Amd(Amd.Us)18Q1 点评 2018 年 07 月 30 日

Total Page:16

File Type:pdf, Size:1020Kb

Amd(Amd.Us)18Q1 点评 2018 年 07 月 30 日 海外公司报告 | 公司动态研究 证券研究报告 AMD(AMD.US)18Q1 点评 2018 年 07 月 30 日 作者 AMD 7 年最佳,10 年翻身,重申买入,TP 上调至 何翩翩 分析师 23 美元 SAC 执业证书编号:S1110516080002 [email protected] 业绩超预期,7 年来最佳盈利季 雷俊成 分析师 SAC 执业证书编号:S1110518060004 AMD 18Q2 实现 7 年来最佳盈利季度,non-GAAP EPS 0.14 美元,营收 17.6 [email protected] 亿美元同比大涨 53%,均超过华尔街预期的 EPS 0.13 美元和营收 17.2 亿美 马赫 分析师 SAC 执业证书编号:S1110518070001 元。计算与图形业务同比大涨 64%至 10.9 亿美元好于市场预期的 10.6 亿, [email protected] 但受 Q2 区块链相关贡献进一步减弱带来该业务环比跌 3%。挖矿业务本季 董可心 联系人 营收占比从上季的 10%降低为 6%,公司进一步看淡下半年需求。EESC 业务 [email protected] 同比涨 37%至 6.7 亿美元,好于预期的 6.61 亿,EPYC 逐步进入放量阶段, 公司维持到年底会实现中单位数份额的预测。Q2 毛利率提升至 37%,Q3 指引营收 17 亿美元,同比增长 7%,略低于市场预期的 17.6 亿,毛利率提 相关报告 升至约 38%;全年指引营收增速保持 25%,我们认为公司指引基于 17Q3 的 1 《AMD(AMD.US)点评:EPYC“从 高基数较为保守,且区块链影响作为一次性业务逐渐消弭也会进一步减少 零到一”终实现,7nm 产品周期全方位 业绩不确定性,我们看好 EPYC 会在下半年至 Q4 迎来关键放量。 回归“传奇”;TP 上调至 22 美元,重 服务器市场 AMD 与 Intel“荣辱互见” 申买入》2018-06-20 2 《AMD(AMD.US)点评:公布 7nm 服务器市场 AMD 与 Intel“荣辱互见”,EPYC 服务器随着 Cisco、HPE 适配 GPU 加入 AI 计算抢滩战,Ryzen+EPYC 以及超级云计算客户的需求能见度提高,Q2 出货量和营收均环比提高超 50%,目前与 AMD 合作的 5 个云计算巨头成主要推动力。我们认为 AMD “双子星”仍是中流砥柱;TP 上调至 将继续通过单插槽服务器高核心数和低功耗打造性价比优势,下半年加速 18 美元,重申买入》2018-06-08 市场渗透蚕食 Intel 份额,进入明年则等待 7nm 的第二代 EPYC 面市,面对 3 《AMD(AMD.US)18Q1 点评:2018 已将 10nm Cannon Lake 量产时点延后至明年的 Intel,AMD 将终于实现制 开门红,业绩指引均超预期,Ryzen 继 程反超,加速量价齐升。“从零到一”抢占 20 亿美元以上的市场份额。 续扎实闪耀,EPYC 仍待升级放量,重 反观 Intel Q2 数据中心业务收入 55.5 亿美元,虽然在整体行业高景气度下 申买入》2018-04-30 同比增长 27%,但仍低于市场预期的 56.3 亿美元。业绩发布会上 Intel 更为 4 《2017 扭亏为盈业绩迎拐点,2018 明确消费级 10nm 产品会到 19 年下半年节日旺季才推向市场,让市场情绪 厚积待薄发,Ryzen+EPYC 继续双星闪 愈加悲观的同时也给了 AMD 足够的时间窗口。 耀,重申买入》2018-02-01 Ryzen 继续攻城略地,进一步打开笔记本市场 5 《AMD(AMD.US)点评:合作英特 尔终落地,携手进军游戏笔记本,Ryzen Ryzen 在 PC 市场继续攻城略地,AMD 目前已有 44 款 Ryzen 系列消费产品, 和 EPYC 终起航,重申“买入”》 预计年内达到 60 款。Ryzen 系列目前占据 AMD CPU 收入约 60%,随着 OEM 逐步发布 Ryzen 适配笔记本,面向笔记本市场的 Ryzen Mobile 在 Q2 实现 2017-11-07 出货量环比翻倍,并为下半年的返校季和假日旺季做好准备。而在商务本 6 《AMD(AMD.US)点评:Q3 营收 市场,三大 OEM 戴尔、惠普、联想首次均推出 Ryzen 适配商务本和商务 盈利均超预期,执行力继续证明,盘后 机,也有机会进一步打开 2B 市场。整体来说,我们看好 AMD 不断上抢中 下跌获布局良机;重申“买入”,维持 高端台式机和笔电市场,通过 Ryzen 占比提升拉动产品组合的量价齐升。 TP 16 美元》2017-10-25 而明年进入 7nm 3000 系产品周期,有望借 Intel 10nm 良率问题难解之机 7 《AMD(AMD.US)深度:扭亏为盈, 进一步抢占市场,我们预测 AMD 整体 PC 市占率(台式机+笔电)到 2020 年有望接近 20%。 Q2 超预期,CPU+GPU 双剑合璧的唯 一,重申“买入”,目标价维持 16 美元》 CPU+GPU 双剑合璧的唯一,AMD 或迎来“十年翻身仗”最佳时机 2017-08-17 随着 AMD 在所有产品,包括 GPU,CPU(PC+服务器)都会在今年下半年 8 《AMD(AMD.US)1Q17 点评:Q1 到明年进入 7nm 制程,而 Intel 只是在明年底推出 10nm,AMD 弯道超车 业绩达标,CPU 市场破局者乘云计算和 的同时,我们有机会看到 CPU+GPU 的组合销售进一步放大 AMD 的市场空 人工智能之风》2017-05-02 间。AMD 在 15 年前曾得益于 K7/K8 的成功和 Intel 战略失误一度领先半个 9 《AMD(AMD.US)点评:Ryzen 千 身位,彼时 AMD 股价从约 5 美元暴涨至 40 美元以上,PS 估值也实现翻倍。 呼万唤始出来,但股价两天回调 13%; 当前 AMD PS 仅 2.8x,对比 Intel 3.4x 和英伟达 14x,而积极利用 GPU+CPU GPU+x86 的唯一,重申“买入”,TP 16 异构计算的技术储备入局云计算和 AI,将可让公司获得更高的估值弹性。 美元》2017-03-04 制程的弯道超车更让 AMD 迎来“十年翻身仗”最佳时机。我们调整盈利 10 《AMD(AMD.US)4Q16 点评:营 预测,18/19 年营收从 73.5/92.3 下调至 67.1/80.6 亿美元,净利润从 5.5/7.8 收盈利 1Q 指引超预期,云计算人工智 上调至 6.1/8.2 亿美元,对应 2019 年 3.2x PS,目标价从 22 上调至 23 美元。 风险提示:市场需求不及预期,研发能力影响产品升级。 能乘风破浪;上调目标价至 16 美元》 2017-02-02 请务必阅读正文之后的信息披露和免责申明 1 海外公司报告 | 公司动态研究 1. EPYC 能否重现“创奇”,静待 EPYC 2 制程反超 我们从 17 年开始强调的 AMD 的服务器处理器 EPYC“从零到一”回归市场已然实现。我 们认为随着包括 HPE、Cisco 等 OEM 的研发适配和产品落地,EPYC 会在今年下半年加速 市场渗透,进一步蚕食 Intel 份额。进入明年则等待第二代 EPYC 面市,采用 7nm 制程, 面对已将 10nm 制程量产时点延后至明年的 Intel,将终于实现制程反超,并随客户对 EPYC 的熟悉和曝光程度提升加速量价齐升的过程。根据 CNBC 报道,Intel CEO 此前也表示难以 防止 AMD 在服务器市场的份额掠夺,公司能做的仅仅是不让 AMD 扩张至 15-20%市占率。 我们回顾 AMD 15 年前的辉煌历史,2003 年推出的 Opteron 服务器 CPU 为 AMD 在 2005-06 年一度带来了 20%以上的市场份额。彼时辉煌也得益于 Intel 的 Itanium 架构 CPU 由于不兼 容传统 x86 32 位程序被市场边缘化,不过我们也看到 AMD 市占率从 2003 年 4 月 Opteron 面市到 2006 年 Q2 才迎来 22%以上的巅峰。对应 EPYC 从 17 年中面市,17 下半年放量速 度略低于我们预期,也是鉴于多年后“从零到一”回归市场的渠道适配适应时间。我们认 为 AMD 继续通过单插槽服务器的高核心数和低功耗打造性价比优势。目前 AMD EPYC 云 计算客户已收获亚马逊 AWS、微软 Azure、百度云、腾讯云等,OEM 厂商包括 Cisco、Dell、 HPE、联想、曙光等适配也将加速放量。 根据 Gartner 最新市场数据,今年 Q1 全球服务器收入同比增长 33.4%,出货量也同比增长 17.3%,行业景气度高涨。此前 Intel 业绩公告,2017 年数据中心业务平台收入达 174 亿美 元,同比涨 10%。另外今年 Q1 Intel 业绩公布,数据中心业务收入同比涨 24%至 52 亿美元, 其中平台收入同比涨 24%至 48 亿美元,主要鉴于云计算服务商需求同比涨 45%以及电信服 务商需求同比涨 33%,服务器市场蛋糕做大的同时也在加剧与 AMD 的竞争。 我们基于行业高景气度,预计今年行业增速达到 15%,未来 2 年分别为 10%和 6%,则 2018-2020 年的数据中心处理器市场空间分别提升至 201 亿、221 亿、235 亿美元。我们 对 AMD 不同市场份额下带来的营收贡献做弹性测试。公司在 EPYC 一周年大会上表示 EPYC 已经获得 1%以上市占率,并维持到年底会实现中单位数份额的预测,我们预计今年内数据 中心处理器市场份额能够向 4%以上突破,对应收入可达 8 亿美元以上,未来两年渗透率上 看至 10%,可以带来超过 23 亿美元收入。 图 1:AMD EPYC 能否重新 Opteron 的“传奇” 图 2:AMD 服务器业务收入测算 100% 2016E 2017E 2018E 2019E 2020E 80% 市场空间(百万美元) 15,906 17,497 20,121 22,133 23,461 同比 10% 15% 10% 6% 60% 2003年4月发布的 但随着Intel Core架构的出现,以及AMD Opteron服务器让 分心收购ATI事宜,AMD此后的Bulldozer 0.8% 2.0% 5.0% 7.0% AMD一度占得 架构以及拥抱ARM架构的服务器产品都丌 悲观估计 40% 140 402 1107 1642 20%以上市场份额 被市场认可 2017年6月 AMD 1.0% 4.0% 7.0% 10.0% 20% 数据中心处理器业务收入 中性估计 EPYC发布 (百万美元) 175 805 1549 2346 0% 2003Q2 2003Q4 2005Q4 2006Q2 2008Q4 2009Q2 2011Q2 2011Q4 2014Q2 2014Q4 2016Q4 2017Q2 2004Q4 2005Q2 2006Q4 2007Q2 2007Q4 2008Q2 2009Q4 2010Q2 2010Q4 2012Q2 2012Q4 2013Q2 2013Q4 2015Q2 2015Q4 2016Q2 2017Q4 2018E 2019E 2020E 2004Q2 2.0% 6.0% 9.0% 12.0% 乐观估计 350 1207 1992 2815 AMD Intel 资料来源:Mercury Research,天风证券研究所预测 资料来源:Intel 财报,AMD 官网,Gartner,天风证券研究所预测 图 3:EPYC 在全部价格区间都带来高性价比选择 图 4:EPYC 目标成为单插槽服务器市场的破局者 资料来源:AMD 官网,天风证券研究所 资料来源:AMD 官网,天风证券研究所 请务必阅读正文之后的信息披露和免责申明 2 海外公司报告 | 公司动态研究 2. Ryzen CPU 攻城略地,待笔电接力放量 全球 PC 出货量经历了 2012 年以来的颓势之后,根据 Gartner 统计 2017 年出货量约为 263 百万台。结合 Gartner 市场预测,我们预计未来三年全球出货量会进入更平缓的萎缩期, 至 2020 年约为 252 万台。对应 AMD 的市占率,根据 Mercury Research 数据,AMD 的台 式机 PC 处理器市占率已经从 2016Q3 的 9.1%,逐步提升至 2017Q4 的 12%,17 全年应在 9%左右。据 CNET 报道,AMD 最近则表示年内 AMD 的市占率在台式机市场有望达到 20%, 笔记本电脑市场有望达到 18%。 我们认为,Ryzen 在台式机的闪耀给 AMD 打下了坚实基础,而随着集合了 Ryzen CPU+Vega GPU 的 APU,以及 Zen+为核心的第一代 Ryzen CPU 升级产品已经面市,我们看好 AMD 不断上抢中高端台式机和笔电市场,通过 Ryzen 整体占比提升拉动产品组合的量价齐升。 明年进入 Zen 2 核心的 3000 系 CPU 周期,作为采用 7nm 全新架构的升级产品,有望借 Intel 10nm 良率问题难解之机进一步抢占市场。 不过 AMD 在笔记本电脑市场渗透率仍待 APU 和 Ryzen Mobile 的市场渗透。第一款 Ryzen Mobile 处理器于去年 10 月才面市,且台式机市场可以通过 OEM 适配或直接零售给用户 DIY 两条途径渗透,笔记本电脑市场则主要依靠笔记本 OEM 包括 HP、Dell、Acer、Lenovo 等进行模组适配和市场测试,虽然 AMD 在 Q1 业绩会上表示 Q1 笔记本处理器出货量有两 位数增长,但鉴于低基数,我们认为在下半年的传统返校季和假期促销才会为 AMD 的笔 电业务带来显著营收贡献。 因此,我们预测 AMD 整体 PC 市占率(台式机+笔电)到 2020 年有望接近 20%,ASP 的提 升仍依靠 Ryzen 的占比不断增加,但鉴于笔电 ASP 低于台式机 ASP,笔电产品组合的扩大 会部分拉缓 ASP 增长。 图 5:AMD Zen 核心“五年磨一剑”,今年产品主要为 Zen+核心,明年进入 7nm 的 Zen 2 产品周期 资料来源:wccftech,天风证券研究所 图 6:全球 PC 出货量和 AMD、Intel 份额变化 图 7:AMD PC 处理器市占率提升带来的显著营收提升 400 100% 350 80% 300 2016 2017 2018E 2019E 2020E 250 60% 出货量(百万) 270 263 257.7 255.2 252.6 200 AMD市占率 8.6% 9.1% 13% 16% 19% 150 40% ASP(美元) 52 63 70 73 75 100 20% 50 收入(百万美元) 1,207 1,508 2,345 2,980 3,600 0 0% 2018E 2019E 2020E 2006 2007 2008 2013 2014 2015 2016 2010 2011 2012 2017 2009 同比 25% 56% 27% 21% 全球PC出货量(百万台) INTC AMD 资料来源:Gartner、IDC、Mercury Research、天风证券研究所预测 资料来源:Gartner、IDC、Mercury Research、天风证券研究所预测 请务必阅读正文之后的信息披露和免责申明 3 海外公司报告 | 公司动态研究 图 8:AMD 的 Ryzen 发布路线图 图 9:AMD 的 Ryzen 发布路线图 资料来源:AMD 官网,天风证券研究所 资料来源:AMD 官网,天风证券研究所 图 10:AMD 今年新品的价格区间和 Intel 的比较 图 11:Ryzen 2700X 成为 Intel 主打产品 i7-8700K 的有力竞争者 AMD Ryzen 7 2700X Intel Core i7-8700K 零售价 320美元 349美元 接口类型 AM4 FCLGA1151 主频 3.7 GHz 3.7 GHz 超频 Up to 4.3 GHz Up to 4.7 GHz 核心线程 8核16线程 6核12线程 制程工艺 12nm 14nm 总功耗 105W 95W 上市时间 2018 Q2 2017 Q4 单线程评分 2198 2707 PassMark CPU评分 17042 16012 (越高越好) 资料来源:videocardz,AMD 官网,天风证券研究所 资料来源:PassMark,天风证券研究所 3. 7nm Vega GPU 拥抱 AI 计算蓝海 AMD 在台湾 Computex 大会上展示了面向专业级/数据中心的 7nm Radeon Vega GPU 原型 芯片,包含 4 个 HBM2 内存,最高 32 GB,性能较上一代提升 35%,芯片密度提升 1x,能 效提升 1x。基于该 GPU 的 Radeon Instinct 加速器已向初始客户提供样片,预计下半年发 货。我们认为 AMD 的 2017 年在 GPU 领域进展略微平淡,面向游戏市场的 Vega 显卡客户 接受度较为一般,云计算与 AI 布局未赢得明显突破。 目前 AMD 在云计算仅进入阿里云和谷歌云的有限图像处理工作上。而随着专为人工智能 和深度学习设计的 7nm GPU 公布,让 AMD 拥有了拥抱 AI 计算蓝海的资本,有望在深度 学习推理端占据一席,并向上游训练端向英伟达看齐(目前主打产品是 12nm Volta GPU)。 我们看好 AMD 未来通过与自家 EYPC 服务器的协同,真正入局 GPU+CPU 异构计算的云计 算和 AI,也让公司有机会享受更高的估值弹性。 此外 7nm 制程上,AMD 将同时使用台积电和 GlobalFoundries 的产线,AMD Q2 业绩会上 表示,目前代号 Rome 的 7nm 服务器芯片,正交由台积电进行样片生产,并交给选定合作 商进行早期验证。台积电方面表示 7nm FinFET 制程的芯片密度是 10nm FinFET 制程的 1.6 倍,对比前一代制程约 20%速度提升和 40%能耗节约。目前英伟达主要依靠台积电进行 16nm Pascal 显卡和 12nm Volta GPU 的生产。我们认为,进入 7nm 制程将是 AMD 从 2019 年开 始的新产品关键。在新制程上将生产力量分担给台积电和 GF 有利于把握市场发布节奏, 减小延产风险。GF 也表示“AMD 的需求大于 GF 产能”,我们也不排除未来台积电会分担 部分 7nm CPU 产能。 请务必阅读正文之后的信息披露和免责申明 4 海外公司报告 | 公司动态研究 图 12:AMD CEO 展示 7nm Vega GPU 样品 图 13:7nm GPU 带来显著的性能提升 资料来源:The Verge,天风证券研究所 资料来源:wccftech,天风证券研究所 图 14:目前深度学习领域常用的四大芯片类型,“通用性和功耗的平衡” 训练端 推理端 GPU:以英伟达为主,AMD为辅标榜通用性,多维 GPU:英伟达Volta GPU也开始布局推理端。深度 计算及大规模幵行计算架构契合深度学习的需要 。 学习下游推理端虽可容纳CPU/FPGA/ASIC等芯片, 在深度学习上游训练端(主要用在云计算数据中心 但竞争态势中英伟达依然占主导。 里),GPU是当仁丌让的第一选择 。 ASIC:以谷歌的TPU、英特尔的Nervana Engine ASIC:下游推理端更接近终端应用,需求也更加绅 为代表,针对特定框架进行深度优化定制。但开发 分,英伟达的DLA,寒武纪的NPU等逐步面市,将 周期较长,通用性较低。比特币挖矿目前使用ASIC 依靠特定优化和效能优势,未来在深度学习领域分 专门定制化矿机。 一杯羹。 FPGA:依靠可编程性及电路级别的通用性,适用 CPU:通用性强,但难以适应于人工智能时代大数 于开发周期较短的IoT产品、传感器数据预处理工作 据幵行计算工作。 以及小型开发试错升级迭代阶段等。但较成熟的量 产设备多采用ASIC。 资料来源:微软 Build,谷歌官网,天风证券研究所整理 图 15:AMD 此前发布的 Radeon Instinct 加速器,MI25 型号将搭载 7nm Vega GPU 资料来源:AMD 官网,天风证券研究所 请务必阅读正文之后的信息披露和免责申明 5 海外公司报告 | 公司动态研究 图 16:此前 Vega 内存预计为 16GB HBM2,今年已经更新为 32GB 图 17:去年公布的 Vega GPU 适配 Inventec K888 服务器 资料来源:videocardz,天风证券研究所 资料来源:servethehome,天风证券研究所 前文提到根据 Gartner 最新市场数据,今年 Q1 全球服务器收入同比增长 33.4%,出货量也 同比增长 17.3%,行业景气度高涨。我们也对应调高全年服务器出货量预测,预计 18-20 年三年全球服务器出货量增速分别为 10%,6%和 4%,对应 GPU 数据中心市场空间增长至 65 亿美元。而 AMD 随着 Vega GPU 开始进入 AI 计算广阔领域,我们也预测对应 GPU 业 务三年增速均能实现 100%以上。 图 18:全球服务器 GPU 市场估计 2013 2014 2015 2016 2017E 2018E 2019E 2020E 全球服务器出货量(千) 9,887 10,091 11,091 11,103 11,451 12,596 13,352 13,886 增长率% 2% 10% 0% 3% 10% 6% 4% 服务器中使用AI的占比% 7.0% 10.0% 12.0% 14.5% 16.5% 服务器中使用AI的数量(千台) 777 1,145 1,512 1,936 2,291 当中使用GPU的占比% 3.4% 5.5% 7.5% 9.2% 10.5% 使用GPU的数量(千台) 777*3.4%=26 63 113 178 241 未使用GPU的数量(千台) 751 1,082 1,398 1,758 2,051 AI服务器中GPU在全球服务器的渗透率% 26/11,103=0.24% 0.55% 0.90% 1.33% 1.73% GPU服务器中使用AI的占比% 59% 64% 68% 70% 72% 全球GPU服务器的数量(千台) 26/59%=44.6 98.6 166.7 254.5 334.1 全球GPU服务器的占比% 44.6/11,103=0.40% 0.86% 1.32% 1.91% 2.41% 英伟达市场份额% 98% 98% 97% 95% 92% 数据中心英伟达GPU使用量(千台)
Recommended publications
  • Am186em and Am188em User's Manual
    Am186EM and Am188EM Microcontrollers User’s Manual © 1997 Advanced Micro Devices, Inc. All rights reserved. Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in its products without notice in order to improve design or performance characteristics. The information in this publication is believed to be accurate at the time of publication, but AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make changes at any time, without notice. AMD disclaims responsibility for any consequences resulting from the use of the information included in this publication. This publication neither states nor implies any representations or warranties of any kind, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose. AMD products are not authorized for use as critical components in life support devices or systems without AMD’s written approval. AMD assumes no liability whatsoever for claims associated with the sale or use (including the use of engineering samples) of AMD products except as provided in AMD’s Terms and Conditions of Sale for such products. Trademarks AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Am386 and Am486 are registered trademarks, and Am186, Am188, E86, AMD Facts-On-Demand, and K86 are trademarks of Advanced Micro Devices, Inc. FusionE86 is a service mark of Advanced Micro Devices, Inc. Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
    [Show full text]
  • Class-Action Lawsuit
    Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: [email protected] Jennifer S. Wagner, OSB No. 024470 Email: [email protected] STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys.
    [Show full text]
  • AMD-K5TM Processor
    AMD-K5TM Processor Data Sheet Publication # 18522 Rev: F Amendment/0 Issue Date: January 1997 This document contains information on a product under development at AMD. The information is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. © 1997 Advanced Micro Devices, Inc. All Rights Reserved. Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in its products without notice in order to improve design or performance charac- teristics. The information in this publication is believed to be accurate at the time of publication, but AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make changes at any time, without notice. AMD disclaims responsibility for any consequences resulting from the use of the information included in this publication. This publication neither states nor implies any representations or warranties of any kind, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose. AMD products are not authorized for use as critical components in life support devices or systems without AMD’s written approval. AMD assumes no liability whatsoever for claims associated with the sale or use (including the use of engineering samples) of AMD products except as provided in AMD’s Terms and Conditions of Sale for such product. Trademarks: AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Am486 is a registered trademark, and AMD-K5 is a trademark of Advanced Micro Devices, Inc.
    [Show full text]
  • Élan™SC520 Microcontroller Data Sheet PRELIMINARY
    PRELIMINARY Élan™SC520 Microcontroller Integrated 32-Bit Microcontroller with PC/AT-Compatible Peripherals, PCI Host Bridge, and Synchronous DRAM Controller DISTINCTIVE CHARACTERISTICS ■ ■ Industry-standard Am5x86® CPU with floating ROM/Flash controller for 8-, 16-, and 32-bit devices point unit (FPU) and 16-Kbyte write-back cache ■ Enhanced PC/AT-compatible peripherals – 100-MHz and 133-MHz operating frequencies provide improved performance – Low-voltage operation (core VCC = 2.5 V) – Enhanced programmable interrupt controller – 5-V tolerant I/O (3.3-V output levels) (PIC) prioritizes 22 interrupt levels (up to 15 external sources) with flexible routing ■ E86™ family of x86 embedded processors – Enhanced DMA controller includes double buffer – Part of a software-compatible family of chaining, extended address and transfer counts, microprocessors and microcontrollers well and flexible channel routing supported by a wide variety of development tools ■ – Two 16550-compatible UARTs operate at baud Integrated PCI host bridge controller leverages rates up to 1.15 Mbit/s with optional DMA interface standard peripherals and software ■ Standard PC/AT-compatible peripherals – 33 MHz, 32-bit PCI bus Revision 2.2-compliant – Programmable interval timer (PIT) – High-throughput 132-Mbyte/s peak transfer – Real-time clock (RTC) with battery backup – Supports up to five external PCI masters capability and 114 bytes of RAM – Integrated write-posting and read-buffering for ■ Additional integrated peripherals high-throughput applications – Three general-purpose
    [Show full text]
  • 32-Bit Broch/4.0-8/23 (Page 3)
    E86™ FAMILY 32-Bit Microprocessors www.amd.com 3 Leverage the billions of dollars spent annually developing hardware and software for the world's dominant processor architecture—x86 SECTION I • Assured, flexible, and x86 compatible migration path from 16-bit to full 32-bit bus design HIGH PERFORMANCE x86 EMBEDDED PROCESSORS • Industry standard x86 architecture The E86™ family of 32-bit microprocessors and microcontrollers represent the highest level of x86 performance that AMD currently offers for the embedded provides largest knowledge base market. This 32-bit family of devices includes the Am386®, Am486®, AMD-K6™E of designers microprocessors as well as the Élan™ family of integrated microcontrollers. Since all E86 family processors are x86 compatible, a software compatible • Enhanced performance and lower upgrade path for your next generation design is assured. And since the E86 family is based on the world’s dominant processor architecture - x86 - system costs embedded designers are also able to leverage the billions of dollars spent annually developing hardware and software for the PC market. Low cost • High level of integration that development tools, readily available chipsets and peripherals, and pre-written software are all benefits of utilizing the x86 architecture in your designs. reduces time-to-market and increases reliability HIGH PERFORMANCE 32-BIT MICROPROCESSOR PORTFOLIO Many customers require the leading edge performance of PC microproces- • A complete third-party support program sors, while still desiring the level of support that is typically associated with from AMD’s FusionE86sm partners. embedded processors. AMD’s Embedded Processor Division is chartered to provide these industry-proven CPU cores with the long-term product support, development tool infrastructure, and technical support that embedded cus- tomers have come to expect.
    [Show full text]
  • Communication Theory II
    Microprocessor (COM 9323) Lecture 2: Review on Intel Family Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Feb 17th, 2016 1 Text Book/References Textbook: 1. The Intel Microprocessors, Architecture, Programming and Interfacing, 8th edition, Barry B. Brey, Prentice Hall, 2009 2. Assembly Language for x86 processors, 6th edition, K. R. Irvine, Prentice Hall, 2011 References: 1. Computer Architecture: A Quantitative Approach, 5th edition, J. Hennessy, D. Patterson, Elsevier, 2012. 2. The 80x86 Family, Design, Programming and Interfacing, 3rd edition, Prentice Hall, 2002 3. The 80x86 IBM PC and Compatible Computers, Assembly Language, Design, and Interfacing, 4th edition, M.A. Mazidi and J.G. Mazidi, Prentice Hall, 2003 2 Lecture Objectives 1. Provide an overview of the various 80X86 and Pentium family members 2. Define the contents of the memory system in the personal computer 3. Convert between binary, decimal, and hexadecimal numbers 4. Differentiate and represent numeric and alphabetic information as integers, floating-point, BCD, and ASCII data 5. Understand basic computer terminology (bit, byte, data, real memory system, protected mode memory system, Windows, DOS, I/O) 3 Brief History of the Computers o1946 The first generation of Computer ENIAC (Electrical and Numerical Integrator and Calculator) was started to be used based on the vacuum tube technology, University of Pennsylvania o1970s entire CPU was put in a single chip. (1971 the first microprocessor of Intel 4004 (4-bit data bus and 2300 transistors and 45 instructions) 4 Brief History of the Computers (cont’d) oLate 1970s Intel 8080/85 appeared with 8-bit data bus and 16-bit address bus and used from traffic light controllers to homemade computers (8085: 246 instruction set, RISC*) o1981 First PC was introduced by IBM with Intel 8088 (CISC**: over 20,000 instructions) microprocessor oMotorola emerged with 6800.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Of the Securities Exchange Act of 1934
    FORM 8-K SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of Report: March 10, 1994 ADVANCED MICRO DEVICES, INC. ---------------------------------------------------- (Exact name of registrant as specified in its charter) Delaware 1-7882 94-1692300 - ------------------------------ ------------ ------------------- (State or other jurisdiction (Commission (I.R.S. Employer of incorporation) File Number) Identification No.) One AMD Place P.O. Box 3453 Sunnyvale, California 94088-3453 - --------------------------------------- ---------- (Address of principal executive office) (Zip Code) Registrant's telephone number, including area code: (408) 732-2400 Item 5 Other Events - ------ ------------ I. Litigation ---------- A. Intel ----- General ------- Advanced Micro Devices, Inc. ("AMD" or "Corporation") and Intel Corporation ("Intel") are engaged in a number of legal proceedings involving AMD's x86 products. The current status of such legal proceedings are described below. An unfavorable decision in the 287, 386 or 486 microcode cases could result in a material monetary award to Intel and/or preclude AMD from continuing to produce those Am386(Registered Trademark) and Am486(Trademark) products adjudicated to contain any copyrighted Intel microcode. The Am486 products are a material part of the Company's business and profits and such an unfavorable decision could have an immediate, materially adverse impact on the financial condition and results of the operations of AMD. The AMD/Intel legal proceedings involve multiple interrelated and complex issues of fact and law. The ultimate outcome of such legal proceedings cannot presently be determined. Accordingly, no provision for any liability that may result upon an adjudication of any of the AMD/Intel legal proceedings has been made in the Corporation's financial statements.
    [Show full text]
  • Best Practice Guide Modern Processors
    Best Practice Guide Modern Processors Ole Widar Saastad, University of Oslo, Norway Kristina Kapanova, NCSA, Bulgaria Stoyan Markov, NCSA, Bulgaria Cristian Morales, BSC, Spain Anastasiia Shamakina, HLRS, Germany Nick Johnson, EPCC, United Kingdom Ezhilmathi Krishnasamy, University of Luxembourg, Luxembourg Sebastien Varrette, University of Luxembourg, Luxembourg Hayk Shoukourian (Editor), LRZ, Germany Updated 5-5-2021 1 Best Practice Guide Modern Processors Table of Contents 1. Introduction .............................................................................................................................. 4 2. ARM Processors ....................................................................................................................... 6 2.1. Architecture ................................................................................................................... 6 2.1.1. Kunpeng 920 ....................................................................................................... 6 2.1.2. ThunderX2 .......................................................................................................... 7 2.1.3. NUMA architecture .............................................................................................. 9 2.2. Programming Environment ............................................................................................... 9 2.2.1. Compilers ........................................................................................................... 9 2.2.2. Vendor performance libraries
    [Show full text]
  • AMD Introduces World's Most Powerful 16- Core
    November 7, 2019 AMD Introduces World’s Most Powerful 16- core Consumer Desktop Processor, the AMD Ryzen™ 9 3950X – AMD Ryzen™ 9 3950X rounds out 3rd Gen Ryzen desktop processor series, arriving November 25 – – New AMD Athlon™ 3000G processor to provide everyday users with unmatched performance per dollar, coming November 19 – SANTA CLARA, Calif., Nov. 07, 2019 (GLOBE NEWSWIRE) -- Today, AMD announced the release of the highly anticipated flagship 16-core AMD Ryzen 9 3950X processor, available worldwide November 25, 2019. AMD Ryzen 9 3950X processor brings the ultimate processor for gamers with effortless 1080P gaming in select titles1 and up to 2X more energy efficient processing power compared to the competition2 as the world’s fastest 16- core consumer desktop processor3. In addition, AMD also announced a significant performance uplift4 coming for mainstream desktop users with the new AMD Athlon 3000G, arriving November 19, 2019. “We are excited to bring the AMD Ryzen™ 9 3950X to market later this month, offering enthusiasts the most powerful 16-core desktop processor ever,” said Chris Kilburn, corporate vice president and general manager, client channel, AMD. “We are focused on offering the best solutions at every level of the market, including the AMD Athlon 3000G for everyday PC users that delivers great performance at an incredible price point.” AMD Ryzen 9 3950X: Fastest 16-core Consumer Desktop Processor Offering up to 22% performance increase over previous generations5, the AMD Ryzen 9 3950X offers faster 1080p gaming in select titles1 and content creation6 than the competition. Built on the industry-leading “Zen 2” architecture, the AMD Ryzen 9 3950X also excels in power efficiency3 with a TDP7 of 105W.
    [Show full text]
  • Take a Way: Exploring the Security Implications of AMD's Cache Way
    Take A Way: Exploring the Security Implications of AMD’s Cache Way Predictors Moritz Lipp Vedad Hadžić Michael Schwarz Graz University of Technology Graz University of Technology Graz University of Technology Arthur Perais Clémentine Maurice Daniel Gruss Unaffiliated Univ Rennes, CNRS, IRISA Graz University of Technology ABSTRACT 1 INTRODUCTION To optimize the energy consumption and performance of their With caches, out-of-order execution, speculative execution, or si- CPUs, AMD introduced a way predictor for the L1-data (L1D) cache multaneous multithreading (SMT), modern processors are equipped to predict in which cache way a certain address is located. Conse- with numerous features optimizing the system’s throughput and quently, only this way is accessed, significantly reducing the power power consumption. Despite their performance benefits, these op- consumption of the processor. timizations are often not designed with a central focus on security In this paper, we are the first to exploit the cache way predic- properties. Hence, microarchitectural attacks have exploited these tor. We reverse-engineered AMD’s L1D cache way predictor in optimizations to undermine the system’s security. microarchitectures from 2011 to 2019, resulting in two new attack Cache attacks on cryptographic algorithms were the first mi- techniques. With Collide+Probe, an attacker can monitor a vic- croarchitectural attacks [12, 42, 59]. Osvik et al. [58] showed that tim’s memory accesses without knowledge of physical addresses an attacker can observe the cache state at the granularity of a cache or shared memory when time-sharing a logical core. With Load+ set using Prime+Probe. Yarom et al. [82] proposed Flush+Reload, Reload, we exploit the way predictor to obtain highly-accurate a technique that can observe victim activity at a cache-line granu- memory-access traces of victims on the same physical core.
    [Show full text]
  • AMD Zen Rohin, Vijay, Brandon Outline
    AMD Zen Rohin, Vijay, Brandon Outline 1. History and Overview 2. Datapath Structure 3. Memory Hierarchy 4. Zen 2 Improvements History and Overview AMD History ● IBM production too large, forced Intel to license their designs to 3rd parties ● AMD fills the gap, produces clones for 15ish years - legal battles ensued ● K5 first in-house x86 chip in 1996 ● Added more features like out of order, L2 caches, etc ● Current CPUs are Zen* tomshardware.com/picturestory/71 3-amd-cpu-history.html Zen Brand ● Performance desktop and mobile computing ○ Athlon ○ Ryzen 3, Ryzen 5, Ryzen 7, Ryzen 9 ○ Ryzen Threadripper ● Server ○ EPYC https://en.wikichip.org/wiki/amd/microarchitectures/zen Zen History ● Aimed to replace two of AMD’s older chips ○ Excavator: high performance architecture ○ Puma: low power architecture https://en.wikichip.org/wiki/amd/microarchitectures/zen#Block_Diagram Zen Architecture ● Quad-core ● Fetch 4 instructions/cycle ● Op cache 2k instructions ● 168 physical integer registers ● 72 out of order loads ● Large shared L3 cache ● 2 threads per core https://www.slideshare.net/AMD/amd-epyc-microp rocessor-architecture Datapath Structure Fetch ● Decoupled branch predictor ○ Runs ahead of fetches ○ Successful predictions help latency and memory parallelism ○ Mispredictions incur power penalty ● 3 layer TLB ○ L0: 8 entries ○ L1: 64 entries ○ L2: 512 entries https://www.anandtech.com/show/10591/amd-zen-microarchiture-p art-2-extracting-instructionlevel-parallelism/3 Branch Predictor ● Perceptron: simple neural network ● Table of perceptrons, each a vector of weights ● Branch address used to access perceptron table ● Dot product between weight vector and branch history vector Perceptron Branch Predictor ● ~10% improve prediction rates over gshare predictor - (2, 2) correlating predictor ● Can utilize longer branch histories ○ Hardware requirements scale linearly whereas they scale exponentially for other predictors D.
    [Show full text]