Genomic Analysis of Estrogen Cascade Reveals Histone Variant H2A.Z Associated with Breast Cancer Progression

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Analysis of Estrogen Cascade Reveals Histone Variant H2A.Z Associated with Breast Cancer Progression Molecular Systems Biology 4; Article number 188; doi:10.1038/msb.2008.25 Citation: Molecular Systems Biology 4:188 & 2008 EMBO and Nature Publishing Group All rights reserved 1744-4292/08 www.molecularsystemsbiology.com Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression Sujun Hua1,2,3,9, Caleb B Kallen4,9, Ruby Dhar1,2, Maria T Baquero5, Christopher E Mason6, Beth A Russell1,2,6, Parantu K Shah1,2, Jiang Liu1,2, Andrey Khramtsov7, Maria S Tretiakova8, Thomas N Krausz8, Olufunmilayo I Olopade7, David L Rimm5 and Kevin P White1,2,* 1 Joint Institute for Genomics and Systems Biology, The University of Chicago and Argonne National Laboratory, Chicago, IL, USA, 2 Department of Human Genetics, The University of Chicago, Chicago, IL, USA, 3 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA, 4 Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA, 5 Department of Pathology, Yale University, New Haven, CT, USA, 6 Department of Genetics, Yale University, New Haven, CT, USA, 7 Center for Clinical Cancer Genetics, University of Chicago Medical Center, Chicago, IL, USA and 8 Department of Pathology, The University of Chicago Hospitals, Chicago, IL, USA 9 These authors contributed equally to this work * Corresponding author. Department of Human Genetics, The University of Chicago, 1639 Pierce Drive, WMB 4211, Chicago, IL 60637, USA. Tel.: þ 1 773 834 8259; Fax: þ 1 773 834 0505; E-mail: [email protected] Received 7.9.07; accepted 13.3.08 We demonstrate an integrated approach to the study of a transcriptional regulatory cascade involved in the progression of breast cancer and we identify a protein associated with disease progression. Using chromatin immunoprecipitation and genome tiling arrays, whole genome mapping of transcription factor-binding sites was combined with gene expression profiling to identify genes involved in the proliferative response to estrogen (E2). Using RNA interference, selected ERa and c-MYC gene targets were knocked down to identify mediators of E2-stimulated cell proliferation. Tissue microarray screening revealed that high expression of an epigenetic factor, the E2-inducible histone variant H2A.Z, is significantly associated with lymph node metastasis and decreased breast cancer survival. Detection of H2A.Z levels independently increased the prognostic power of biomarkers currently in clinical use. This integrated approach has accelerated the identification of a molecule linked to breast cancer progression, has implications for diagnostic and therapeutic interventions, and can be applied to a wide range of cancers. Molecular Systems Biology 15 April 2008; doi:10.1038/msb.2008.25 Subject Categories: functional genomics; chromatin and transcription Keywords: breast; cancer; chromatin; estrogen; histone variant This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits distribution and reproduction in any medium, provided the original author and source are credited. This licence does not permit commercial exploitation or the creation of derivative works without specific permission. Introduction indication that, while capable of predicting patient survival, the lists are only weakly informative with regard to mechan- Cancer is caused by the accumulation of genetic mutations isms of oncogenesis. Many genes with statistical significance combined with changes in the epigenetic state of affected cells. in a gene expression signature will not serve as viable These changes result in the initiation and progression of candidates for the development of prognostic assays or tumors, which can be described, in part, by the gene anticancer treatments (Ein-Dor et al, 2005; Fan et al, 2006). expression profiles of the cancer cells in question, a unique Use of genomic screening techniques to explore cancer cell gene expression ‘signature,’ reflecting the activation or physiology must therefore be followed by hypothesis testing to suppression of biological pathways important in generating validate the genes that are important for accurate prognosis the cancer phenotype (Perou et al, 1999; Sorlie et al, 2001; van and to determine which are involved in the initiation and/or de Vijver et al, 2002; Sotiriou et al, 2003). Importantly, gene progression of disease. expression profiling of tumors produces gene lists that do not Estrogens (E2) are steroid hormones that play critical roles necessarily contribute to a measured clinical distinction, such in the initiation, development, and metastasis of breast and as the presence or absence of distant metastases. In fact, the uterine cancers (Yager and Davidson, 2006). The E2 response lack of overlap in gene lists from different studies is an in breast cancer cells is predominantly mediated by the & 2008 EMBO and Nature Publishing Group Molecular Systems Biology 2008 1 Genomic analysis of estrogen response in cancer S Hua et al estrogen receptor-a (ERa), a ligand-activated transcription ERα ChIP sites factor. ERa regulates transcription of target genes through 1% direct binding to its cognate recognition sites, known as 24% estrogen response elements (EREs), or by modulating the 21% activity of other DNA-bound transcription factors at alternative DNA sequences (Bjornstrom and Sjoberg, 2005). The proto- 56% oncogene c-myc is upregulated by ERa in response to E2 25% (Dubik and Shiu, 1992) and encodes a transcription factor, 5Ј UTR 10% c-MYC (henceforth MYC), which regulates a cascade of gene 16% CDS 1st intron targets whose products mediate cellular transformation 2%0.4% (Ponzielli et al, 2005). Synergy between MYC and ERa at a other introns 3Ј UTR subset of E2-responsive promoters has been reported, suggest- MYC ChIP sites intergenic regions ing a cooperative role between ERa and MYC in breast cancer 2% 24% 0–10 kb progression (Cheng et al, 2006). 12% 10–50 kb Endocrine therapy, often effective for ERa-positive breast >50 kb tumors, impairs the hormone–receptor complex or inhibits E2 production. Unfortunately, a significant fraction (B20–50%) 37% of ERa-positive breast tumors fails to respond (EBCTC, 1998), 14% 11% or eventually develops resistance, to antiestrogen treatments 28% (Schiff et al, 2005). The lack of integrated and comprehensive approaches to study pathways regulated by E2 has delayed our 5% 4% understanding of the progression to hormone resistance in Figure 1 Genomic distribution of ERa- and MYC-binding sites. The cancer. distributions of 1615 ERa-(A) and 311 MYC- (B) binding sites in E2-stimulated Using an E2-dependent breast cancer cell model, MCF7 MCF7 cells relative to known genes. Where multiple genomic probes indicated a cells, we employed an integrated genomic approach that transcription factor-bound region, the center of each ERa- or MYC-binding region was designated as the bound position. Within annotated genes, binding sites combined E2-stimulated gene expression profiling and gen- 0 0 ome-wide transcription factor-binding site detection for two were classified as follows: within 5 untranslated regions (5 UTR), within coding sequences (CDS), within 50-most intron or the first intron, within other introns, and essential transducers of the E2 response, ERa and MYC. Recent within 30 untranslated regions (30 UTR). ERa or MYC binding in intergenic reports have similarly identified ERa-binding sites and E2- regions was further classified based on the distance to the nearest annotated activated gene expression in this cell model (Frasor et al, 2003; gene (0–10, 10–50, and 450 kb). Carroll et al, 2005, 2006; Laganiere et al, 2005). However, integration of genomic screening data must be followed by functional and clinical studies to develop useful tools for cells were stimulated to proliferate with E2 before chromatin diagnosing and treating cancer. Therefore, validation of direct immunoprecipitation (ChIP). transcription factor-regulated gene targets, using gene-specific We identified a total of 1615 ERa-bound regions (Po1eÀ5) knockdown in cell proliferation assays, was followed by throughout the human genome (Supplementary Table 1). The clinical correlation using primary cancer specimens with distribution of ERa-binding regions ranged from proximal associated data regarding patient outcomes. We demonstrate (o1 kb) to the nearest transcription start site (TSS) of a gene to that hormone-stimulated MYC enhances production of an over 500 kb from the closest TSS (Figure 1A). Similarly, we epigenetic factor, histone variant H2A.Z, the expression of detected 311 MYC-bound regions across the human genome in which correlates with increased probability of metastasis and MCF7 cells (Supplementary Table 2). The distribution of MYC- decreased patient survival. This integrated systems approach bound loci in relation to annotated TSSs is depicted in is potentially applicable to the study of other oncogenic Figure 1B. A total of 62.4% of ERa-bound regions detected in pathways. our study were confirmed in an independently derived data set using similar methods (Carroll et al, 2006) (common sites are indicated in Supplementary Table 1). Results We examined ERa- and MYC-binding regions for the presence of predicted transcription factor-binding motifs and Genome-wide identification of ERa- and detected statistically significant enrichment of canonical EREs MYC-binding sites in MCF7 cells (AGGTCAnnnTGACCT) in ERa-bound regions and E-boxes Recent studies have performed location analysis for ERa in (CACGTG) in MYC-bound
Recommended publications
  • Ncomms2254.Pdf
    ARTICLE Received 3 May 2012 | Accepted 5 Nov 2012 | Published 4 Dec 2012 DOI: 10.1038/ncomms2254 The RB family is required for the self-renewal and survival of human embryonic stem cells Jamie F. Conklin1,2,3, Julie Baker2,3 & Julien Sage1,2,3 The mechanisms ensuring the long-term self-renewal of human embryonic stem cells are still only partly understood, limiting their use in cellular therapies. Here we found that increased activity of the RB cell cycle inhibitor in human embryonic stem cells induces cell cycle arrest, differentiation and cell death. Conversely, inactivation of the entire RB family (RB, p107 and p130) in human embryonic stem cells triggers G2/M arrest and cell death through functional activation of the p53 pathway and the cell cycle inhibitor p21. Differences in E2F target gene activation upon loss of RB family function between human embryonic stem cells, mouse embryonic stem cells and human fibroblasts underscore key differences in the cell cycle regulatory networks of human embryonic stem cells. Finally, loss of RB family function pro- motes genomic instability in both human and mouse embryonic stem cells, uncoupling cell cycle defects from chromosomal instability. These experiments indicate that a homeostatic level of RB activity is essential for the self-renewal and the survival of human embryonic stem cells. 1 Department of Pediatrics, Stanford Medical School, Stanford, California 94305, USA. 2 Department of Genetics, Stanford Medical School, Stanford, California 94305, USA. 3 Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medical School, Stanford, California 94305, USA. Correspondence and requests for materials should be addressed to J.S.
    [Show full text]
  • Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
    The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Expression of the Human PAC1 Receptor Leads to Dose- Dependent Hydrocephalus-Related Abnormalities in Mice
    Expression of the human PAC1 receptor leads to dose- dependent hydrocephalus-related abnormalities in mice Bing Lang, … , Anthony J. Harmar, Sanbing Shen J Clin Invest. 2006;116(7):1924-1934. https://doi.org/10.1172/JCI27597. Research Article Neuroscience Hydrocephalus is a common and potentially devastating birth defect affecting the CNS, and its relationship with G protein–coupled receptors (GPCRs) is unknown. We have expressed 2, 4, or 6 copies of a GPCR — the human PAC1 receptor with a 130-kb transgene in the mouse nervous system in a pattern closely resembling that of the endogenous gene. Consistent with PAC1 actions, PKA and PKC activity were elevated in the brains of Tg mice. Remarkably, Tg mice developed dose-dependent hydrocephalus-like characteristics, including enlarged third and lateral ventricles and reduced cerebral cortex, corpus callosum, and subcommissural organ (SCO). Neuronal proliferation and apoptosis were implicated in hydrocephalus, and we observed significantly reduced neuronal proliferation and massively increased neuronal apoptosis in the developing cortex and SCO of Tg embryos, while neurite outgrowth and neuronal migration in vitro remain uncompromised. Ventricular ependymal cilia are crucial for directing cerebrospinal fluid flow, and ependyma of Tg mice exhibited disrupted cilia with increased phospho-CREB immunoreactivity. These data demonstrate that altered neuronal proliferation/apoptosis and disrupted ependymal cilia are the main factors contributing to hydrocephalus in PAC1-overexpressing mice. This is the first report to our knowledge demonstrating that misregulation of GPCRs can be involved in hydrocephalus-related neurodevelopmental disorders. Find the latest version: https://jci.me/27597/pdf Research article Related Commentary, page 1828 Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus- related abnormalities in mice Bing Lang,1 Bing Song,1 Wendy Davidson,1 Alastair MacKenzie,1 Norman Smith,2 Colin D.
    [Show full text]
  • Screening and Identification of Hub Genes in Bladder Cancer by Bioinformatics Analysis and KIF11 Is a Potential Prognostic Biomarker
    ONCOLOGY LETTERS 21: 205, 2021 Screening and identification of hub genes in bladder cancer by bioinformatics analysis and KIF11 is a potential prognostic biomarker XIAO‑CONG MO1,2*, ZI‑TONG ZHANG1,3*, MENG‑JIA SONG1,2, ZI‑QI ZHOU1,2, JIAN‑XIONG ZENG1,2, YU‑FEI DU1,2, FENG‑ZE SUN1,2, JIE‑YING YANG1,2, JUN‑YI HE1,2, YUE HUANG1,2, JIAN‑CHUAN XIA1,2 and DE‑SHENG WENG1,2 1State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine; 2Department of Biotherapy, Sun Yat‑Sen University Cancer Center; 3Department of Radiation Oncology, Sun Yat‑Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China Received July 31, 2020; Accepted December 18, 2020 DOI: 10.3892/ol.2021.12466 Abstract. Bladder cancer (BC) is the ninth most common immunohistochemistry and western blotting. In summary, lethal malignancy worldwide. Great efforts have been devoted KIF11 was significantly upregulated in BC and might act as to clarify the pathogenesis of BC, but the underlying molecular a potential prognostic biomarker. The present identification mechanisms remain unclear. To screen for the genes associated of DEGs and hub genes in BC may provide novel insight for with the progression and carcinogenesis of BC, three datasets investigating the molecular mechanisms of BC. were obtained from the Gene Expression Omnibus. A total of 37 tumor and 16 non‑cancerous samples were analyzed to Introduction identify differentially expressed genes (DEGs). Subsequently, 141 genes were identified, including 55 upregulated and Bladder cancer (BC) is the ninth most common malignancy 86 downregulated genes. The protein‑protein interaction worldwide with substantial morbidity and mortality.
    [Show full text]
  • Genetic Drivers of Pancreatic Islet Function
    | INVESTIGATION Genetic Drivers of Pancreatic Islet Function Mark P. Keller,*,1 Daniel M. Gatti,†,1 Kathryn L. Schueler,* Mary E. Rabaglia,* Donnie S. Stapleton,* Petr Simecek,† Matthew Vincent,† Sadie Allen,‡ Aimee Teo Broman,§ Rhonda Bacher,§ Christina Kendziorski,§ Karl W. Broman,§ Brian S. Yandell,** Gary A. Churchill,†,2 and Alan D. Attie*,2 *Department of Biochemistry, §Department of Biostatistics and Medical Informatics, and **Department of Horticulture, University of Wisconsin–Madison, Wisconsin 53706-1544, †The Jackson Laboratory, Bar Harbor, Maine 06409, and ‡Maine School of Science and Mathematics, Limestone, Maine 06409, ORCID IDs: 0000-0002-7405-5552 (M.P.K.); 0000-0002-4914-6671 (K.W.B.); 0000-0001-9190-9284 (G.A.C.); 0000-0002-0568-2261 (A.D.A.) ABSTRACT The majority of gene loci that have been associated with type 2 diabetes play a role in pancreatic islet function. To evaluate the role of islet gene expression in the etiology of diabetes, we sensitized a genetically diverse mouse population with a Western diet high in fat (45% kcal) and sucrose (34%) and carried out genome-wide association mapping of diabetes-related phenotypes. We quantified mRNA abundance in the islets and identified 18,820 expression QTL. We applied mediation analysis to identify candidate causal driver genes at loci that affect the abundance of numerous transcripts. These include two genes previously associated with monogenic diabetes (PDX1 and HNF4A), as well as three genes with nominal association with diabetes-related traits in humans (FAM83E, IL6ST, and SAT2). We grouped transcripts into gene modules and mapped regulatory loci for modules enriched with transcripts specific for a-cells, and another specific for d-cells.
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche).
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Differential Requirements for Tousled-Like Kinases 1 and 2 in Mammalian Development
    Cell Death and Differentiation (2017) 24, 1872–1885 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1350-9047/17 www.nature.com/cdd Differential requirements for Tousled-like kinases 1 and 2 in mammalian development Sandra Segura-Bayona1,8, Philip A Knobel1,8, Helena González-Burón1,8, Sameh A Youssef2,3, Aida Peña-Blanco1, Étienne Coyaud4,5, Teresa López-Rovira1, Katrin Rein1, Lluís Palenzuela1, Julien Colombelli1, Stephen Forrow1, Brian Raught4,5, Anja Groth6, Alain de Bruin2,7 and Travis H Stracker*,1 The regulation of chromatin structure is critical for a wide range of essential cellular processes. The Tousled-like kinases, TLK1 and TLK2, regulate ASF1, a histone H3/H4 chaperone, and likely other substrates, and their activity has been implicated in transcription, DNA replication, DNA repair, RNA interference, cell cycle progression, viral latency, chromosome segregation and mitosis. However, little is known about the functions of TLK activity in vivo or the relative functions of the highly similar TLK1 and TLK2 in any cell type. To begin to address this, we have generated Tlk1- and Tlk2-deficient mice. We found that while TLK1 was dispensable for murine viability, TLK2 loss led to late embryonic lethality because of placental failure. TLK2 was required for normal trophoblast differentiation and the phosphorylation of ASF1 was reduced in placentas lacking TLK2. Conditional bypass of the placental phenotype allowed the generation of apparently healthy Tlk2-deficient mice, while only the depletion of both TLK1 and TLK2 led to extensive genomic instability, indicating that both activities contribute to genome maintenance. Our data identifies a specific role for TLK2 in placental function during mammalian development and suggests that TLK1 and TLK2 have largely redundant roles in genome maintenance.
    [Show full text]
  • To Proliferate Or to Die: Role of Id3 in Cell Cycle Progression and Survival of Neural Crest Progenitors
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors Yun Kee and Marianne Bronner-Fraser1 Division of Biology, California Institute of Technology, Pasadena, California 91125, USA The neural crest is a unique population of mitotically active, multipotent progenitors that arise at the vertebrate neural plate border. Here, we show that the helix–loop–helix transcriptional regulator Id3 has a novel role in cell cycle progression and survival of neural crest progenitors in Xenopus. Id3 is localized at the neural plate border during gastrulation and neurulation, overlapping the domain of neural crest induction. Morpholino oligonucleotide-mediated depletion of Id3 results in the absence of neural crest precursors and a resultant loss of neural crest derivatives. This appears to be mediated by cell cycle inhibition followed by cell death of the neural crest progenitor pool, rather than a cell fate switch. Conversely, overexpression of Id3 increases cell proliferation and results in expansion of the neural crest domain. Our data suggest that Id3 functions by a novel mechanism, independent of cell fate determination, to mediate the decision of neural crest precursors to proliferate or die. [Keywords: Xenopus; Id3; neural crest; cell cycle; survival] Received September 1, 2004; revised version accepted January 19, 2005. The neural crest is an embryonic cell population that origi- et al. 2003), c-Myc (Bellmeyer et al. 2003), and Msx1 nates from the lateral edges of the neural plate during (Tribulo et al. 2003) have been identified in Xenopus nervous system formation.
    [Show full text]
  • Lncmyod Promotes Skeletal Myogenesis and Regulates Skeletal Muscle Fiber-Type Composition by Sponging Mir-370-3P
    G C A T T A C G G C A T genes Article LncMyoD Promotes Skeletal Myogenesis and Regulates Skeletal Muscle Fiber-Type Composition by Sponging miR-370-3p Peiwen Zhang 1,2,† , Jingjing Du 1,2,†, Xinyu Guo 1,2, Shuang Wu 1,2, Jin He 1,2 , Xinrong Li 1,2, Linyuan Shen 1,2 , Lei Chen 1,2, Bohong Li 1, Jingjun Zhang 1, Yuhao Xie 1, Lili Niu 1,2, Dongmei Jiang 1,2, Xuewei Li 1,2, Shunhua Zhang 1,2 and Li Zhu 1,2,* 1 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (P.Z.); [email protected] (J.D.); [email protected] (X.G.); [email protected] (S.W.); [email protected] (J.H.); [email protected] (X.L.); [email protected] (L.S.); [email protected] (L.C.); [email protected] (B.L.); [email protected] (J.Z.); [email protected] (Y.X.); [email protected] (L.N.); [email protected] (D.J.); [email protected] (X.L.); [email protected] (S.Z.) 2 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The development of skeletal muscle is a highly ordered and complex biological process. Increasing evidence has shown that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play a vital role in the development of myogenic processes.
    [Show full text]
  • The NANOG Transcription Factor Induces Type 2 Deiodinase Expression and Regulates the Intracellular Activation of Thyroid Hormone in Keratinocyte Carcinomas
    Cancers 2020, 12 S1 of S18 Supplementary Materials: The NANOG Transcription Factor Induces Type 2 Deiodinase Expression and Regulates the Intracellular Activation of Thyroid Hormone in Keratinocyte Carcinomas Annarita Nappi, Emery Di Cicco, Caterina Miro, Annunziata Gaetana Cicatiello, Serena Sagliocchi, Giuseppina Mancino, Raffaele Ambrosio, Cristina Luongo, Daniela Di Girolamo, Maria Angela De Stefano, Tommaso Porcelli, Mariano Stornaiuolo and Monica Dentice Figure S1. Strategy for the mutagenesis of Dio2 promoter. (A) Schematic representation of NANOG Binding Site within the Dio2 promoter region. (B) Schematic diagram for site‐directed mutagenesis of NANOG Binding Site on Dio2 promoter region by Recombinant PCR. (C) Representation of the mutated NANOG Binding Site on Dio2 promoter region. (D) Electropherogram of the NANOG Binding Site mutation within the Dio2 promoter. Cancers 2020, 12 S2 of S18 Figure S2. Strategy for the silencing of NANOG expression. (A) Cloning strategies for the generation of NANOG shRNA expression vectors. (B) Electropherograms of the NANOG shRNA sequences cloned into pcDNA3.1 vector. (C) Validation of effective NANOG down-modulation by two different NANOG shRNA vectors was assessed by Western Blot analysis of NANOG expression in BCC cells. (D) Quantification of NANOG protein levels versus Tubulin levels in the same experiment as in C is represented by histograms. Cancers 2020, 12 S3 of S18 Figure S3. The CD34+ cells are characterized by the expression of typical epithelial stemness genes. The mRNA levels of a panel of indicated stemness markers of epidermis were measured by Real Time PCR in the same experiment indicated in figure 3F and G. Cancers 2020, 12 S4 of S18 Figure S4.
    [Show full text]