Andrei Linde Is One of the Authors of Inflationary Cosmology, Which Helps to Solve Many Problems of the Theory of the Hot Big Bang

Total Page:16

File Type:pdf, Size:1020Kb

Andrei Linde Is One of the Authors of Inflationary Cosmology, Which Helps to Solve Many Problems of the Theory of the Hot Big Bang Andrei Linde is one of the authors of inflationary cosmology, which helps to solve many problems of the theory of the hot Big Bang. He is a Professor of Physics at Stanford University, but originally he worked in the Division of Theoretical Physics of the Lebedev Physical Institute in Moscow. Linde several times visited Sakharov during his exile in Gorky. He has been awarded many prizes for his work on inflationary cosmology, including the Dirac medal, the Fundamental Physics Prize, the Kavli Prize on Astrophysics, and the Gamow Prize by RASA-America. Prof. Linde is a member of the National Academy of Sciences of the USA and of the American Academy of Arts and Sciences. Valery Rubakov is chief researcher at the Institute for Nuclear Research (INR) of the Russian Academy of Sciences in Moscow and Professor at M.V. Lomonosov Moscow State University. Theoretical physicist, he made deep, fundamental contributions to particle physics and cosmology, including the Callan-Rubakov mechanism for proton decay, the mechanism for baryogenesis in the early Universe, the hypothesis of large extra dimensions Prof. Rubakov is a Full member (Academician) of the Russian Academy of Sciences and a member of the American Academy of Arts & Sciences, he is also a recipient of Pomeranchuk Prize, the Pontecorvo Prize, the Julius Wess award, the Hamburg Prize for Theoretical Physics among other distictions. Grigory Trubnikov is Director of the Joint Institute for Nuclear Research (JINR, Dubna, Russia). An expert in charged particles accelerator physics and technology, he was elected Corresponding member of the Russian Academy of Science in 2011 and a Full member of the RAS in 2016. He is Deputy of the Academician-Secretary the Physics Science Division of the Russian Academy of Science since 2013. In 2009 he initiated, and then led, the Nuclotron-NICA heavy ion colliding beams project at JINR. In 2012–13, Prof.Trubnikov was a member of Presidium of the Russian Presidential Council on Science and Education. In 2017–18, he served as the Deputy Minister of Education and Science of the Russian Federation and in 2018–2020 was appointed the First Deputy Minister of Science and Higher Education of the Russian Federation. He is also a recipient of the 2010 State Prize of the Russian Federation in science and technologies 2010 (for creation of new generation of heavy ion accelerators for relativistic nuclear physics and innovative nuclear-energetic technologies) and a member of the Russian Pugwash Committee since 2018. .
Recommended publications
  • Inflation, Large Branes, and the Shape of Space
    Inflation, Large Branes, and the Shape of Space Brett McInnes National University of Singapore email: [email protected] ABSTRACT Linde has recently argued that compact flat or negatively curved spatial sections should, in many circumstances, be considered typical in Inflationary cosmologies. We suggest that the “large brane instability” of Seiberg and Witten eliminates the negative candidates in the context of string theory. That leaves the flat, compact, three-dimensional manifolds — Conway’s platycosms. We show that deep theorems of Schoen, Yau, Gromov and Lawson imply that, even in this case, Seiberg-Witten instability can be avoided only with difficulty. Using a specific cosmological model of the Maldacena-Maoz type, we explain how to do this, and we also show how the list of platycosmic candidates can be reduced to three. This leads to an extension of the basic idea: the conformal compactification of the entire Euclidean spacetime also has the topology of a flat, compact, four-dimensional space. arXiv:hep-th/0410115v2 19 Oct 2004 1. Nearly Flat or Really Flat? Linde has recently argued [1] that, at least in some circumstances, we should regard cosmological models with flat or negatively curved compact spatial sections as the norm from an Inflationary point of view. Here we wish to argue that cosmic holography, in the novel form proposed by Maldacena and Maoz [2], gives a deep new interpretation of this idea, and also sharpens it very considerably to exclude the negative case. This focuses our attention on cosmological models with flat, compact spatial sections. Current observations [3] show that the spatial sections of our Universe [as defined by observers for whom local isotropy obtains] are fairly close to being flat: the total density parameter Ω satisfies Ω = 1.02 0.02 at 95% confidence level, if we allow the imposition ± of a reasonable prior [4] on the Hubble parameter.
    [Show full text]
  • Eternal Inflation and Its Implications
    IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 40 (2007) 6811–6826 doi:10.1088/1751-8113/40/25/S25 Eternal inflation and its implications Alan H Guth Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: [email protected] Received 8 February 2006 Published 6 June 2007 Online at stacks.iop.org/JPhysA/40/6811 Abstract Isummarizetheargumentsthatstronglysuggestthatouruniverseisthe product of inflation. The mechanisms that lead to eternal inflation in both new and chaotic models are described. Although the infinity of pocket universes produced by eternal inflation are unobservable, it is argued that eternal inflation has real consequences in terms of the way that predictions are extracted from theoretical models. The ambiguities in defining probabilities in eternally inflating spacetimes are reviewed, with emphasis on the youngness paradox that results from a synchronous gauge regularization technique. Although inflation is generically eternal into the future, it is not eternal into the past: it can be proven under reasonable assumptions that the inflating region must be incomplete in past directions, so some physics other than inflation is needed to describe the past boundary of the inflating region. PACS numbers: 98.80.cQ, 98.80.Bp, 98.80.Es 1. Introduction: the successes of inflation Since the proposal of the inflationary model some 25 years ago [1–4], inflation has been remarkably successful in explaining many important qualitative and quantitative properties of the universe. In this paper, I will summarize the key successes, and then discuss a number of issues associated with the eternal nature of inflation.
    [Show full text]
  • 2012-2013 Chair James Rosenzweig
    Department of Physics Astronomy ANNUAL REPORT 2013 219728_AnnualReport.indd 1 11/18/13 4:02 PM UCLA Physics and Astronomy Department 2012-2013 Chair James Rosenzweig Chief Administrative Officer Will Spencer Feature Article Eric Hudson Editorial Assistants Corinna Koehnenkamp, D.L. MacLaughlan-Dumes, Laurie Ultan-Thomas Design Mary Jo Robertson © 2013 by the Regents of the University of California All rights reserved. Requests for additional copies of the publication UCLA Department of Physics and Astronomy 2012-2013 Annual Report may be sent to: Office of the Chair UCLA Department of Physics and Astronomy 430 Portola Plaza Box 951547 Los Angeles California 90095-1547 For more information on the Department see our website: http://www.pa.ucla.edu/ UCLA DEPARTMENT OF PHYSICS & ASTRONOMY 219728_AnnualReport.indd 2 11/18/13 4:02 PM Department of Physics Astronomy& 2013 Annual Report UNIVERSITY OF CALIFORNIA, LOS ANGELES 219728_AnnualReport.indd 3 11/18/13 4:02 PM CONTENTS FEATURE ARTICLE: P.7 “Harnessing quantum interactions for the future of science and technology” GIVING TO THE DEPARTMENT P.15 UCLA ALUMNI P.18 ASTRONOMY & ASTROPHYSICS P.19 ASTROPARTICLE PHYSICS P.31 PHYSICS RESEARCH HIGHLIGHTS P.37 PHYSICS & ASTRONOMY FACULTY/RESEARCHERS P.60 DEPARTMENT NEWS P.61 OUTREACH-ASTRONOMY LIVE P. 64 GRADUATION 2012-13 P.66 219728_AnnualReport.indd 4 11/18/13 4:02 PM Message from the Chair As Chair of the UCLA Department of Physics and Astronomy, it is with pride that I present to you our 2013 Annual Report. This document is intended to give an overview of the departmental accomplishments recorded in the last year, extending from recog- nition of faculty excellence in teaching and research, to the welcoming of new members to our ranks.
    [Show full text]
  • Reversed out (White) Reversed
    Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments.
    [Show full text]
  • Our Cosmic Origins
    Chapter 5 Our cosmic origins “In the beginning, the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move”. Douglas Adams, in The Restaurant at the End of the Universe “Oh no: he’s falling asleep!” It’s 1997, I’m giving a talk at Tufts University, and the legendary Alan Guth has come over from MIT to listen. I’d never met him before, and having such a luminary in the audience made me feel both honored and nervous. Especially nervous. Especially when his head started slumping toward his chest, and his gaze began going blank. In an act of des- peration, I tried speaking more enthusiastically and shifting my tone of voice. He jolted back up a few times, but soon my fiasco was complete: he was o↵in dreamland, and didn’t return until my talk was over. I felt deflated. Only much later, when we became MIT colleagues, did I realize that Alan falls asleep during all talks (except his own). In fact, my grad student Adrian Liu pointed out that I’ve started doing the same myself. And that I’ve never noticed that he does too because we always go in the same order. If Alan, I and Adrian sit next to each other in that order, we’ll infallibly replicate a somnolent version of “the wave” that’s so popular with soccer spectators. I’ve come to really like Alan, who’s as warm as he’s smart. Tidiness isn’t his forte, however: the first time I visited his office, I found most of the floor covered with a thick layer of unopened mail.
    [Show full text]
  • Higgs Inflation
    Higgs inflation Javier Rubio Institut fur¨ Theoretische Physik, Ruprecht-Karls-Universitat¨ Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany —————————————————————————————————————————— Abstract The properties of the recently discovered Higgs boson together with the absence of new physics at collider experiments allows us to speculate about consistently extending the Standard Model of particle physics all the way up to the Planck scale. In this context, the Standard Model Higgs non- minimally coupled to gravity could be responsible for the symmetry properties of the Universe at large scales and for the generation of the primordial spectrum of curvature perturbations seeding structure formation. We overview the minimalistic Higgs inflation scenario, its predictions, open issues and extensions and discuss its interplay with the possible metastability of the Standard Model vacuum. —————————————————————————————————————————— arXiv:1807.02376v3 [hep-ph] 13 Mar 2019 Email: [email protected] 1 Contents 1 Introduction and summary3 2 General framework7 2.1 Induced gravity . .7 2.2 Higgs inflation from approximate scale invariance . .8 2.3 Tree-level inflationary predictions . 11 3 Effective field theory interpretation 14 3.1 The cutoff scale . 14 3.2 Relation between high- and low-energy parameters . 16 3.3 Potential scenarios and inflationary predictions . 17 3.4 Vacuum metastability and high-temperature effects . 21 4 Variations and extensions 22 4.1 Palatini Higgs inflation . 23 4.2 Higgs-Dilaton model . 24 5 Concluding remarks 26 6 Acknowledgments 26 2 1 Introduction and summary Inflation is nowadays a well-established paradigm [1–6] able to explain the flatness, homogene- ity and isotropy of the Universe and the generation of the primordial density fluctuations seeding structure formation [7–10].
    [Show full text]
  • MIT Briefing Book 2015 April Edition
    MIT Briefing Book 2015 April edition Massachusetts Institute of Technology MIT Briefing Book © 2015, Massachusetts Institute of Technology April 2015 Cover images: Christopher Harting Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139-4307 Telephone Number 617.253.1000 TTY 617.258.9344 Website http://web.mit.edu/ The Briefing Book is researched and written by a variety of MIT faculty and staff, in particular the members of the Office of the Provost’s Institutional Research group, Industrial Liaison Program, Student Financial Services, and the MIT Washington Office. Executive Editors Maria T. Zuber, Vice President for Research [email protected] William B. Bonvillian, Director, MIT Washington Office [email protected] Editors Shirley Wong [email protected] Lydia Snover, to whom all questions should be directed [email protected] 2 MIT Briefing Book MIT Senior Leadership President Vice President for Finance L. Rafael Reif Glen Shor Chairman of the Corporation Director, Lincoln Laboratory Robert B. Millard Eric D. Evans Provost Dean, School of Architecture and Planning Martin A. Schmidt Hashim Sarkis Chancellor Dean, School of Engineering Cynthia Barnhart Ian A. Waitz Executive Vice President and Treasurer Dean, School of Humanities, Arts, and Social Sciences Israel Ruiz Deborah K. Fitzgerald Vice President for Research Dean, School of Science Maria T. Zuber Michael Sipser Vice President Dean, Sloan School of Management Claude R. Canizares David C. Schmittlein Vice President and General Counsel Associate Provost Mark DiVincenzo Karen Gleason Chancellor for Academic Advancement Associate Provost W. Eric L. Grimson Philip S. Khoury Vice President Director of Libraries Kirk D. Kolenbrander Chris Bourg Vice President for Communications Institute Community and Equity Officer Nathaniel W.
    [Show full text]
  • Particle Physics Detector in Space
    Particle physics detector in space QED IN BULGARIA STARING AT THE SUN HADRON THERAPY Researchers are still pushing at How will Gran Sasso's Borexino The Proton-Ion Medical Machine the frontiers of QED, as a workshop experiment work and what will it tell Study is exploring how particle physics in Bulgaria revealed us about the nature of neutrinos? can benefit medical treatment All the F.W. Bel I (s) and Whistles. RS -232I/O Port Built-in Rechargeable Battery Min/Maxl Peak Hold 0.25% DC Accuracy Frequency Range DC-20 kHz The New6000Series Gauss/Teslameter Delivers Laboratory Accuracy in a Portable Package You spoke and we listened! The New Model 6010 is the As with all F.W. Bell products, you can expect a superior latest development in the measurement of magnetic flux level of performance, satisfaction and support that can come density using F.W. Bell's state-of-the-art Hall-effect only from a world leader. Look to F.W. Bell when quality and technology. performance matter most. The Model 6010 performs Magnetic field measurements Act Now! from zero to 300 kG (30 T) over 6 ranges with a resolution Special Introductory Free Probe Offer! of 1 mG (0.1 JJT). The Model 6010 measures both DC & Call Today at (407) 678-6900 USA or True RMS AC magnetic fields, at frequencies up to 20 kHz, Go to the Web! www.fwbell.com/html/cerncourier.html with a basic DC accuracy of 0.25%. The Model 6010 provides readings in Gauss, Tesla & Ampere/Meters. The new 6000 Series Hall-effect probe features F.W.
    [Show full text]
  • PDF Document
    String theorists win Dirac Medal P-2 Is string theory a theory or a framework? What impacts will the Large Hadron Collider experiments have on the field? ICTP Dirac Medallists Juan Martín Maldacena, Joseph Polchinski and Cumrun Vafa share their insights on this proposal for a unified description of fundamental interactions in nature, and also describe what they find most exciting about string theory • • • ICTP celebrates Year of Darwin P-5 The link between physics and human evolution may not seem immediately obvious. Yet, the tools of modern physics can date human evolution and dispersal accurately. The tools and techniques used to pinpoint the age of human bones and teeth were the subject of an ICTP exhibit and lecture series held in conjunction with UNESCO’s symposium on Darwin, Evolution and Science • • • Focus on Africa CENTREFOLD ICTP has a long tradition of scientific capacity-building in Africa. Registrazione presso il Tribunale di Trieste n. 1044 del 01.03.2002 | Contiene Inserto Redazionale n. 1044 del 01.03.2002 | Contiene Inserto di Trieste il Tribunale presso Registrazione Over the last few decades, ICTP has supported numerous activities throughout the continent, including training programmes, networks and the establishment of affiliate centres. In Trieste, ICTP has welcomed more than 10,000 African visitors since 1970, providing advanced research and NEWSNEWS training opportunities unavailable to scientists in their home countries • • • NEW SCIENCE FOR CLEAN ENERGY (P-6) | EXPERIMENTAL PLASMA PHYSICS n°127 AT ICTP (P-7) | SNO DIRECTOR VISITS ICTP (P-8) | RESEARCH NEWS BRIEFS Spring/Summer 2009 (P-12) | NEW STAFF (P-16) | ACHIEVEMENTS/PRIZES (P-17) from ICTP Poste Italiane S.p.A.
    [Show full text]
  • Section 1: Facts and History (PDF)
    Section 1 Facts and History Fields of Study 11 Digital Learning 12 Research Laboratories, Centers, and Programs 13 Academic and Research Affiliations 14 Initiatives 17 Education Highlights 19 Research Highlights 23 Faculty and Staff 31 Faculty 31 Researchers 33 Postdoctoral Scholars 34 Awards and Honors of Current Faculty and Staff 35 MIT Briefing Book 9 MIT’s commitment to innovation has led to a host of Facts and History scientific breakthroughs and technological advances. The Massachusetts Institute of Technology is one Achievements of the Institute’s faculty and graduates of the world’s preeminent research universities, have included the first chemical synthesis of penicillin dedicated to advancing knowledge and educating and vitamin A, the development of inertial guidance students in science, technology, and other areas of systems, modern technologies for artificial limbs, and scholarship that will best serve the nation and the the magnetic core memory that enabled the develop- world. It is known for rigorous academic programs, ment of digital computers. Exciting areas of research cutting-edge research, a diverse campus community, and education today include neuroscience and the and its long-standing commitment to working with study of the brain and mind, bioengineering, energy, the public and private sectors to bring new knowl- the environment and sustainable development, infor- edge to bear on the world’s great challenges. mation sciences and technology, new media, financial technology, and entrepreneurship. William Barton Rogers, the Institute’s founding presi- dent, believed that education should be both broad University research is one of the mainsprings of and useful, enabling students to participate in “the growth in an economy that is increasingly defined humane culture of the community” and to discover by technology.
    [Show full text]
  • Immanuel KANT and a New Physics
    International Journal of Advanced Research in Physical Science (IJARPS) Volume 7, Issue 9, 2019, PP 13-26 ISSN No. (Online) 2349-7882 www.arcjournals.org Immanuel KANT and a New Physics Stanislav Konstantinov¹*, Stefano Veneroni² 1Department of Physical Electronics, Herzen State Pedagogical University, Saint Petersburg RSC”Energy”, Russia 2Department of Italian Studies, University of Eastern Piedmont, Vercelli, Italy *Corresponding Author: Stanislav Konstantinov, Department of Physical Electronics, Herzen State Pedagogical University, Saint Petersburg RSC”Energy”, Russia Abstract: A new Physics is born at the time of the crisis of theoretical physics and the entire scientific paradigm. The article proposes to come back to Immanuel Kant's philosophical heritage and, in particular, to his monograph “Critique of pure reason”, in order to better understand the concept of quantum vacuum (dark matter) in “New Physics” and its participation in all interactions in an open Universe. Keywords: quantum vacuum, dark matter, electromagnetism, gravity, nuclear forces PACS Number: 01.10.Fv, 04.50.-h, 12.10.Kt, 95.36.+x, 98.80.-k 1. INTRODUCTION Nowadays, in the scientific community, there is no unambiguous definition for the concept of “New Physics”. So Academician of the Russian Academy of Sciences, chief researcher at the Institute for Nuclear Research Valery Rubakov, who received Hamburg Prize in Theoretical Physics 2020 believes that despite all efforts, no experimental indications of a “new Physics” have yet been received. In his article “Higgs Boson”, he writes: “This is actually already starting to cause concern: is it right we all understand, it‟s quite possible, however, that we still haven‟t reached the “new physics” in terms of energy and in the amount of data collected.
    [Show full text]
  • Valery Rubakov Chief Scientist Institute for Nuclear Research Russian Academy of Sciences, Moscow
    INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH (IISER) PUNE DR. HOMI BHABHA ROAD, PASHAN, PUNE-411008 INDIA The First Annual Homi Bhabha Distinguished Public Lecture in Physics The Universe Before the Hot Big Bang November 18, 2014, 5:30 PM ABSTRACT C.V. Raman Auditorium, It is known for long time that the Universe went through IISER Pune the hot Big Bang stage, with extraordinarily high temperatures of matter and extremely rapid expansion of space. It is less known that existing observational data strongly suggest that the hot Big Bang stage was ABOUT THE SPEAKER not the first one, but was preceded by yet another epoch with completely different – and unusual – Academician Prof. Rubakov is a leading properties. cosmologist and quantum field theorist renowned for his work on the physics of the The best guess for that early epoch is cosmic inflation, early universe, dark energy, dark matter and but alternative theories are not yet ruled out. It is extra dimensions. reassuring that future cosmological observations will R.Dupke most likely be capable of unveiling the nature of the Prof. Rubakov received a Ph.D. in physics / earliest epoch and physics that governed the Universe and mathematics from the Institute for Nuclear at that time. Research, Russian Academy of Sciences in STScI 1981. He then began his career as a junior research fellow at the Institute for Nuclear Research, Russian Academy of Sciences, becoming vice-director of research in 1987 Image Credit: NASA/ and chief scientist in 1994. He is also a professor of physics at Moscow State University. He has authored more than 150 research papers on particle physics, gravitation and cosmology, many of which have been very influential in the field.
    [Show full text]