Molecular Systems Biology 4; Article number 188; doi:10.1038/msb.2008.25 Citation: Molecular Systems Biology 4:188 & 2008 EMBO and Nature Publishing Group All rights reserved 1744-4292/08 www.molecularsystemsbiology.com Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression Sujun Hua1,2,3,9, Caleb B Kallen4,9, Ruby Dhar1,2, Maria T Baquero5, Christopher E Mason6, Beth A Russell1,2,6, Parantu K Shah1,2, Jiang Liu1,2, Andrey Khramtsov7, Maria S Tretiakova8, Thomas N Krausz8, Olufunmilayo I Olopade7, David L Rimm5 and Kevin P White1,2,* 1 Joint Institute for Genomics and Systems Biology, The University of Chicago and Argonne National Laboratory, Chicago, IL, USA, 2 Department of Human Genetics, The University of Chicago, Chicago, IL, USA, 3 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA, 4 Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA, 5 Department of Pathology, Yale University, New Haven, CT, USA, 6 Department of Genetics, Yale University, New Haven, CT, USA, 7 Center for Clinical Cancer Genetics, University of Chicago Medical Center, Chicago, IL, USA and 8 Department of Pathology, The University of Chicago Hospitals, Chicago, IL, USA 9 These authors contributed equally to this work * Corresponding author. Department of Human Genetics, The University of Chicago, 1639 Pierce Drive, WMB 4211, Chicago, IL 60637, USA. Tel.: þ 1 773 834 8259; Fax: þ 1 773 834 0505; E-mail:
[email protected] Received 7.9.07; accepted 13.3.08 We demonstrate an integrated approach to the study of a transcriptional regulatory cascade involved in the progression of breast cancer and we identify a protein associated with disease progression.