systems Biology 4; Article number 188; doi:10.1038/msb.2008.25 Citation: Molecular Systems Biology 4:188 & 2008 EMBO and Nature Publishing Group All rights reserved 1744-4292/08 www.molecularsystemsbiology.com Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression Sujun Hua1,2,3,9, Caleb B Kallen4,9, Ruby Dhar1,2, Maria T Baquero5, Christopher E Mason6, Beth A Russell1,2,6, Parantu K Shah1,2, Jiang Liu1,2, Andrey Khramtsov7, Maria S Tretiakova8, Thomas N Krausz8, Olufunmilayo I Olopade7, David L Rimm5 and Kevin P White1,2,* 1 Joint Institute for Genomics and Systems Biology, The University of Chicago and Argonne National Laboratory, Chicago, IL, USA, 2 Department of Human Genetics, The University of Chicago, Chicago, IL, USA, 3 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA, 4 Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA, 5 Department of Pathology, Yale University, New Haven, CT, USA, 6 Department of Genetics, Yale University, New Haven, CT, USA, 7 Center for Clinical Cancer Genetics, University of Chicago Medical Center, Chicago, IL, USA and 8 Department of Pathology, The University of Chicago Hospitals, Chicago, IL, USA 9 These authors contributed equally to this work * Corresponding author. Department of Human Genetics, The University of Chicago, 1639 Pierce Drive, WMB 4211, Chicago, IL 60637, USA. Tel.: þ 1 773 834 8259; Fax: þ 1 773 834 0505; E-mail: [email protected] Received 7.9.07; accepted 13.3.08 We demonstrate an integrated approach to the study of a transcriptional regulatory cascade involved in the progression of breast cancer and we identify a protein associated with disease progression.
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • Characterisation of Genetic Regulatory Effects for Osteoporosis Risk Variants in Human Osteoclasts Benjamin H
    Mullin et al. Genome Biology (2020) 21:80 https://doi.org/10.1186/s13059-020-01997-2 RESEARCH Open Access Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts Benjamin H. Mullin1,2*, Jennifer Tickner2, Kun Zhu1,2, Jacob Kenny2, Shelby Mullin1,2, Suzanne J. Brown1, Frank Dudbridge3, Nathan J. Pavlos2, Edward S. Mocarski4, John P. Walsh1,5†, Jiake Xu2† and Scott G. Wilson1,2,6† Abstract Background: Osteoporosis is a complex disease with a strong genetic contribution. A recently published genome- wide association study (GWAS) for estimated bone mineral density (eBMD) identified 1103 independent genome- wide significant association signals. Most of these variants are non-coding, suggesting that regulatory effects may drive many of the associations. To identify genes with a role in osteoporosis, we integrate the eBMD GWAS association results with those from our previous osteoclast expression quantitative trait locus (eQTL) dataset. Results: We identify sixty-nine significant cis-eQTL effects for eBMD GWAS variants after correction for multiple testing. We detect co-localisation of eBMD GWAS and osteoclast eQTL association signals for 21 of the 69 loci, implicating a number of genes including CCR5, ZBTB38, CPE, GNA12, RIPK3, IQGAP1 and FLCN. Summary-data-based Mendelian Randomisation analysis of the eBMD GWAS and osteoclast eQTL datasets identifies significant associations for 53 genes, with TULP4 presenting as a strong candidate for pleiotropic effects on eBMD and gene expression in osteoclasts. By performing analysis using the GARFIELD software, we demonstrate significant enrichment of osteoporosis risk variants among high-confidence osteoclast eQTL across multiple GWAS P value thresholds.
    [Show full text]
  • Current Knowledge of Germline Genetic Risk Factors for the Development of Non-Medullary Thyroid Cancer
    G C A T T A C G G C A T genes Review Current Knowledge of Germline Genetic Risk Factors for the Development of Non-Medullary Thyroid Cancer Kinga Hi ´ncza 1,* , Artur Kowalik 1 and Aldona Kowalska 2,3 1 Department Molecular Diagnostics, Holycross Centre, 25-734 Kielce, Poland 2 The Faculty of Health Sciences of the Jan Kochanowski University, 25-317 Kielce, Poland 3 Endocrinology Clinic of Holycross Cancer Centre, 25-734 Kielce, Poland * Correspondence: [email protected]; Tel.: +48-4136-742-58 Received: 16 May 2019; Accepted: 25 June 2019; Published: 26 June 2019 Abstract: The thyroid is the most common site of endocrine cancer. One type of thyroid cancer, non-medullary thyroid cancer (NMTC), develops from follicular cells and represents approximately 90% of all thyroid cancers. Approximately 5%–15% of NMTC cases are thought to be of familial origin (FNMTC), which is defined as the occurrence of the disease in three or more first-degree relatives of the patient. It is often divided into two groups: Syndrome-associated and non-syndromic. The associated syndromes include Cowden syndrome, familial adenomatous polyposis, Gardner syndrome, Carney complex and Werner syndrome. The hereditary factors contributing to the unfavorable course of FNMTC remain poorly understood; therefore, considerable effort is being expended to identify contributing loci. Research carried out to date identifies fourteen genes (DICER1, FOXE1, PTCSC2, MYH9, SRGAP1, HABP2, BRCA1, CHEK2, ATM, RASAL1, SRRM2, XRCC1, TITF-1/NKX2.1, PTCSC3) associated with vulnerability to FNMTC that are not related to hereditary syndromes. In this review, we summarize FNMTC studies to date, and provide information on genes involved in the development of non-syndromic familial non-medullary thyroid cancers, and the significance of mutations in these genes as risk factors.
    [Show full text]
  • HABP2 Sirna (Human)
    For research purposes only, not for human use Product Data Sheet HABP2 siRNA (Human) Catalog # Source Reactivity Applications CRH2056 Synthetic H RNAi Description siRNA to inhibit HABP2 expression using RNA interference Specificity HABP2 siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Form Lyophilized powder Gene Symbol HABP2 Alternative Names HGFAL; PHBP; Hyaluronan-binding protein 2; Factor VII-activating protease; Factor seven-activating protease; FSAP; Hepatocyte growth factor activator-like protein; Plasma hyaluronan-binding protein Entrez Gene 3026 (Human) SwissProt Q14520 (Human) Purity > 97% Quality Control Oligonucleotide synthesis is monitored base by base through trityl analysis to ensure appropriate coupling efficiency. The oligo is subsequently purified by affinity-solid phase extraction. The annealed RNA duplex is further analyzed by mass spectrometry to verify the exact composition of the duplex. Each lot is compared to the previous lot by mass spectrometry to ensure maximum lot-to-lot consistency. Components We offers pre-designed sets of 3 different target-specific siRNA oligo duplexes of human HABP2 gene. Each vial contains 5 nmol of lyophilized siRNA. The duplexes can be transfected individually or pooled together to achieve knockdown of the target gene, which is most commonly assessed by qPCR or western blot. Our siRNA oligos are also chemically modified (2’-OMe) at no extra charge for increased Application key: E- ELISA, WB- Western blot, IH- Immunohistochemistry,
    [Show full text]
  • The Structure, Function and Evolution of the Extracellular Matrix: a Systems-Level Analysis
    The Structure, Function and Evolution of the Extracellular Matrix: A Systems-Level Analysis by Graham L. Cromar A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Graham L. Cromar 2014 ii The Structure, Function and Evolution of the Extracellular Matrix: A Systems-Level Analysis Graham L. Cromar Doctor of Philosophy Department of Molecular Genetics University of Toronto 2014 Abstract The extracellular matrix (ECM) is a three-dimensional meshwork of proteins, proteoglycans and polysaccharides imparting structure and mechanical stability to tissues. ECM dysfunction has been implicated in a number of debilitating conditions including cancer, atherosclerosis, asthma, fibrosis and arthritis. Identifying the components that comprise the ECM and understanding how they are organised within the matrix is key to uncovering its role in health and disease. This study defines a rigorous protocol for the rapid categorization of proteins comprising a biological system. Beginning with over 2000 candidate extracellular proteins, 357 core ECM genes and 524 functionally related (non-ECM) genes are identified. A network of high quality protein-protein interactions constructed from these core genes reveals the ECM is organised into biologically relevant functional modules whose components exhibit a mosaic of expression and conservation patterns. This suggests module innovations were widespread and evolved in parallel to convey tissue specific functionality on otherwise broadly expressed modules. Phylogenetic profiles of ECM proteins highlight components restricted and/or expanded in metazoans, vertebrates and mammals, indicating taxon-specific tissue innovations. Modules enriched for medical subject headings illustrate the potential for systems based analyses to predict new functional and disease associations on the basis of network topology.
    [Show full text]
  • HABP2 Rabbit Polyclonal Antibody – TA335072 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA335072 HABP2 Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: WB Recommended Dilution: WB Reactivity: Human Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: The immunogen for anti-HABP2 antibody: synthetic peptide directed towards the middle region of human HABP2. Synthetic peptide located within the following region: EPSTKLPGFDSCGKTEIAERKIKRIYGGFKSTAGKHPWQASLQSSLPLTI Formulation: Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Note that this product is shipped as lyophilized powder to China customers. Purification: Affinity Purified Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 63 kDa Gene Name: hyaluronan binding protein 2 Database Link: NP_004123 Entrez Gene 3026 Human Q14520 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 HABP2 Rabbit Polyclonal Antibody – TA335072 Background: HABP2 is an extracellular serine protease that binds hyaluronic acid and is involved in cell adhesion. It is synthesized as a single chain, but then undergoes an autoproteolytic event to form the functional heterodimer. Further autoproteolysis leads to smaller, inactive peptides. This protease is known to cleave urinary plasminogen activator, coagulation factor VII, and the alpha and beta chains of fibrinogen, but not prothrombin, plasminogen, or the gamma chain of fibrinogen.
    [Show full text]
  • Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 October 2019 doi:10.20944/preprints201910.0154.v1 Article Whole genome sequencing of familial non-medullary thyroid cancer identifies germline alterations in MAPK/ERK and PI3K/AKT signaling pathways Aayushi Srivastava 1,2,3,4, Abhishek Kumar 1,5,6, Sara Giangiobbe 1, Elena Bonora 7, Kari Hemminki 1, Asta Försti 1,2,3 and Obul Reddy Bandapalli 1,2,3,* 1 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany; [email protected] (A.S.), [email protected] (A.K.); [email protected] (S.G.); [email protected] (K.H.); [email protected] (A.F.) 2 Hopp Children’s Cancer Center (KiTZ), D-69120, Heidelberg, Germany 3 Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120, Heidelberg, Germany 4 Medical Faculty, Heidelberg University, D-69120, Heidelberg, Germany 5 Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India 6 Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India 7 S.Orsola-Malphigi Hospital, Unit of Medical Genetics,40138, Bologna, Italy ; [email protected] * Correspondence: [email protected]; Tel.: +49-6221-42-1709 Abstract: Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC families to better understand its pathogenesis with the final aim of identifying one novel high/moderate-penetrance germline predisposition variant segregating with the disease in each studied family.
    [Show full text]
  • Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands That Promote Axonal Growth
    Research Article: New Research Development Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth Jeremy S. Toma,1 Konstantina Karamboulas,1,ª Matthew J. Carr,1,2,ª Adelaida Kolaj,1,3 Scott A. Yuzwa,1 Neemat Mahmud,1,3 Mekayla A. Storer,1 David R. Kaplan,1,2,4 and Freda D. Miller1,2,3,4 https://doi.org/10.1523/ENEURO.0066-20.2020 1Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada, 2Institute of Medical Sciences University of Toronto, Toronto, Ontario M5G 1A8, Canada, 3Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada, and 4Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada Abstract Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are es- sential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, in- cluding known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesen- chymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons.
    [Show full text]
  • F IDENTIFICATION of AMYOTROPHIC LATERAL
    IDENTIFICATION OF AMYOTROPHIC LATERAL SCLEROSIS DISEASE MECHANISMS BY CEREBROSPINAL FLUID PROTEOMIC PROFILING by Mahlon Angus Collins B.S. in Neuroscience/Psychology, Central Michigan University, 2006 M.S. in Experimental Psychology, Central Michigan University, 2009 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of PhD in Neurobiology University of Pittsburgh 2016 f UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Mahlon Angus Collins It was defended on April 14, 2016 and approved by Carey Balaban, PhD, Professor Michael Gold, PhD, Professor Teresa Hastings, PhD, Associate Professor Janice Robertson, PhD, Associate Professor Rebecca Seal, PhD, Assistant Professor Dissertation Advisor: Robert Bowser, PhD, Adjunct Professor ii Copyright © by Mahlon A. Collins 2016 iii IDENTIFICATION OF AMYOTROPHIC LATERAL SCLEROSIS DISEASE MECHANISMS BY CEREBROSPINAL FLUID PROTEOMIC PROFILING Mahlon Angus Collins, PhD University of Pittsburgh, 2016 Amyotrophic lateral sclerosis (ALS) is the most common form of adult-onset motor neuron disease. Heterogeneity in clinical, genetic, and pathological features of ALS suggest the disease is a spectrum of disorders each resulting in motor neuron degeneration. Molecular profiling of ALS patients is, therefore, a useful means of characterizing and stratifying the ALS population. To this end, mass spectrometric proteomic profiling was performed on cerebrospinal fluid (CSF) from ALS, healthy control (HC), and other
    [Show full text]