IUPAC—Then and Now

Total Page:16

File Type:pdf, Size:1020Kb

IUPAC—Then and Now IUPAC—Then and Now Pure and Applied Chemistry and a variety of refer- Reflections on 40 ences listed below. IUPAC sponsors conferences, and one condition Years of Involvement for IUPAC sponsorship is that the government of the by Jeffery Leigh host country will issue visas to bona fide scientists who wish to attend, no matter from which country they come. This was particularly important during the any people have asked me what I actually Cold War and is still necessary in some regions such have done during my time of involvement as the Middle East. Finally, IUPAC encourages interac- Mwith IUPAC, which is now approaching 40 tion between industry and academia, considering and years, especially since a yearly trip to whatever exotic publicizing the value and the dangers of chemistry for spot chosen for a meeting is no longer seen as being the world as a whole. much of a perk. Others want to know what the organi- One of IUPAC’s most contentious functions, carried zation does. That, at least, is easy to answer. IUPAC’s out jointly with IUPAP, its sibling physics organization, mission, the reason for its existence, is to enable is to assess researchers’ claims to have synthesized a chemists to communicate unequivocally and without new element, and adjudicate on priority. Only when misunderstanding. In particular, IUPAC ensures that this has been done are the discoverers invited to sug- different authorities do not start arguing at cross gest a permanent trivial name. Most go for famous purposes because they are not sure that the subject compatriots or home towns and states. Thus, we now of their discussion is understood by both parties. use names such as seaborgium, hassium, dubnium, Regulatory authorities, publishers, and researchers and californium. In the meantime, IUPAC has devised are aware of this problem and ask for an indepen- the peculiar three-letter symbols and related names dent authority to advise them on such matters. That for elements that are yet to be prepared beyond all authority is IUPAC. reasonable doubt, but which are discussed in the lit- erature. The element of atomic number 111 was provi- One of IUPAC’s most important tasks is to develop a sionally called unununium, symbol Uuu, until recently, universal systematic nomenclature for chemical com- when IUPAC recognized that it had been synthesized pounds. This was what first attracted me to IUPAC. unequivocally by researchers in Germany, who have I started by being intrigued by a kind of cross-word now given it the permanent name roentgenium, with approach to nomenclature: Could you define a name the symbol Rg. This name is to honor the German by a set of rules that would always allow anyone to discoverer of X-rays, Wilhelm Roentgen. Evidence for infer the chemical structure from it? This was before the element 112, Uub, ununbium, is currently being the routine availability of computers, which have assessed. When the Dubna and Berkeley laboratories changed the way in which chemical information is were competing in a race to establish new elements stored and manipulated. in the 1980s, there were some unpleasant and difficult Another aspect of IUPAC’s work involves standard- political pressures applied to the chairmen of the com- ization. For example, estimates of atomic weights missions. To their credit, all parties finally accepted the are still being made, and though changes in estab- IUPAC decisions. lished values are small, they are important in some circumstances. IUPAC continuously assesses the new I started by being intrigued by a literature and amends the list of atomic weights every kind of cross-word approach to two years. Isotopic abundances for a given element are not independent of source, as was once believed, nomenclature: Could you define a and they vary from place to place and from heavenly name by a set of rules that would body to heavenly body. IUPAC also reviews new data always allow anyone to infer the in this area. IUPAC advises chemists on how to assess statistical chemical structure from it? data, on how to present analytical results, and on how to teach chemistry, particularly in emerging regions The activities mentioned above have always been with limited resources, by providing teaching aids and principal aims of IUPAC, but how the Union approaches advice, and organizing conferences. IUPAC publishes them has changed significantly since I first became the results of its deliberations in its scientific journal involved. I attended my first meeting, which was of the CHEMISTRY International November-December 2008 9 IUPAC—Then and Now Commission on Nomenclature of Inorganic Chemistry nomenclature rules and IUPAC rules intimately. IUPAC (CNIC), as a stand-in because they could find no reference books are continually revised but subsequent one to act as meeting secretary. My boss at work editions retain the cover color of the first version, so was Joseph Chatt, a long- organic nomenclature is time IUPAC enthusiast. At . it was always necessary to reach always found in the Blue home, we subordinates Book, and inorganic in the were frustrated by his the conclusion that the chairman Red Book, whatever the insistence that we use cor- wanted, and on many occasions we editions, and so on. The rect IUPAC nomenclature, worked from nine till nine, when the first version of the inor- which we didn’t appreci- ganic rules (Report of the ate or understand. It was a exhausted and hungry members of Committee for the Reform laboratory joke that every- the commission finally capitulated. of Inorganic Chemical thing in a written report Nomenclature) was actu- had to be presented with a plethora of square brackets ally written in German and had been completed just in order to satisfy Joseph. He would disappear from before the Second World War. An English translation the country annually for mysterious IUPAC meetings, was published in 1940. The first Red Book version was but eventually he asked me if I were prepared to come published in 1957 and had parallel texts in English and to Munich to act as secretary for this one meeting of French. For most of the members of CNIC at that time, CNIC. As I had worked in Munich with E.O. Fischer, and that publication was regarded as finished, but regular was very fond of the city, I was delighted to do so. This meetings of IUPAC still provided a good opportunity was in 1973, and I have been a member of IUPAC in one to see old friends, argue about angels and points of capacity or another ever since. needles, and to gain prestige at home, if any of your When I first became involved in IUPAC, the sec- colleagues actually knew what IUPAC was supposed retariat was run by Mo (Maurice) Williams and his to be. The agenda of a meeting was drawn up at the devoted assistant Ann Troughton. The office was beginning of the first day, and was worked through housed in a small shopping mall on the outskirts of solidly. However, it was always necessary to reach the Oxford. Chatt relied on the IUPAC office for consider- conclusion that the chairman wanted, and on many able help, even in arranging his journeys to meetings. occasions we worked from nine till nine, when the Mo also seems to have been a exhausted and hungry members of the commission Most of the part-time travel agent. Certainly finally capitulated. After dinner, however late, the archives were he and Ann were the most per- secretary had to write the minutes for approval the manent aspect of the admin- following morning! When the CNIC meeting coincided carried about in istration of the Union. Most of with the General Assembly, the chairman would sud- Mo’s head. the archives were carried about denly announce that he had to go to another meeting, in Mo’s head. Members of the and depart with a throw-away line such as: “It’s up commissions did not worry much about finance since to you to decide this matter without me.” In truth, it Mo handled everything. Nowadays, the permanent never was, unless the decision was what the chairman staff occupies a small office with five employees in actually wanted. North Carolina and an even smaller office with one CNOC worked rather similarly, but we did try to hold proud independent employee in Boston, both in the joint meetings of CNIC and CNOC, because overlaps United States. Everything is much more professional, of nomenclature were becoming evident, with the but, unavoidably, less personal. The use of e-mail development of areas such as organometallic chemis- rather than the telephone, more efficient but requiring try. These meetings were often a dialogue of the deaf. much less human interaction, has undoubtedly caused Both commissions knew how to name the compounds this to happen. that fell within what they regarded as their aegis, and A main characteristic of CNIC (and of its sister no quarter was asked or given. CNOC also had the Commission on Nomenclature of Organic Chemistry, benefit of a long established and widely accepted CNOC) at that time was its iron-willed chairman. It methodology, whereas CNIC were relative ingénues. became evident to me that CNIC had no defined pro- So we ran along parallel lines, due to meet only at infin- gram apart from the plans of the chairman. Most of the ity, and few of us were likely to survive long enough to members of CNIC and CNOC had been in their posts see that happy event. Evidently things had to change, for many years, and they knew the published inorganic and with the proper application of rules concerning 10 CHEMISTRY International November-December 2008 Reflections on 40 Years of Involvement terms of membership, things eventually did.
Recommended publications
  • T a B L E O F C O N T E N
    T A B L E O F C O N T E N T S Page PREFACE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ v EXPLANATORY NOTES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vii Terminology ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vii Use of specific terms and characters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vii Glossary on chemical terms ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ix Abbreviations ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x Sample Monograph (PART ONE) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xi Chemical information and regime of control ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xii Other common names ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xiii Salts and derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xiv Cross-Index (PART TWO) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xv Bilingual Lists (PART THREE) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xv International Regime of Control (PART FOUR) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xvi Scheduling History and Current Control Status ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xvi Scope and Regime of Control of Substances, their Salts, Isomers, Esters and Ethers ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xvii PART ONE Monographs on Narcotic Drugs and Psychotropic
    [Show full text]
  • Structure / Nomenclature Guide
    Structure / Nomenclature Guide A Guide to the Graphic Representation and Nomenclature of Chemical Formulae in the European Pharmacopoeia European Pharmacopoeia European Directorate for the Quality of Medicines & HealthCare 2011 2nd Edition © Council of Europe, 67075 Strasbourg Cedex, France - 2011 All rights reserved Making copies of this fi le for commercial purposes or posting this fi le on a website that is open to public consultation is strictly prohibited. S/N GUIDE 2011, European Pharmacopoeia 2011:2nd Edition NOMENCLATURE AND GRAPHIC REPRESENTATION OF CHEMICAL FORMULAE CONTENTS PREAMBLE SECTION A – General rules for graphic representation SECTION B – Graphic rules specific to the Ph. Eur. SECTION C – Main structural classes SECTION D – Nomenclature and application of IUPAC rules SECTION E – Frequently asked questions (FAQ) REFERENCES PREAMBLE The guide on nomenclature and graphic representation of chemical formulae has been prepared to reply to a number of questions from the European Pharmacopoeia Commission and users of the Ph. Eur. I. CHEMICAL NAME OR GRAPHIC REPRESENTATION? In principle, a chemical structure or name alone can be used to define a chemical compound. However, the Ph. Eur. uses both to facilitate checking and to remove ambiguities. Each system has its advantages and disadvantages, which are summarised below. 1. STRUCTURES Advantages: molecules are immediately recognisable and their structures are easily compared. Limits: there is a risk of some inaccuracy with any representation of a chemical structure because it involves drawing a molecule with a 3–dimensional structure in 2 dimensions; bond angles and lengths are not necessarily depicted accurately. 2. NAMES Advantages: stereochemistry is specified directly with no need to interpret the structure.
    [Show full text]
  • Nomenclature of Tetrapyrroles
    Pure & Appi. Chem. Vol.51, pp.2251—2304. 0033-4545/79/1101—2251 $02.00/0 Pergamon Press Ltd. 1979. Printed in Great Britain. PROVISIONAL INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY and INTERNATIONAL UNION OF BIOCHEMISTRY JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE*t NOMENCLATURE OF TETRAPYRROLES (Recommendations, 1978) Prepared for publication by J. E. MERRITT and K. L. LOENING Comments on these proposals should be sent within 8 months of publication to the Secretary of the Commission: Dr. H. B. F. DIXON, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK. Comments from the viewpoint of languages other than English are encouraged. These may have special significance regarding the eventual publication in various countries of translations of the nomenclature finally approved by IUPAC-IUB. PROVISIONAL IUPAC—ITJB Joint Commission on Biochemical Nomenclature (JCBN), NOMENCLATUREOF TETRAPYRROLES (Recommendations 1978) CONTENTS Preface 2253 Introduction 2254 TP—O General considerations 2256 TP—l Fundamental Porphyrin Systems 1.1 Porphyrin ring system 1.2 Numbering 2257 1.3 Additional fused rings 1.4 Skeletal replacement 2258 1.5 Skeletal replacement of nitrogen atoms 2259 1.6Fused porphyrin replacement analogs 2260 1.7Systematic names for substituted porphyrins 2261 TP—2 Trivial names and locants for certain substituted porphyrins 2263 2.1 Trivial names and locants 2.2 Roman numeral type notation 2265 TP—3 Semisystematic porphyrin names 2266 3.1 Semisystematic names in substituted porphyrins 3.2 Subtractive nomenclature 2269 3.3 Combinations of substitutive and subtractive operations 3.4 Additional ring formation 2270 3.5 Skeletal replacement of substituted porphyrins 2271 TP—4 Reduced porphyrins including chlorins 4.1 Unsubstituted reduced porphyrins 4.2 Substituted reduced porphyrins.
    [Show full text]
  • Appendix 13 Trivial Names Still in Common Use for Selected Inorganic and Organic Compounds, Inorganic Ions and Organic Substituents
    Appendix 13 Trivial names still in common use for selected inorganic and organic compounds, inorganic ions and organic substituents Many of the trivial names are accepted by the IUPAC. The list is selective but includes many chemicals used in routine laboratory work. Trivial name IUPAC namea Formula or structure Acetamide Ethanamide O Me NH2 Acetic acid Ethanoic acid O Me OH Acetone Propanone Me Me O Acetonitrile Ethanenitrile Me C N Acetylacetone (Hacac) Pentane-2,4-dione OO Acetyl chloride Ethanoyl chloride O Me Cl Acetylene Ethyne HH Allene Propadiene H2CCHC 2 Aniline Phenylamine NH2 Anisole Methoxybenzene OMe # Pearson Education Limited, 2002 2 APPENDIX 13 . Trivial names still in common use Trivial name IUPAC namea Formula or structure Arsine Arsane As H H H Bicarbonate Hydrogentrioxocarbonate(IV) O O C OH Boric acid (orthoboric acid, boracic acid) Trioxoboric acid OH HO B OH Borohydride Tetrahydroborate(1±) H B H H H tButyl (tert-butyl) (substituent) 1,1-Dimethylethyl CMe3 Carbon tetrachloride Tetrachloromethane Cl C Cl Cl Cl Carbonate Trioxocarbonate(IV) O O C O Chloroform Trichloromethane H C Cl Cl Cl 18-Crown-6 1,4,7,10,13,16- Hexaoxacyclooctadecane O O O O O O Cumene Isopropylbenzene Dimethylacetylene But-2-yne Me Me Ethylene Ethene HH H H # Pearson Education Limited, 2002 APPENDIX 13 . Trivial names still in common use 3 Trivial name IUPAC namea Formula or structure Ethylenediamine (en) 1,2-Ethanediamine H2NNH2 Ethylene glycol Ethane-1,2-diol HO OH Formaldehyde Methanal O H H Formamide Methanamide O H NH2 Formic acid Methanoic acid O H OH Hydrogen sul®de Sulfane S H H Isopropyl (substituent) 2-Methylethyl CHMe2 Mesitylene 1,3,5-Trimethylbenzene Me Me Me Methylene chloride Dichloromethane H C H Cl Cl Nitrate Trioxonitrate(V) O ON O Nitrite Dioxonitrate(III) N O O Nitronium Nitryl OON Perchlorate Tetraoxochlorate(VII) O Cl O O O Permanganate Tetraoxomanganate(VII) O Mn O O O # Pearson Education Limited, 2002 4 APPENDIX 13 .
    [Show full text]
  • IUPAC. Natural Products and Related Compounds
    Pure Appl. Chem., Vol. 71, No. 4, pp. 587–643, 1999. Printed in Great Britain. ᭧ 1999 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC CHEMISTRY DIVISION COMMISSION ON NOMENCLATURE OF ORGANIC CHEMISTRY (III.1) REVISED SECTION F: NATURAL PRODUCTS AND RELATED COMPOUNDS (IUPACRecommendations1999) Prepared for publication by P. M. GILES, Jr Chemical Abstracts Service, Columbus, OH 43210, USA Membership of the Working Party (1982–1997): J. R. Bull (Republic of South Africa), H. A. Favre (Canada), M. A. C. Kaplan (Brazil), L. Maat (Netherlands), A. D. McNaught (UK), G. P. Moss (UK), W. H. Powell (USA), R. Schoenfeld† (Australia), O. Weissbach (Federal Republic of Germany). Membership of the Commission on Nomenclature of Organic Chemistry during the preparation of this document was as follows: Titular Members: O. Achmatowicz (Poland) 1979–1987; J. Blackwood (USA) 1996–1998; H, J. T. Bos (Netherlands) 1987– 1995, Vice-Chairman, 1991–1995; J. R. Bull (Republic of South Africa) 1987–1993; F. Cozzi (Italy) 1996–; H. A. Favre (Canada) 1989–, Chairman, 1991–; P. M. Giles, Jr. (USA) 1989–1995; E. W. Godly (UK) 1987–1993, Secretary, 1989–1993; D. Hellwinkel (Federal Republic of Germany) 1979–1987, Vice-Chairman, 1981–1987; B. J. Herold (Portugal) 1994–; K. Hirayama (Japan) 1975–1983; M. V. Kisaku¨rek (Switzerland) 1994–, Vice-Chairman, 1996–; A. D. McNaught (UK) 1979– 1987; G. P. Moss (UK) 1977–1987, Chairman, 1981–1987, Vice-Chairman, 1979–1981; R. Panico (France) 1981–1991, Vice- Chairman, 1989–1991; W. H. Powell (USA), Secretary, 1979–1989; J. C. Richer (Canada) 1979–1989, Vice-Chairman, 1987–1989; P.
    [Show full text]
  • Nomenclature IUPAC Nomenclature for Organic Chemistry What Is IUPAC Nomenclature?
    Nomenclature IUPAC nomenclature for organic chemistry What is IUPAC nomenclature? • A systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). • It provides an unambiguous structure. • Official IUPAC naming recommendations are not always followed in practice, and the common or trivial name may be used. rules for alkane nomenclature • Find and name the longest carbon chain • Name the groups attached to the longest carbon chain • Number the chain consecutively, starting at the end nearest a substituted group • Designate the location of each substituent group • Assemble the name by listing groups in alphabetical order and the main chain last Main chain and alkyl group names # of # of Name Name Main chain names AlkylCarbons group names Carbons methyl 1 butyl 4 Name # of Carbons Name # of Carbons ethyl 2 pentyl 5 methane 1 hexane 6 propyl 3 Hexyl 6 ethane 2 heptane 7 propane 3 octane 8 (CH3)2CH butane 4 nonane 9 Group (CH3)2CH– CH3CH2CH(CH3)– (CH3)3C– CH2– Name Isopropyl Isobutyl sec-Butyl tert-Butyl pentane 5 decane 10 Example • Longest chain/main chain: • 7 carbons (circled) • Name: heptane • Side chain groups: • 1-carbon group at position 3 Answer: • Name: 3-methyl 4-ethyl-3• -methylheptane2-carbon group at position 4 • Name: 4-methyl Naming ring compounds • Same rules as alkane nomenclature except: • A cyclo- prefix is added to the root name • Groups are numbered to give multiple substituents the lowest possible numbers • When there is only one substituent, it
    [Show full text]
  • Principles of Chemical Nomenclature a GUIDE to IUPAC RECOMMENDATIONS Principles of Chemical Nomenclature a GUIDE to IUPAC RECOMMENDATIONS
    Principles of Chemical Nomenclature A GUIDE TO IUPAC RECOMMENDATIONS Principles of Chemical Nomenclature A GUIDE TO IUPAC RECOMMENDATIONS G.J. LEIGH OBE TheSchool of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, UK H.A. FAVRE Université de Montréal Montréal, Canada W.V. METANOMSKI Chemical Abstracts Service Columbus, Ohio, USA Edited by G.J. Leigh b Blackwell Science © 1998 by DISTRIBUTORS BlackweilScience Ltd Marston Book Services Ltd Editorial Offices: P0 Box 269 Osney Mead, Oxford 0X2 0EL Abingdon 25 John Street, London WC1N 2BL Oxon 0X14 4YN 23 Ainslie Place, Edinburgh EH3 6AJ (Orders:Tel:01235 465500 350 Main Street, Maiden Fax: MA 02 148-5018, USA 01235 465555) 54 University Street, Carlton USA Victoria 3053, Australia BlackwellScience, Inc. 10, Rue Casmir Delavigne Commerce Place 75006 Paris, France 350 Main Street Malden, MA 02 148-5018 Other Editorial Offices: (Orders:Tel:800 759 6102 Blackwell Wissenschafts-Verlag GmbH 781 388 8250 KurfUrstendamm 57 Fax:781 388 8255) 10707 Berlin, Germany Canada Blackwell Science KK Copp Clark Professional MG Kodenmacho Building 200Adelaide St West, 3rd Floor 7—10 Kodenmacho Nihombashi Toronto, Ontario M5H 1W7 Chuo-ku, Tokyo 104, Japan (Orders:Tel:416 597-1616 800 815-9417 All rights reserved. No part of Fax:416 597-1617) this publication may be reproduced, stored in a retrieval system, or Australia BlackwellScience Pty Ltd transmitted, in any form or by any 54 University Street means, electronic, mechanical, Carlton, Victoria 3053 photocopying, recording or otherwise, (Orders:Tel:39347 0300 except as permitted by the UK Fax:3 9347 5001) Copyright, Designs and Patents Act 1988, without the prior permission of the copyright owner.
    [Show full text]
  • L This Thesis Comes Within Category D. Lj
    REFERENCE ONLY 2 8 0 9 5 8 5 6 8 7 UNIVERSITY OF LONDON THESIS Degree Year S . o o ' l Name of Author £.»e£Y)/0 COPYRIGHT This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOAN Theses may not be lent to individuals, but the University Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: The Theses Section, University of London Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the University of London Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The University Library will provide addresses where possible). B. 1962- 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration.
    [Show full text]
  • The Periodic Table
    The Periodic Table 7. Families of the Periodic Table Some of these include: A. Alkali Metals B. Alkaline Earth Metals C. Halogens D. Noble Gases Definition of a Family: a group of elements with similar chemical and (often) physical properties. These groups are found in vertical columns in the periodic table, and note that these patterns emerge by listing the elements in order of atomic number. (This is sometimes referred to as the Periodic Law.) A The Alkali Metals Alkali is derived from an Arabic word alqaliy, meaning ashes of saltwort. Soon you'll understand the connection. 1. Physical Properties 3Li a) Do they have a common appearance?__________ 11Na b) Are they conductors of electricity?______________ K c) What can you generalize about their melting points?___________ 19 37Rb 2. Chemical Properties 55Cs a) What common ion is formed by alkali metals?__________ b) Outline the electron arrangement for the first three members of the family. 87Fr 36 Module 1: Matter: An Introduction to Chemistry c) What happens when one electron is removed from each of the above to form their common ion? d) Sodium is found in oceans, neurons and in minerals but always in the Na+1 form. Na would destroy living cells and cause explosive reactions in the ocean. To make neutral sodium, we pass electricity through molten NaCl, thus forcing Na+1 to take back its electron. What do you infer from the above? e) Specific Reactions of the Alkali Metals The members of this family react vigorously with acids, water, oxygen and halogens. The reaction with water generates hydrogen gas and a base.
    [Show full text]
  • IUPAC's 1996 Recommendations on Nomenclature of Carbohydrates
    IUPAC's 1996 Recommendations on Nomenclature of Carbohydrates INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY and INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE" NOMENCLATURE OF CARBOHYDRATES (Recommendations 1996) Preparedfor publication by ALAN D. McNAUGHT The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 4WF. UK "Members of the Commission (JCBN) at various times during the work on this document (1983-1996) were as follows; Chnirmen: H.B.F. Oilton (UK), J.F.G. Vliegenthart (Netherlands), A. Comish-Bowden (France); Sure· lariu: A. Cornish-Bowden (France), M.A. Chester (Sweden), AJ. Barrett (UK), J .C. Rigg (Netherlands); Membus: J.R. Bull (RSA), R. Cammack (UK), D. Coucouvanis (USA), D. Horton (USA). M.A.C. Kaplan (Brazil), P. Karlson (Germany), C. Liebecq (Belgium). K.L. Loening (USA), G.P. Moss (UK). J. Reedijk (Netherlands), K.F. Tipton (Ireland), S. Velick (USA). P. Venetianer (Hungary). Additional contributors to the formulation of these recommendations: Expert Panel: D. Horton (USA)(Convener), O. Achmatowicz (Poland), L. Anderson (USA), S.J. Angyal (Australia), R. Gigg (UK), B. Lindberg (Sweden). DJ. Manners (UK), H. Paulsen (Germany), R. Schauer (Germany). Nomenciarllre CommitreeoflUBMB (NC-lUBMB) (those additional tolCBN): A. Bairoch (Switzerland), H. Berman (USA), H. Bielka (Germany), C.R. Cantor (USA), W. Saenger (Germany). N. Sharon (Israel), E. van Lenten (USA). E.C. Webb (Australia). American Chemical Society Commillee for Carbohydrare Nomenciarure: D. Horton (Chairman), L. Anderson. D.C. Baker, H.H. Baer, J.N. BeMiller, B. Bossenbroek, R. W. Jeanloz, K.L. Loening. W. A. Szarek. R.S. Tipson.
    [Show full text]
  • Appendix A: Chemical Nomenclature
    BUILDING CHEMISTRY – LABORATORY SESSIONS APPENDIX A: CHEMICAL NOMENCLATURE Chemical elements are substances which contain atoms that have the same atomic number (number of protons in the atomic nucleus). Each element is described by an international UIPAC name and corresponding symbol. The combination of two or more atoms results in the formation of compounds. Their chemical formulae are always composed of symbols of the elements which the compound contains and indices which indicate the number of corresponding atoms of a given element. E.g. H2SO4 (sulphuric acid) is a compound that contains 2 hydrogen atoms, 1 atom of sulphur and 4 oxygen atoms in its molecule. If an element or a group of elements bears an electric charge we call them ions. The charge of an ion is represented by a superscript just after the chemical formula. Positively charged ions + 2+ 2+ 3+ + – – 2– (Na , Ca , Fe , Fe , NH4 ) are called cations and negatively charged ions (Cl , CN , S , 2– SO3 ) are anions. The nomenclature of inorganic compounds is based on the oxidation states of elements. The oxidation state is an indicator of the degree of oxidation of an atom in a chemical compound. The formal oxidation state is the hypothetical charge that an atom would have if all bonds to atoms of different elements were 100% ionic. Oxidation states can be positive, negative, or zero. It should be remembered that the oxidation state of an atom does not represent the "real" charge on that atom: this is particularly true for high oxidation states, where the ionisation energy required to produce a multiple positive ion is far greater than the energies available in chemical reactions.
    [Show full text]
  • Standards and Conventions for Tdb Publications
    AGENCE DE L’OCDEPOUR L’ÉNERGIENUCLÉAIRE OECD NUCLEAR ENERGY AGENCY TDB-5 STANDARDS AND CONVENTIONS FOR TDB PUBLICATIONS Hans Wanner Erik Östhols May 2000 (Updated in May 2015) Le Seine-St. Germain 12, Bd. des Îles F-92130 Issy-les-Moulineaux FRANCE CONTENTS 1 Contents 1 Symbols, terminology and nomenclature 3 1.1 Abbreviations . ........................ 3 1.2 Symbols and terminology . .................... 3 1.3 Chemical formulae and nomenclature . ............. 6 1.4 Phase designators . ........................ 10 1.5 Processes . ........................ 12 1.6 Thermodynamic data ........................ 12 1.7 Equilibrium constants ........................ 14 1.8pH.................................. 22 1.9 Presenting numeric values of chemical quantities . ...... 24 1.10 Order of formulae . ........................ 25 1.11 Referenced publications . .................... 27 1.11.1 Titles . ........................ 27 1.11.2 Publication Information . ............. 27 2 Units and conversion factors 28 3 Standard and reference conditions 31 3.1 Standard state . ........................ 31 3.2 Standard state pressure . .................... 32 3.3 Reference temperature . .................... 35 4 Fundamental physical constants 35 References 37 Version of May 2015 LIST OF TABLES 2 List of Tables 1 Symbols and terminology . .................... 3 2 Abbreviations for experimental methods . ............. 7 3 List of organic compounds . .................... 8 4 Abbreviations for chemical processes . ............. 12 5 Unit conversion factors . ...................
    [Show full text]