A Mathematical Model of a Lithium/Thionyl Chloride Primary Cell T

Total Page:16

File Type:pdf, Size:1020Kb

A Mathematical Model of a Lithium/Thionyl Chloride Primary Cell T University of South Carolina Scholar Commons Faculty Publications Chemical Engineering, Department of 1989 A Mathematical Model of a Lithium/Thionyl Chloride Primary Cell T. I. Evans Texas A & M University - College Station T. V. Nguyen Texas A & M University - College Station Ralph E. White University of South Carolina - Columbia, [email protected] Follow this and additional works at: https://scholarcommons.sc.edu/eche_facpub Part of the Chemical Engineering Commons Publication Info Journal of the Electrochemical Society, 1989, pages 328-339. © The Electrochemical Society, Inc. 1989. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The ra chival version of this work was published in the Journal of the Electrochemical Society. http://www.electrochem.org/ DOI: 10.1149/1.2096630 http://dx.doi.org/10.1149/1.2096630 This Article is brought to you by the Chemical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. 328 J. Electrochem. Soc., Vol. 136, No. 2, February 1989 The Electrochemical Society, Inc. Table A-I. Concentration, density, and mole fraction of LiAICI4-SOCI2 (p +_ 0.0001) = (0.594484 • 0.000934). XLjAlCI4 solutions at 25~ based on the experiment of Venkatasetty and Saathoff (5) + (1.64388 --+ 0.00004) (R 2 = 0.99997) These lines are valid in the range 0 < XLIA~C14< 0.11, 0 < C Concentration Density < 1.50 mol/liter and 1.64 < p < 1.71 g/cm ~ and at 25~ At (mol/liter) (g/cm~) XLiAIC14a higher concentrations linear extrapolation cannot be done with confidence. Therefore the concentrations in Table II 0.00249 1.6438 0.00018 are shown with few digits. 0.00997 1.6443 0.00072 It should be noted that the equation for the density does 0.03046 1.6451 0.00220 0.04985 1.64599 0.00360 not extrapolate to the generally accepted room tempera- 0.0997 1.64820 0.00722 ture value 1.629 g/cm 3 for SOC12 (17). 0.200 1.6525 0.01450 0.35 1.65903 0.02540 REFERENCES 0.50 1.66555 0.03633 1. "Lithium Battery Technology", H. V. Venkatasetty, 0.65 1.67206 0.04729 Editor, The Electrochemical Society and John Wiley 0.75 1.6764 0.054395 & Sons, Inc., New York (1984). 0.90 1.68293 0.06561 1.00 1.68727 0.07296 2. J. J. Auborn, K. W. French, S. I. Lieberman, C. K. 1.50 1,7090 0.109895 Shah, and A. Heller, This Journal, 120, 1613 (1973). 3. M. Solomon, ibid., 128, 233 (1981). aCalculated by iteration as explained in the text. 4. H. V. Venkatasetty and W. B. Ebner, in Proceedings of the 29th Power Sources Conference, Atlantic City, N J, June 9-12, 1980, The Electrochemical Society, Inc., p. 122 (1981). Ib Henriksens Fond are thanked for providing the finan- 5. H. V. Venkatasetty and D. J. Saathoff, This Journal~ cial basis of this work. 128, 773 (1981). Manuscript submitted Nov. 30, 1987; revised manuscript 6. H. V. Venkatasetty and S. Szpak, J. Chem. Eng. Data, received June 28, t988. 28, 47 (1983). 7. S.Szpak and H. V. Venkatasetty, This Journal, 131, 961 Note added in proof: Recent measurements (16) agree (1984). well with our measurements also at high concentrations. 8. A. N. Dey and J. Miller, ibid., 126, 1445 (1979). 9. R. W. Berg, H. A. Hjuler, and N. J. Bjerrum, Inorg. Chem., 23, 557 (1984). APPENDIX 10. F. W. Poulsen and N. J. Bjerrum, J. Phys. Chem., 79, To facilitate comparisons with the literature, data given 1610 (1975). by Venkatasetty and Saathoff (5) for the density of the 11. G. Jones and B. C. Bradshaw, J. Am. Chem. Soc., 55, SOC12 solution vs. the molar LiA1C14 concentration have 1789 (1933). been used to estimate approximate concentrations. The 12. J. O. Besenhard and G. Eichinger, J. Electroanal. calculations were based on their data points (see Table Chem., 68, 1 (1976). A-I), using an iterative method. We assumed p grams of 13. F. Birkeneder, R. W. Berg, H. A. Hjuler, and N.J. LiA1C14 per mole of SOC12. Thus, p = C. 175.732 (118.9894 + Bjerrum, Z. Anorg. AUg. Chem., Accepted. p)/1000 p, where C is the molar LiA1C14 concentration, p is 14. Statistical Analysis System, Procedures GLM, the density, and the numbers shown are the molar masses RSQUARE CP, and G3D, SAS Institute Inc., Cary, of LiA1C14 and SOC12. From p values calculated iteratively, NC 27511. the molar fraction of LiA1Ch is easily obtained for each of 15. P.A. Mosier-Boss, J, J. Smith, and S. Szpak, Paper 496, the given concentrations. Then the C and p data were p. 711, The Electrochemical Society Extended Ab- stracts, Vol. 87-1, Philadelphia, PA, May 10-15, 1987. treated by regression vs. XLiAIC]4 to give linear de- pendencies 16. J.W. Boyd and G. E. Blomgren, Abs. 9, p. 14, The Elec- trochemical Society Extended Abstracts, Vol. 88-1, (C • 0.0025) = (13.7007 • 0.0143) XLiAlC14 (R ~ = 0.999987) Atlanta, GA, May 15-20, 1988. 17. S. T. Bowden and A. R. Morgan, Phil. Mag., 29, 367 and (1940). A Mathematical Model of a Lithium/Thionyl Chloride Primary Cell T. I. Evans,* T. V. Nguyen,* and R. E. White** Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843 ABSTRACT A one-dimensional mathematical model for the lithium/thionyl chloride, primary cell has been developed to investi- gate methods of improving its performance and safety. The model includes many of the components of a typical lithium/ thionyl chloride cell such as the porous lithium chloride film which forms on the lithium anode surface. The governing equations are formulated from fundamental conservation laws using porous electrode theory and concentrated solution theory. The model is used to predict one-dimensional, time dependent profiles of concentration, porosity, current, and po- tential as well as cell temperature and voltage. When a certain discharge rate is required, the model can be used to deter- mine the design criteria and operating variables which yield high cell capacities. Model predictions can be used to estab- lish operational and design limits within which the thermal runaway problem, inherent in these cells, can be avoided. The lithium/thionyl chloride (Li/SOC12) cell is an attrac- of toxic gases and explosion. A mathematical model of this tive primary energy source because of its high energy den- battery has been developed to investigate the operational sity (1, 2). However, researchers have observed that the and design characteristics which can be adjusted to yield Li/SOCI~ cell is a serious safety hazard under certain con- efficient, yet acceptably safe Li/SOC12 cells. ditions (2). High discharge rates and high temperatures promote thermal runaway which can result in the venting Description of a Li/SOClz Cell The model describes the Li/SOCI~ cell illustrated in *Electrochemical Society Student Member. Fig. 1. The four cell regions are the lithium chloride (LiC1) **Electrochemical Society Active Member. film which forms on the anode surface, the separator (usu- Downloaded 13 Jun 2011 to 129.252.106.20. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp J. Electrochem. Soc., Vol. 136, No. 2, February 1989 The Electrochemical Society, Inc. 329 ally a glass matting), the electrolyte reservoir, and the po- determine the concentration and reaction rate profiles in rous carbon cathode. The anode surface and cathode cur- the cell. Other Li/SOC12 cell models (10-14) are based on rent collector are the boundaries of the model region. The conservation of energy and are used to determine the ther- electrolyte consists of lithium tetrachloroaluminate mal behavior of the cell. (LiA1C14) in thionyl chloride (SOC12). The Li/SOC12 cell is a Tsaur and Pollard (4, 7, 8) present a one-dimensional complex chemical and electrochemical system involving model of the Li/SOC12 cell. They use porous electrode an unknown number of reactions (2). The overall reactions theory (20, 21) and concentrated solution theory (22-24) to which seem most important to include in modeling are: develop this model, and then use their model to predict the oxidation of lithium at the anode concentration profiles, reaction rate distributions in the porous electrode, distributions of LiC1 precipitate in the Li -+ Li + + e- [1] pores of the porous electrode, and cell utilization. How- the reduction of SOC12 at the cathode ever, in their model development Tsaur and Pollard (4, 7, 8) assume that the reservoir is a well mixed solution of con- 2SOC12 + 4e- --+ 4C1- + S02 + S [2] stant concentration, which may not be a valid assumption as shown by Gu et al. (15). Also, they treat the LiC1 film in a and the formation of the LiC1 film on the anode and the simplified manner by ending their finite difference mesh precipitation of LiCI on the pore surfaces of the cathode at the LiC1 film/separator interface. This work shows the during discharge by the following reaction importance of including the film region in the modeling as Li + + C1- ~ LiCl(s) [3] evidenced by the large concentration gradients in the film and the effect of film porosity on cell performance. Due to the low solubility of tiC1 in the SOCI~ + LiAIC14 sol- Several models (10-14) have been presented to describe vent (3), reaction [3] is assumed to occur completely and in- the thermal behavior of Li/SOC12 cells. Parnell and Szpak stantaneously. Thus, reactions [2] and [3] can be combined (10) present a thermal model for the Li/SOC12 cell in one di- to yield one overall reaction representing the processes oc- mension.
Recommended publications
  • Introduction to Batteries
    Introduction to Batteries Course No: E03-002 Credit: 3 PDH A. Bhatia Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] CHAPTER 2 BATTERIES LEARNING OBJECTIVES Upon completing this chapter, you will be able to: 1. State the purpose of a cell. 2. State the purpose of the three parts of a cell. 3. State the difference between the two types of cells. 4. Explain the chemical process that takes place in the primary and secondary cells. 5. Recognize and define the terms electrochemical action, anode, cathode, and electrolyte. 6. State the causes of polarization and local action and describe methods of preventing these effects. 7. Identify the parts of a dry cell. 8. Identify the various dry cells in use today and some of their capabilities and limitations. 9. Identify the four basic secondary cells, their construction, capabilities, and limitations. 10. Define a battery, and identify the three ways of combining cells to form a battery. 11. Describe general maintenance procedures for batteries including the use of the hydrometer, battery capacity, and rating and battery charging. 12. Identify the five types of battery charges. 13. Observe the safety precautions for working with and around batteries. INTRODUCTION The purpose of this chapter is to introduce and explain the basic theory and characteristics of batteries. The batteries which are discussed and illustrated have been selected as representative of many models and types which are used in the Navy today. No attempt has been made to cover every type of battery in use, however, after completing this chapter you will have a good working knowledge of the batteries which are in general use.
    [Show full text]
  • Evaluation of Rapid Electric Battery Charging Techniques
    UNLV Theses, Dissertations, Professional Papers, and Capstones 2009 Evaluation of rapid electric battery charging techniques Ronald Baroody University of Nevada Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Power and Energy Commons Repository Citation Baroody, Ronald, "Evaluation of rapid electric battery charging techniques" (2009). UNLV Theses, Dissertations, Professional Papers, and Capstones. 156. http://dx.doi.org/10.34917/1392506 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. EVALUATION OF RAPID ELECTRIC BATTERY CHARGING TECHNIQUES By Ronald Baroody Bachelor of Science University of Nevada, Las Vegas 2005 A thesis submitted in partial fulfillment of the requirements for the Master of Science in Engineering Department of Electrical and Computer Engineering Howard R. Hughes College of Engineering Graduate
    [Show full text]
  • Development of Cathode Materials for Magnesium Primary Cell K
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KnowledgeCuddle Publication (E-Journals) International Journal of Research in Advance Engineering, (IJRAE) Vol. 2, Issue 5, Sep-Oct-2016, Available at: www.knowledgecuddle.com/index.php/IJRAE Development of cathode materials for magnesium primary cell K. Narthana1, M. Selvam1, K. Saminathan, V. Rajendran and Karan V.I.S. Kaler2 aCentre for nano science and technology, K S Rangasamy College of technology, Tiruchengode -637 215, Tamil Nadu, India bSchulich School of Engineering , Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada. Abstract: The Zinc Sulfide nanoparticles were synthesized by simple chemical reaction of ZnCl2 and Sulphur powder in aqueous solution. The main advantage of this method is the use of non-toxic precursors and water as solvent. The BZ1 and NZ2 samples reveal an average particle size respectively 510 and 43.7 nm. The structural, morphological, chemical composition and optical properties of the nanoparticles were investigated by X-ray diffraction, Scanning electron Microscopy, and Energy-dispersive X-ray Spectroscopy, Ultra Violet Spectroscopy and Electrochemical studies. The NZ2 sample showed a high discharge capacity of 362 mAh g -1, whereas the BZ1 sample showed a discharge capacity of 120 mAh g -1. The discharge capacity of NZ2 sample based cathode was 33.1 % higher than BZ1 sample based cathode. Thus, the above studies confirm that zinc sulfide nano powders show promise application as a cathode material for Mg/ZnS primary cell. Key words: BZ1 sample, NZ2 sample, Discharge capacity, Electro chemical studies, Band gap *Corresponding author: [email protected] I.
    [Show full text]
  • Battery Recycling: Defining the Market and Identifying the Technology Required to Keep High Value Materials in the Economy and out of the Waste Dump
    Battery Recycling: defining the market and identifying the technology required to keep high value materials in the economy and out of the waste dump By Timothy W. Ellis Abbas H. Mirza Page 1 of 33 Introduction: The accumulation of post consumer non-Lead/Acid batteries and electrochemical (n-PbA) cells has been identified as a risk in the waste stream of modern society. The n-PbA’s contain material that is environmentally unsound for disposal; however, do represent significant values of materials, e.g. metals, metal oxides, and carbon based material, polymers, organic electrolytes, etc. The desire is to develop systems whereby the nPbA’s are reprocessed in a hygienic and environmentally astute manner which returns the materials within the n-PbA’s to society in an economically and environmentally safe and efficient manner. According to information published in the Fact File on the “Recycling of Batteries” by the Institution of Engineering and Technology (www.theiet.org) the following, Table 1, describes the recycling market. Table 1: Recoverable Metals from Various Battery Types Battery Type Recycling Alkaline & Zinc Carbon Recycled in the metals industry to recover steel, zinc, ferromanganese Nickel – (Cadmium, Metal Hydride) Recycled to recover Cadmium and Nickel with a positive market value Li-Ion Recycled to recover Cobalt with a positive market value Lead-Acid Recycled in Lead industry with a positive market value Button Cells Silver is recovered and has a positive market value; Mercury is recovered by vacuum thermal processes A literature search on “Recycling and Battery” on the STN Easy data base produced over 2500 hits.
    [Show full text]
  • Electric Current Is a Flow of Charge
    Page 1 of 7 KEY CONCEPT Electric current is a flow of charge. BEFORE, you learned NOW, you will learn • Charges move from higher to • About electric current lower potential • How current is related to • Materials can act as conductors voltage and resistance or insulators • About different types of • Materials have different levels electric power cells of resistance VOCABULARY EXPLORE Current electric current p. 28 How does resistance affect the flow of charge? ampere p. 29 Ohm’s law p. 29 PROCEDURE MATERIALS electric cell p. 31 • pencil lead 1 Tape the pencil lead flat on the posterboard. • posterboard 2 Connect the wires, cell, bulb, and bulb • electrical tape holder as shown in the photograph. • 3 lengths of wire 3 Hold the wire ends against the pencil lead • D cell battery about a centimeter apart from each other. • flashlight bulb Observe the bulb. • bulb holder 4 Keeping the wire ends in contact with the lead, slowly move them apart. As you move the wire ends apart, observe the bulb. WHAT DO YOU THINK? • What happened to the bulb as you moved the wire ends apart? • How might you explain your observation? Electric charge can flow continuously. Static charges cannot make your television play. For that you need a different type of electricity. You have learned that a static charge contains a specific, limited amount of charge. You have also learned that a static charge can move and always moves from higher to lower VOCABULARY potential. However, suppose that, instead of one charge, an electrical Don’t forget to make a four square diagram for the pathway received a continuous supply of charge and the difference in term electric current.
    [Show full text]
  • AN126: Smart Battery Primer
    Smart Battery Primer ® Application Note July 11, 2005 AN126.0 Author: Carlos Martinez, Yossi Drori and Joe Ciancio Introduction Cadmium (Ni-Cd,) Nickel Metal Hydride (NiMH) and Lithium Ion (Li+ or Li-Ion). Lead acid batteries are typically used in Rapid increases in product performance and features along automotive applications or fixed installations because of their with demands for longer operating life have driven designers large size and weight. Newer Lithium technologies (such as of battery based electronics to consider significant changes Lithium Ion Polymer) are emerging, but they are not in product design. These include using lower voltage commercially available in quantity at this time. Lithium components, turning off unused subsystems, managing Polymer cells are expected to appear starting in the year applications software and developing “smarter” batteries and 2000. battery management. Designers of new battery systems need knowledge of many different, diverse and, in many Terminology cases, new fields. These fields range from battery chemistry Before getting into battery specifics, it is important to and knowledge of how the battery operates; to system understand some of the terms used in defining and engineering and knowledge of how the various components characterizing batteries. interact; to product design and knowledge of how the user operates a particular device. ELECTRODE Electrodes are the positive (cathode) and negative (anode) This application note is an introduction and overview of terminals of the cell. These are made of different materials, battery operation and terminology, and provides initial depending on the cell chemistry. The farther apart these discussions of portable system and user design materials are on the Standard Potentials Table, the higher considerations.
    [Show full text]
  • NEW TECHNOLOGY BATTERIES GUIDE NIJ Guide 200-98 ABOUT the LAW ENFORCEMENT and CORRECTIONS STANDARDS and TESTING PROGRAM
    ENT OF M JU U.S. Department of Justice T S R T A I P C E E D Office of Justice Programs B O J C S F A V M F O I N A C I J S R E BJ G National Institute of Justice O OJJ DP O F PR JUSTICE National Institute of Justice Law Enforcement and Corrections Standards and Testing Program NEW TECHNOLOGY BATTERIES GUIDE NIJ Guide 200-98 ABOUT THE LAW ENFORCEMENT AND CORRECTIONS STANDARDS AND TESTING PROGRAM The Law Enforcement and Corrections Standards and Testing Program is sponsored by the Office of Science and Technology of the National Institute of Justice (NIJ), U.S. Department of Justice. The program responds to the mandate of the Justice System Improvement Act of 1979, which created NIJ and directed it to encourage research and development to improve the criminal justice system and to disseminate the results to Federal, State, and local agencies. The Law Enforcement and Corrections Standards and Testing Program is an applied research effort that determines the technological needs of justice system agencies, sets minimum performance standards for specific devices, tests commercially available equipment against those standards, and disseminates the standards and the test results to criminal justice agencies nationally and internationally. The program operates through: The Law Enforcement and Corrections Technology Advisory Council (LECTAC) consisting of nationally recognized criminal justice practitioners from Federal, State, and local agencies, which assesses technological needs and sets priorities for research programs and items to be evaluated and tested. The Office of Law Enforcement Standards (OLES) at the National Institute of Standards and Technology, which develops voluntary national performance standards for compliance testing to ensure that individual items of equipment are suitable for use by criminal justice agencies.
    [Show full text]
  • Accessible Battery Model with Aging Dependency
    energies Article Accessible Battery Model with Aging Dependency Christophe Savard 1, Emiliia Iakovleva 2,* , Daniil Ivanchenko 2 and Anton Rassõlkin 3 1 Mainate Labs, rue Notre Dame de l’Oratoire, 43270 Allègre, France; [email protected] 2 General Electrical Engineering Department Saint Petersburg Mining University, 2, 21st Line, 199106 St Petersburg, Russia; [email protected] 3 Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia; [email protected] * Correspondence: [email protected]; Tel.: +7-921-375-4619 Abstract: Designed to store and discharge electrical energy, rechargeable batteries consist of elemen- tary storage cell assemblies. Aging is affected by various aggravating factors, mainly temperature. There are many electric or electrochemical models which describe their operation. Most standard models do not consider the aging phenomena of batteries and their consequences, while batteries deteriorate when used or stored. Precisely, most battery models do not simulate the influence of cell aging on other cells. The model presented in this paper incorporates aging and the effects of mutual interactions between cells. The model can be established based on four measurement points on the cell characteristic curve and allows the simulation of a single cell’s or multiple coupled cells’ behavior. The model can then be easily implemented in simulation software like Matlab. Keywords: battery; electric power storage system; simulation; aging parameters; temperature Citation: Savard, C.; Iakovleva, E.; 1. Introduction Ivanchenko, D.; Rassõlkin, A. By nature, electrical energy is not easy to store and nowadays there are several Accessible Battery Model with Aging approaches to resolving this problem.
    [Show full text]
  • Know a Battery's State-Of-Charge by Counting Coulombs
    Know a Battery’s State-of-Charge By Counting Coulombs By Steve Knoth Senior Product Marketing Engineer, Power Products Linear Technology Corporation Introduction Once considered dated technology, non-rechargeable (or “primary”) battery cells are experiencing a rebirth. Even though they are not rechargeable, these primary cells, such as the Li-SOCl2 (Lithium-Thionyl Chloride), can still provide advantages for the user, including high energy density, instant readiness, low self-discharge, reasonable lifetimes and environmental friendliness (relatively easily disposable). These cells are commonly found in a variety of applications in which swapping out the batteries is impractical, costly, or where proximity/location/access is difficult. These include military, asset tracking, remote monitoring and wireless sensor networks. These batteries are routinely offered in a variety of chemistries with the 2 most popular being alkaline and Lithium (Li) based. In comparison, rechargeable (or “secondary”) cells offer a different set of benefits (even if they have an initially higher cost), and come in a variety of chemistries such as lead- acid, Nickel and Li-ion. Their advantages include reusability, economical to use (as the cost of a charging system can be spread out over many usage cycles), and good power density (the ability to deliver energy quickly). However, these cells are not considered environmentally friendly and have the potential disadvantage of low energy density (think of this as the amount of stored energy) depending on the system configuration. See Figure 1. Figure 1. Energy Density of Rechargeable vs. Primary Cell Batteries Source: Battery University P356, EN Remote location applications offer a set of conditions more conducive to primary cells - such as using a small load current over a long period of time - where replacing the battery is both costly and impractical.
    [Show full text]
  • The BATTERY (Dry Cell) (How They Generate Electrical Power) Steve Krar the Common Battery (Dry Cell) Is a Device That Changes Chemical Energy to Electrical Energy
    1 The BATTERY (Dry Cell) (How They Generate Electrical Power) Steve Krar The common battery (dry cell) is a device that changes chemical energy to electrical energy. Dry cells are widely used in toys, flashlights, portable radios, cameras, hearing aids, and other devices in common use. A battery consists of an outer case made of zinc (the negative electrode), a carbon rod in the center of the cell (the positive electrode), and the space between them is filled with an electrolyte paste. In operation the electrolyte, consisting of ground carbon, manganese dioxide, sal ammoniac, and zinc chloride, causes the electrons to flow and produce electricity. How do batteries work? Electricity is the flow of electrons through a circuit or conductive path like a wire. Batteries have three parts, an anode (-), a cathode (+), and the electrolyte. The cathode and anode (the positive and negative sides at either end of a smaller battery) are hooked up to an electrical circuit. Electron Flow The chemical reactions in the battery causes a build up of electrons at the anode. This results in an electrical difference between the anode and the cathode. You can think of this difference as an unstable build-up of the electrons. The electrons wants to rearrange themselves to get rid of this difference. But they do this in a certain way. Electrons repel each other and try to go to a place with fewer electrons. In a battery, the only place to go is to the cathode. But, the electrolyte keeps the electrons from going straight from the anode to the cathode within the battery.
    [Show full text]
  • Reliability Evaluation of Primary Cells
    Nigerian Journal of Technology, Vol. 22, no. 1, March 2003 Anyaka 7 RELIABILITY EVALUATION OF PRIMARY CELLS Anyaka Boniface Onyemaechi Dept. of Electrical Engineering, University of Nigeria, Nsukka. ABSTRACT Evaluation of the reliability of a primary cell took place in three stages: 192 cells went through a slow-discharged test. A designed experiment was conducted on 144 cells; there were three factors in the experiment: Storage temperature (three levels), thermal shock (two levels) and date code (two levels). 16 cells experienced a cycled temperature and humidity environment. All tested cells showed acceptable performance. Results of the designed experiment showed the factor most affecting cell performance was the date code. A long- term capacity test on a sample of primary cells can provide information on their quality and reliability. The example shows a very tight capacity distribution. The cell employed a lithium anode. The capacity of many lithium-system is, by design, limited by the quantity of lithium in the anode. Controls on the quantity may permit the manufacturer to control, with considerable precision the capacity of the cells. From the designed experiment, we infer that the factor most affecting the performance of the cell is the time when it was made. Long term storage, perhaps up to 10 years, in a “normal” environment of 20°C will not appreciably affect it, nor will thermal shock or 2-way combinations of factors. Key words - Primary cell, Life test, Environmental stress NOMENCLATURE CCV - Closed Circuit Voltage, the voltage at the terminals of a battery when it is under an electrical load. SS - Sum of squares.
    [Show full text]
  • Battery Digest Article
    ISSUE NUMBER 11 FEBRUARY 1997 ISSN # 1086-9727 Concentrated Battery Business and Technology Summaries for Decision Makers Considerations for Primary Cell Selection1 by Sol Jacobs * The technical press pays a lot of atten- bon-zinc chloride system, a heavy-duty By far, the leading primary battery tion to rechargeable, or secondary bat- version of the Leclanche cell, consti- technology, in terms of units sold in the teries, mainly because of the growing United States, is the alkaline system, number of portable-computing and based on manganese dioxide, zinc and communications applications. But there a caustic potassium hydroxide-zinc are categories of applications that can Primary Battery Specific Energy oxide electrolyte. Alkaline-cell technol- be addressed only by the less glam- ogy offers greater capacity for a given orous class of primary batteries. Alkaline cell size compared with Leclanche types, but it typically costs 50% more Li/12 These applications can be organized and weighs about 25% more. into groups that help to rationalize the Li/(CFX)x choice of primary battery technology. There have been some apparent Li/SO2 However, an overview of existing bat- improvements in alkaline cell perfor- tery technologies is a necessary first Li/MnO2 mance in recent years, but these have step in the decision-making process. been a result of changes in packaging Li/SOCL2 0 250 500 750 and manufacturing techniques rather The types of primary battery than any improvements to the basic chemistries available today include Watthours/kg. chemical system. traditional zinc-carbon-ammonium chloride (Leclanche cell), zinc-carbon- In the past, alkaline batteries were The Lithium Thionyl Chloride battery zinc chloride, alkaline (the leading type made with complex sealing systems has the highest energy density of pro- for consumer use), zinc-air and a and thick steel outer cases and end duction primary batteries.
    [Show full text]