P020210820370140409689.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecosystem Services Changes Between 2000 and 2015 in the Loess Plateau, China: a Response to Ecological Restoration
RESEARCH ARTICLE Ecosystem services changes between 2000 and 2015 in the Loess Plateau, China: A response to ecological restoration Dan Wu1, Changxin Zou1, Wei Cao2*, Tong Xiao3, Guoli Gong4 1 Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China, 2 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China, 3 Satellite Environment Center, Ministry of Environmental Protection, Beijing, China, 4 Shanxi Academy of Environmental Planning, Taiyuan, China a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The Loess Plateau of China is one of the most severe soil and water loss areas in the world. Since 1999, the Grain to Green Program (GTGP) has been implemented in the region. This OPEN ACCESS study aimed to analyze spatial and temporal variations of ecosystem services from 2000 to Citation: Wu D, Zou C, Cao W, Xiao T, Gong G 2015 to assess the effects of the GTGP, including carbon sequestration, water regulation, (2019) Ecosystem services changes between 2000 soil conservation and sand fixation. During the study period, the area of forest land and and 2015 in the Loess Plateau, China: A response grassland significantly expanded, while the area of farmland decreased sharply. Ecosystem to ecological restoration. PLoS ONE 14(1): services showed an overall improvement with localized deterioration. Carbon sequestration, e0209483. https://doi.org/10.1371/journal. pone.0209483 water regulation and soil conservation increased substantially. Sand fixation showed a decreasing trend mainly because of decreased wind speeds. There were synergies Editor: Debjani Sihi, Oak Ridge National Laboratory, UNITED STATES between carbon sequestration and water regulation, and tradeoffs between soil conserva- tion and sand fixation. -
A Global Overview of Protected Areas on the World Heritage List of Particular Importance for Biodiversity
A GLOBAL OVERVIEW OF PROTECTED AREAS ON THE WORLD HERITAGE LIST OF PARTICULAR IMPORTANCE FOR BIODIVERSITY A contribution to the Global Theme Study of World Heritage Natural Sites Text and Tables compiled by Gemma Smith and Janina Jakubowska Maps compiled by Ian May UNEP World Conservation Monitoring Centre Cambridge, UK November 2000 Disclaimer: The contents of this report and associated maps do not necessarily reflect the views or policies of UNEP-WCMC or contributory organisations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP-WCMC or contributory organisations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. TABLE OF CONTENTS EXECUTIVE SUMMARY INTRODUCTION 1.0 OVERVIEW......................................................................................................................................................1 2.0 ISSUES TO CONSIDER....................................................................................................................................1 3.0 WHAT IS BIODIVERSITY?..............................................................................................................................2 4.0 ASSESSMENT METHODOLOGY......................................................................................................................3 5.0 CURRENT WORLD HERITAGE SITES............................................................................................................4 -
The Eighth Continent?
www.Breaking News English.com Ready-to-Use English Lessons by Sean Banville “1,000 IDEAS & ACTIVITIES Thousands more free lessons FOR LANGUAGE TEACHERS” from Sean's other websites www.breakingnewsenglish.com/book.html www.freeeslmaterials.com/sean_banville_lessons.html Level 2 Zealandia – The eighth continent? 19th February, 2017 http://www.breakingnewsenglish.com/1702/170219-zealandia-2.html Contents The Reading 2 Phrase Matching 3 Listening Gap Fill 4 No Spaces 5 Survey 6 Writing and Speaking 7 Writing 8 Please try Levels 0, 1 and 3. They are (a little) harder. Twitter twitter.com/SeanBanville Facebook www.facebook.com/pages/BreakingNewsEnglish/155625444452176 Google + https://plus.google.com/+SeanBanville THE READING From http://www.breakingnewsenglish.com/1702/170219-zealandia-2.html We used to believe there were nine planets, but now there are eight (Pluto is not a planet). Now we may have to change how many continents there are. We are taught there are seven - Asia, Africa, North and South America, Antarctica, Europe, and Australia. Geologists now say there is an eighth continent - Zealandia. This is a big, largely underwater landmass in the Pacific Ocean. Six per cent of it is above water and is New Zealand and New Caledonia. The rest is under the ocean. It is five million square kilometres, which scientists say is big enough to be a continent. Geologists explained why Zealandia is a continent in a research paper in the Geological Society of America's Journal. They argue that the land does not have to be above water to be a continent. They said Zealandia is a continent because of four points: It is a lot higher than the area around it, it has a special geology, it is easy to see its shape, and it is thicker than the ocean floor. -
Redalyc.Lost Terranes of Zealandia: Possible Development of Late
Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Adams, Christopher J Lost Terranes of Zealandia: possible development of late Paleozoic and early Mesozoic sedimentary basins at the southwest Pacific margin of Gondwanaland, and their destination as terranes in southern South America Andean Geology, vol. 37, núm. 2, julio, 2010, pp. 442-454 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173916371010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Ge%gy 37 (2): 442-454. July. 2010 Andean Geology formerly Revista Geológica de Chile www.scielo.cl/andgeol.htm Lost Terranes of Zealandia: possible development of late Paleozoic and early Mesozoic sedimentary basins at the southwest Pacific margin of Gondwana land, and their destination as terranes in southern South America Christopher J. Adams GNS Science, Private Bag 1930, Dunedin, New Zealand. [email protected] ABSTRACT. Latesl Precambrian to Ordovician metasedimentary suecessions and Cambrian-Ordovician and Devonian Carboniferous granitoids form tbe major par! oftbe basemenl of soutbem Zealandia and adjacenl sectors ofAntarctica and southeastAustralia. Uplift/cooling ages ofthese rocks, and local Devonian shallow-water caver sequences suggest tbal final consolidation oftbe basemenl occurred tbrough Late Paleozoic time. A necessary consequence oftlris process would have been contemporaneous erosion and tbe substantial developmenl of marine sedimentary basins al tbe Pacific margin of Zealandia. -
Early Cambrian (Stage 4) Brachiopods from the Shipai Formation in the Three Gorges Area of South China
Journal of Paleontology, page 1 of 30 Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/21/1937-2337 doi: 10.1017/jpa.2020.117 Early Cambrian (Stage 4) brachiopods from the Shipai Formation in the Three Gorges area of South China Xiaolin Duan,1 Marissa J. Betts,1,2 Lars E. Holmer,1,3 Yanlong Chen,1 Fan Liu,1 Yue Liang,1 and Zhifei Zhang1* 1State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an, 710069, China <[email protected]>, <[email protected]> 2Division of Earth Sciences, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia <[email protected]> 3Department of Earth Sciences, Paleobiology, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden <[email protected]> Abstract.—Diverse and abundant fossil taxa have been described in the lower Cambrian Shipai Formation in the Three Gorges area of Hubei Province, South China, but the taxonomy and diversity of the co-occurring brachiopod fauna are still far from clear. Here we describe the brachiopod fauna recovered from the Shipai Formation in the Three Gorges area of South China, including representatives of the subphylum Linguliformea: linguloids (Lingulellotreta ergalievi, Eoobolus malongensis, and Neobolidae gen. -
Differences in Spatial Patterns and Driving Factors of Biomass Carbon Density Between Natural Coniferous and Broad-Leaved Forest
Differences in spatial patterns and driving factors of biomass carbon density between natural coniferous and broad-leaved forests in mountainous terrain, eastern Loess Plateau of China Lina Sun Taiyuan Normal University Qixiang Wang College of Environmental & Resource Science of Shanxi University Xiaohui Fan ( [email protected] ) institute of the Loess Plateau, Shanxi university,China https://orcid.org/0000-0002-0143-8624 Research Keywords: Spatial pattern, Spatial heterogeneity, Multi-group structural equation modeling, Stand age, Elevation, Mountainous terrain Posted Date: August 25th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-815547/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/27 Abstract Background Mountain forests in China are an integral part of the country’s natural vegetation. Understanding the spatial variability and control mechanisms for biomass carbon density of mountain forests is necessary to make full use of the carbon sequestration potential for climate change mitigation. Based on the 9th national forest inventory data in Shanxi Province, which is mountainous terrain, eastern Loess Plateau of China, we characterized the spatial pattern of biomass carbon density for natural coniferous and broad- leaved forests using Local Getis-ord G* and proposed an integrative framework to evaluate the direct and indirect effects of stand, geographical and climatic factors on biomass carbon density for the two types of forests using structural equation modeling. Results There was no signicant difference between the mean biomass carbon densities of the natural coniferous and broad-leaved forests. The number of spots with a spatial autocorrelation accounted for 51.6% of all plots of the natural forests. -
Abstract Volume
https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E. -
Gondwana Large Igneous Provinces (Lips): Distribution, Diversity and Significance
Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 Gondwana Large Igneous Provinces (LIPs): distribution, diversity and significance SARAJIT SENSARMA1*, BRYAN C. STOREY2 & VIVEK P. MALVIYA3 1Centre of Advanced Study in Geology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India 2Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand 324E Mayur Residency Extension, Faridi Nagar, Lucknow, Uttar Pradesh 226016, India *Correspondence: [email protected] Abstract: Gondwana, comprising >64% of the present-day continental mass, is home to 33% of Large Igneous Provinces (LIPs) and is key to unravelling the lithosphere–atmosphere system and related tectonics that mediated global climate shifts and sediment production conducive for life on Earth. Increased recognition of bimodal LIPs in Gondwana with significant, sometimes subequal, proportions of synchronous silicic volcanic rocks, mostly rhyolites to high silica rhyolites (±associ- ated granitoids) to mafic volcanic rocks is a major frontier, not considered in mantle plume or plate process hypotheses. On a δ18O v. initial 87Sr/86Sr plot for silicic rocks in Gondwana LIPs there is a remarkable spread between continental crust and mantle values, signifying variable contributions of crust and mantle in their origins. Caldera-forming silicic LIP events were as large as their mafic counterparts, and erupted for a longer duration (>20 myr). Several Gondwana LIPs erupted near the active continental margins, in addition to within-continents; rifting, however, continued even after LIP emplacements in several cases or was aborted and did not open into ocean by coeval com- pression. Gondwana LIPs had devastating consequences in global climate shifts and are major global sediment sources influencing upper continental crust compositions. -
Grand Patrons RICHARD K. BAMBACH ARTHUR J. BOUCOT
OGic OGic L al L al O S O S T O T O N N C C O O I I E E E E T L T L Y Y A A P P OFFICERS AND EDITORS OF THE PALEONTOLOGICAL SOCIETY Grand Patrons ANDREW H. KNOLL RICHARD K. BAMBACH CHARLES LANE ARTHUR J. BOUCOT ALLAN R. LARSON President PETER J. HARRIES, SIMON SCHNEIDER, Editor, Special Publications RODNEY M. FELDMAN AND CARRIE SCHWEITZER CECILIA LENK AND PAUL K. STROTHER BRUCE MacFADDEN, North Carolina State CASP COLIN SUMRALL, ROBERT AND ELVIRA GASTALDO JERE H. LIPPS Florida Museum of Natural History CRAIG SCOTT, Univ. of Tennessee, Knoxville THE FAMILY OF N. GARY LANE ALAN R. LORD MICHAEL HAUTMANN, bmacfadd@fl mnh.ufl .edu Royal Tyrrell Museum of Paleontology [email protected] A. R. (PETE) PALMER CHRIS MAPLES AND SARA MARCUS Univ. of Zurich J. WILLIAM SCHOPF President-Elect MARY SILCOX, Education/Outreach Coordinator JANET WOOD McGREGOR RAMAN J. SINGH WILLIAM DiMICHELE, MARTIN J. HEAD, Univ. of Toronto Scarborough ROWAN LOCKWOOD, CHERYL L. METZ STEVEN M. STANLEY Smithsonian Institution Brock Univ. College of William & Mary MOLLY F. AND CALVIN MILLER EDUARDO LEORRI SORIANO, [email protected] [email protected] RONALD W. MORIN THOMAS HEGNA, East Carolina Univ., Greenville Patrons OSBORNE B. NYE, JR. Past President Western Illinois Univ. Diversity and Inclusion Coordinator EDWARD J. ANDREW, JR. DAVID VARRICCHIO, TERESA O’NEILL ARNOLD I. MILLER, DENA SMITH, WILLIAM I. AUSICH Montana State Univ. RONALD L. PARSLEY Univ. of Cincinnati SAMANTHA HOPKINS, Univ. of Colorado BRUCE M. BELL MARK E. PATZKOWSKY [email protected] Univ. -
Overview of Zealandia and Its Subduction Record
Overview of Zealandia and its subduction record Nick Mortimer, GNS Science, Dunedin, New Zealand GNS Science New Guinea SW Pacific geography Fiji New Caledonia Scattered, remote Australia islands Tasman 4 million people Sea New Near Australia Zealand 1000 km GNS Science SW Pacific bathymetry Fiji New Based on satellite Caledonia gravity Broad plateaus and ridges 1-2 km water depth New Zealand 1000 km Sandwell & Smith (1997), Stagpoole (2002) GNS Science SW Pacific 87 present day Fiji tectonics 77 New Caledonia 67 mm/yr • Pacific and Australian plates 53 • nearby pole of PAC plate rotation AUS plate New Zealand 38 • convergence variably oblique • subduction polarity 30 changes 1000 km Bird (2003) GNS Science OJP MP Zealandia • continent that is 95% submerged • rifted internally and on most margins 45-0 Ma 120-85 Ma • now on two plates PAC plate • Hikurangi Plateau adjacent AUS plate HP continental rock 85-55 Ma samples Median Batholith (Cambrian-Cret) Late Cret. MCCs 85-0 Ma Early Cret LIPs 45-0 Ma Preserved E Cret subduction zone 1000 km GNS Science Zealandia and Gondwana • ZLD on PAC and AUS plates PAC plate • match piercing points AUS plate HP • track fracture zones • rotation and translation 1000 km Sutherland (1995, 1999) GNS Science 1000 km 14 April 84,000,000 B.P. Gondwana reconstruction NG Just before major LP breakup episode MR QP KP Continental crust MP NewCal Oceanic crust NLHR AUST Hikurangi LIP SNR SLHR <85 Ma continental breakup D ZLND lines ET Chall STR IB HP Camp CR • Zealandia EANT WR was a ribbon continent WANT After Gaina et al. -
Final Program of CCC2020
第三十九届中国控制会议 The 39th Chinese Control Conference 程序册 Final Program 主办单位 中国自动化学会控制理论专业委员会 中国自动化学会 中国系统工程学会 承办单位 东北大学 CCC2020 Sponsoring Organizations Technical Committee on Control Theory, Chinese Association of Automation Chinese Association of Automation Systems Engineering Society of China Northeastern University, China 2020 年 7 月 27-29 日,中国·沈阳 July 27-29, 2020, Shenyang, China Proceedings of CCC2020 IEEE Catalog Number: CFP2040A -USB ISBN: 978-988-15639-9-6 CCC2020 Copyright and Reprint Permission: This material is permitted for personal use. For any other copying, reprint, republication or redistribution permission, please contact TCCT Secretariat, No. 55 Zhongguancun East Road, Beijing 100190, P. R. China. All rights reserved. Copyright@2020 by TCCT. 目录 (Contents) 目录 (Contents) ................................................................................................................................................... i 欢迎辞 (Welcome Address) ................................................................................................................................1 组织机构 (Conference Committees) ...................................................................................................................4 重要信息 (Important Information) ....................................................................................................................11 口头报告与张贴报告要求 (Instruction for Oral and Poster Presentations) .....................................................12 大会报告 (Plenary Lectures).............................................................................................................................14 -
Genetic and Chemical Differentiation Characterizes Top-Geoherb and Non
www.nature.com/scientificreports OPEN Genetic and chemical diferentiation characterizes top- geoherb and non-top-geoherb Received: 17 November 2017 Accepted: 5 June 2018 areas in the TCM herb rhubarb Published: xx xx xxxx Xumei Wang1, Li Feng1, Tao Zhou1, Markus Ruhsam2, Lei Huang3, Xiaoqi Hou3, Xiaojie Sun1, Kai Fan1, Min Huang1, Yun Zhou1 & Jie Song1 Medicinal herbs of high quality and with signifcant clinical efects have been designated as top- geoherbs in traditional Chinese medicine (TCM). However, the validity of this concept using genetic markers has not been widely tested. In this study, we investigated the genetic variation within the Rheum palmatum complex (rhubarb), an important herbal remedy in TCM, using a phylogeographic (six chloroplast DNA regions, fve nuclear DNA regions, and 14 nuclear microsatellite loci) and a chemical approach (anthraquinone content). Genetic and chemical data identifed two distinct groups in the 38 analysed populations from the R. palmatum complex which geographically coincide with the traditional top-geoherb and non-top-geoherb areas of rhubarb. Molecular dating suggests that the two groups diverged in the Quaternary c. 2.0 million years ago, a time of repeated climate changes and uplift of the Qinghai-Tibetan Plateau. Our results show that the ancient TCM concept of top-geoherb and non-top- geoherb areas corresponds to genetically and chemically diferentiated groups in rhubarb. Traditional Chinese Medicine (TCM) has developed over millenia in China and has exerted its infuence on medical culture in Asia for more than a thousand years. Many unique concepts have formed throughout this long historical process, one of which is the concept of geo-herbalism.