Chapter 4 Polyhedra and Polytopes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometry of Generalized Permutohedra
Geometry of Generalized Permutohedra by Jeffrey Samuel Doker A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Federico Ardila, Co-chair Lior Pachter, Co-chair Matthias Beck Bernd Sturmfels Lauren Williams Satish Rao Fall 2011 Geometry of Generalized Permutohedra Copyright 2011 by Jeffrey Samuel Doker 1 Abstract Geometry of Generalized Permutohedra by Jeffrey Samuel Doker Doctor of Philosophy in Mathematics University of California, Berkeley Federico Ardila and Lior Pachter, Co-chairs We study generalized permutohedra and some of the geometric properties they exhibit. We decompose matroid polytopes (and several related polytopes) into signed Minkowski sums of simplices and compute their volumes. We define the associahedron and multiplihe- dron in terms of trees and show them to be generalized permutohedra. We also generalize the multiplihedron to a broader class of generalized permutohedra, and describe their face lattices, vertices, and volumes. A family of interesting polynomials that we call composition polynomials arises from the study of multiplihedra, and we analyze several of their surprising properties. Finally, we look at generalized permutohedra of different root systems and study the Minkowski sums of faces of the crosspolytope. i To Joe and Sue ii Contents List of Figures iii 1 Introduction 1 2 Matroid polytopes and their volumes 3 2.1 Introduction . .3 2.2 Matroid polytopes are generalized permutohedra . .4 2.3 The volume of a matroid polytope . .8 2.4 Independent set polytopes . 11 2.5 Truncation flag matroids . 14 3 Geometry and generalizations of multiplihedra 18 3.1 Introduction . -
Two Poset Polytopes
Discrete Comput Geom 1:9-23 (1986) G eometrv)i.~.reh, ~ ( :*mllmlati~ml © l~fi $1~ter-Vtrlq New Yorklu¢. t¢ Two Poset Polytopes Richard P. Stanley* Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 Abstract. Two convex polytopes, called the order polytope d)(P) and chain polytope <~(P), are associated with a finite poset P. There is a close interplay between the combinatorial structure of P and the geometric structure of E~(P). For instance, the order polynomial fl(P, m) of P and Ehrhart poly- nomial i(~9(P),m) of O(P) are related by f~(P,m+l)=i(d)(P),m). A "transfer map" then allows us to transfer properties of O(P) to W(P). In particular, we transfer known inequalities involving linear extensions of P to some new inequalities. I. The Order Polytope Our aim is to investigate two convex polytopes associated with a finite partially ordered set (poset) P. The first of these, which we call the "order polytope" and denote by O(P), has been the subject of considerable scrutiny, both explicit and implicit, Much of what we say about the order polytope will be essentially a review of well-known results, albeit ones scattered throughout the literature, sometimes in a rather obscure form. The second polytope, called the "chain polytope" and denoted if(P), seems never to have been previously considered per se. It is a special case of the vertex-packing polytope of a graph (see Section 2) but has many special properties not in general valid or meaningful for graphs. -
Computational Geometry – Problem Session Convex Hull & Line Segment Intersection
Computational Geometry { Problem Session Convex Hull & Line Segment Intersection LEHRSTUHL FUR¨ ALGORITHMIK · INSTITUT FUR¨ THEORETISCHE INFORMATIK · FAKULTAT¨ FUR¨ INFORMATIK Guido Bruckner¨ 04.05.2018 Guido Bruckner¨ · Computational Geometry { Problem Session Modus Operandi To register for the oral exam we expect you to present an original solution for at least one problem in the exercise session. • this is about working together • don't worry if your idea doesn't work! Guido Bruckner¨ · Computational Geometry { Problem Session Outline Convex Hull Line Segment Intersection Guido Bruckner¨ · Computational Geometry { Problem Session Definition of Convex Hull Def: A region S ⊆ R2 is called convex, when for two points p; q 2 S then line pq 2 S. The convex hull CH(S) of S is the smallest convex region containing S. Guido Bruckner¨ · Computational Geometry { Problem Session Definition of Convex Hull Def: A region S ⊆ R2 is called convex, when for two points p; q 2 S then line pq 2 S. The convex hull CH(S) of S is the smallest convex region containing S. Guido Bruckner¨ · Computational Geometry { Problem Session Definition of Convex Hull Def: A region S ⊆ R2 is called convex, when for two points p; q 2 S then line pq 2 S. The convex hull CH(S) of S is the smallest convex region containing S. In physics: Guido Bruckner¨ · Computational Geometry { Problem Session Definition of Convex Hull Def: A region S ⊆ R2 is called convex, when for two points p; q 2 S then line pq 2 S. The convex hull CH(S) of S is the smallest convex region containing S. -
Equivelar Octahedron of Genus 3 in 3-Space
Equivelar octahedron of genus 3 in 3-space Ruslan Mizhaev ([email protected]) Apr. 2020 ABSTRACT . Building up a toroidal polyhedron of genus 3, consisting of 8 nine-sided faces, is given. From the point of view of topology, a polyhedron can be considered as an embedding of a cubic graph with 24 vertices and 36 edges in a surface of genus 3. This polyhedron is a contender for the maximal genus among octahedrons in 3-space. 1. Introduction This solution can be attributed to the problem of determining the maximal genus of polyhedra with the number of faces - . As is known, at least 7 faces are required for a polyhedron of genus = 1 . For cases ≥ 8 , there are currently few examples. If all faces of the toroidal polyhedron are – gons and all vertices are q-valence ( ≥ 3), such polyhedral are called either locally regular or simply equivelar [1]. The characteristics of polyhedra are abbreviated as , ; [1]. 2. Polyhedron {9, 3; 3} V1. The paper considers building up a polyhedron 9, 3; 3 in 3-space. The faces of a polyhedron are non- convex flat 9-gons without self-intersections. The polyhedron is symmetric when rotated through 1804 around the axis (Fig. 3). One of the features of this polyhedron is that any face has two pairs with which it borders two edges. The polyhedron also has a ratio of angles and faces - = − 1. To describe polyhedra with similar characteristics ( = − 1) we use the Euler formula − + = = 2 − 2, where is the Euler characteristic. Since = 3, the equality 3 = 2 holds true. -
Uniform Boundedness Principle for Unbounded Operators
UNIFORM BOUNDEDNESS PRINCIPLE FOR UNBOUNDED OPERATORS C. GANESA MOORTHY and CT. RAMASAMY Abstract. A uniform boundedness principle for unbounded operators is derived. A particular case is: Suppose fTigi2I is a family of linear mappings of a Banach space X into a normed space Y such that fTix : i 2 Ig is bounded for each x 2 X; then there exists a dense subset A of the open unit ball in X such that fTix : i 2 I; x 2 Ag is bounded. A closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings as consequences of this principle. Some applications of this principle are also obtained. 1. Introduction There are many forms for uniform boundedness principle. There is no known evidence for this principle for unbounded operators which generalizes classical uniform boundedness principle for bounded operators. The second section presents a uniform boundedness principle for unbounded operators. An application to derive Hellinger-Toeplitz theorem is also obtained in this section. A JJ J I II closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings in the third section as consequences of this principle. Go back Let us assume the following: Every vector space X is over R or C. An α-seminorm (0 < α ≤ 1) is a mapping p: X ! [0; 1) such that p(x + y) ≤ p(x) + p(y), p(ax) ≤ jajαp(x) for all x; y 2 X Full Screen Close Received November 7, 2013. 2010 Mathematics Subject Classification. Primary 46A32, 47L60. Key words and phrases. -
1 Lifts of Polytopes
Lecture 5: Lifts of polytopes and non-negative rank CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Lifts of polytopes 1.1 Polytopes and inequalities Recall that the convex hull of a subset X n is defined by ⊆ conv X λx + 1 λ x0 : x; x0 X; λ 0; 1 : ( ) f ( − ) 2 2 [ ]g A d-dimensional convex polytope P d is the convex hull of a finite set of points in d: ⊆ P conv x1;:::; xk (f g) d for some x1;:::; xk . 2 Every polytope has a dual representation: It is a closed and bounded set defined by a family of linear inequalities P x d : Ax 6 b f 2 g for some matrix A m d. 2 × Let us define a measure of complexity for P: Define γ P to be the smallest number m such that for some C s d ; y s ; A m d ; b m, we have ( ) 2 × 2 2 × 2 P x d : Cx y and Ax 6 b : f 2 g In other words, this is the minimum number of inequalities needed to describe P. If P is full- dimensional, then this is precisely the number of facets of P (a facet is a maximal proper face of P). Thinking of γ P as a measure of complexity makes sense from the point of view of optimization: Interior point( methods) can efficiently optimize linear functions over P (to arbitrary accuracy) in time that is polynomial in γ P . ( ) 1.2 Lifts of polytopes Many simple polytopes require a large number of inequalities to describe. -
On the Boundary Between Mereology and Topology
On the Boundary Between Mereology and Topology Achille C. Varzi Istituto per la Ricerca Scientifica e Tecnologica, I-38100 Trento, Italy [email protected] (Final version published in Roberto Casati, Barry Smith, and Graham White (eds.), Philosophy and the Cognitive Sciences. Proceedings of the 16th International Wittgenstein Symposium, Vienna, Hölder-Pichler-Tempsky, 1994, pp. 423–442.) 1. Introduction Much recent work aimed at providing a formal ontology for the common-sense world has emphasized the need for a mereological account to be supplemented with topological concepts and principles. There are at least two reasons under- lying this view. The first is truly metaphysical and relates to the task of charac- terizing individual integrity or organic unity: since the notion of connectedness runs afoul of plain mereology, a theory of parts and wholes really needs to in- corporate a topological machinery of some sort. The second reason has been stressed mainly in connection with applications to certain areas of artificial in- telligence, most notably naive physics and qualitative reasoning about space and time: here mereology proves useful to account for certain basic relation- ships among things or events; but one needs topology to account for the fact that, say, two events can be continuous with each other, or that something can be inside, outside, abutting, or surrounding something else. These motivations (at times combined with others, e.g., semantic transpar- ency or computational efficiency) have led to the development of theories in which both mereological and topological notions play a pivotal role. How ex- actly these notions are related, however, and how the underlying principles should interact with one another, is still a rather unexplored issue. -
Baire Category Theorem and Uniform Boundedness Principle)
Functional Analysis (WS 19/20), Problem Set 3 (Baire Category Theorem and Uniform Boundedness Principle) Baire Category Theorem B1. Let (X; k·kX ) be an innite dimensional Banach space. Prove that X has uncountable Hamel basis. Note: This is Problem A2 from Problem Set 1. B2. Consider subset of bounded sequences 1 A = fx 2 l : only nitely many xk are nonzerog : Can one dene a norm on A so that it becomes a Banach space? Consider the same question with the set of polynomials dened on interval [0; 1]. B3. Prove that the set L2(0; 1) has empty interior as the subset of Banach space L1(0; 1). B4. Let f : [0; 1) ! [0; 1) be a continuous function such that for every x 2 [0; 1), f(kx) ! 0 as k ! 1. Prove that f(x) ! 0 as x ! 1. B5.( Uniform Boundedness Principle) Let (X; k · kX ) be a Banach space and (Y; k · kY ) be a normed space. Let fTαgα2A be a family of bounded linear operators between X and Y . Suppose that for any x 2 X, sup kTαxkY < 1: α2A Prove that . supα2A kTαk < 1 Uniform Boundedness Principle U1. Let F be a normed space C[0; 1] with L2(0; 1) norm. Check that the formula 1 Z n 'n(f) = n f(t) dt 0 denes a bounded linear functional on . Verify that for every , F f 2 F supn2N j'n(f)j < 1 but . Why Uniform Boundedness Principle is not satised in this case? supn2N k'nk = 1 U2.( pointwise convergence of operators) Let (X; k · kX ) be a Banach space and (Y; k · kY ) be a normed space. -
Uniform Polychora
BRIDGES Mathematical Connections in Art, Music, and Science Uniform Polychora Jonathan Bowers 11448 Lori Ln Tyler, TX 75709 E-mail: [email protected] Abstract Like polyhedra, polychora are beautiful aesthetic structures - with one difference - polychora are four dimensional. Although they are beyond human comprehension to visualize, one can look at various projections or cross sections which are three dimensional and usually very intricate, these make outstanding pieces of art both in model form or in computer graphics. Polygons and polyhedra have been known since ancient times, but little study has gone into the next dimension - until recently. Definitions A polychoron is basically a four dimensional "polyhedron" in the same since that a polyhedron is a three dimensional "polygon". To be more precise - a polychoron is a 4-dimensional "solid" bounded by cells with the following criteria: 1) each cell is adjacent to only one other cell for each face, 2) no subset of cells fits criteria 1, 3) no two adjacent cells are corealmic. If criteria 1 fails, then the figure is degenerate. The word "polychoron" was invented by George Olshevsky with the following construction: poly = many and choron = rooms or cells. A polytope (polyhedron, polychoron, etc.) is uniform if it is vertex transitive and it's facets are uniform (a uniform polygon is a regular polygon). Degenerate figures can also be uniform under the same conditions. A vertex figure is the figure representing the shape and "solid" angle of the vertices, ex: the vertex figure of a cube is a triangle with edge length of the square root of 2. -
Archimedean Solids
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat). -
Shape Skeletons Creating Polyhedra with Straws
Shape Skeletons Creating Polyhedra with Straws Topics: 3-Dimensional Shapes, Regular Solids, Geometry Materials List Drinking straws or stir straws, cut in Use simple materials to investigate regular or advanced 3-dimensional shapes. half Fun to create, these shapes make wonderful showpieces and learning tools! Paperclips to use with the drinking Assembly straws or chenille 1. Choose which shape to construct. Note: the 4-sided tetrahedron, 8-sided stems to use with octahedron, and 20-sided icosahedron have triangular faces and will form sturdier the stir straws skeletal shapes. The 6-sided cube with square faces and the 12-sided Scissors dodecahedron with pentagonal faces will be less sturdy. See the Taking it Appropriate tool for Further section. cutting the wire in the chenille stems, Platonic Solids if used This activity can be used to teach: Common Core Math Tetrahedron Cube Octahedron Dodecahedron Icosahedron Standards: Angles and volume Polyhedron Faces Shape of Face Edges Vertices and measurement Tetrahedron 4 Triangles 6 4 (Measurement & Cube 6 Squares 12 8 Data, Grade 4, 5, 6, & Octahedron 8 Triangles 12 6 7; Grade 5, 3, 4, & 5) Dodecahedron 12 Pentagons 30 20 2-Dimensional and 3- Dimensional Shapes Icosahedron 20 Triangles 30 12 (Geometry, Grades 2- 12) 2. Use the table and images above to construct the selected shape by creating one or Problem Solving and more face shapes and then add straws or join shapes at each of the vertices: Reasoning a. For drinking straws and paperclips: Bend the (Mathematical paperclips so that the 2 loops form a “V” or “L” Practices Grades 2- shape as needed, widen the narrower loop and insert 12) one loop into the end of one straw half, and the other loop into another straw half. -
On the Ekeland Variational Principle with Applications and Detours
Lectures on The Ekeland Variational Principle with Applications and Detours By D. G. De Figueiredo Tata Institute of Fundamental Research, Bombay 1989 Author D. G. De Figueiredo Departmento de Mathematica Universidade de Brasilia 70.910 – Brasilia-DF BRAZIL c Tata Institute of Fundamental Research, 1989 ISBN 3-540- 51179-2-Springer-Verlag, Berlin, Heidelberg. New York. Tokyo ISBN 0-387- 51179-2-Springer-Verlag, New York. Heidelberg. Berlin. Tokyo No part of this book may be reproduced in any form by print, microfilm or any other means with- out written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 400 005 Printed by INSDOC Regional Centre, Indian Institute of Science Campus, Bangalore 560012 and published by H. Goetze, Springer-Verlag, Heidelberg, West Germany PRINTED IN INDIA Preface Since its appearance in 1972 the variational principle of Ekeland has found many applications in different fields in Analysis. The best refer- ences for those are by Ekeland himself: his survey article [23] and his book with J.-P. Aubin [2]. Not all material presented here appears in those places. Some are scattered around and there lies my motivation in writing these notes. Since they are intended to students I included a lot of related material. Those are the detours. A chapter on Nemyt- skii mappings may sound strange. However I believe it is useful, since their properties so often used are seldom proved. We always say to the students: go and look in Krasnoselskii or Vainberg! I think some of the proofs presented here are more straightforward. There are two chapters on applications to PDE.