Durio Zibethinus) Cultivars Indigenous Indonesia

Total Page:16

File Type:pdf, Size:1020Kb

Durio Zibethinus) Cultivars Indigenous Indonesia International Food Research Journal 23(4): 1466-1473 (2016) Journal homepage: http://www.ifrj.upm.edu.my Physicochemical differences and sensory profiling of six lai (Durio kutejensis) and four durian (Durio zibethinus) cultivars indigenous Indonesia 1Belgis, M., 1*Wijaya, C.H., 2Apriyantono, A., 3Kusbiantoro, B. and 1Yuliana, N.D. 1Department of Food Science and Technology, Bogor Agricultural University, 16002, Indonesia 2Department of Food Science and Technology, Bakrie University, 10430, Indonesia 3 Indonesian Agency for Agricultural Research and Development Article history Abstract Received: 13 October 2015 Lai has different physical characteristics compared with durian. Therefore most probable Received in revised form: their physicochemical and sensory properties also differ. In this study, the variability of 2 December 2015 physicochemical (fat, protein, carbohydrate, ash, total sugar, moisture, soluble solid content, Accepted: 9 December 2015 pH and flesh color) and sensory characteristics (sweetness, sourness, bitterness, moist, texture and stickiness) of indigenous lai and durian cultivars in Indonesia were examined. The sensory characterization of lai and durian was applied evaluated by Quantitative Descriptive Keywords Analysis method (QDA). The results showed that physicochemical characteristics and sensory characteristic of lai and durian cultivars were highly varied. PCA classified lai and Durio kutejensis Durio zibethinus durian cultivars into three different groups. The first group consisted of four durian cultivars QDA (Ajimah, Hejo, Matahari and Sukarno), characterized by higher value of moisture, lightness * PCA (L ) and moist sensation. The second group consisted of five lai cultivars (Batuah, Merah, Physicochemical Mahakam, Kutai, Gincu) were characterized by higher fat content, carbohydrate, soluble solids Sensory contents, yellowness (a*) and redness (b*) values, sweet tastes and stickiness. Mas lai cultivar was separated from these two previous groups. Strong correlation between physicochemical characteristics and sensory properties indicate that physicochemical can be used as an indicator to predict the sensory quality of lai and durian. © All Rights Reserved Introduction breed for getting new improved cultivars (Hariyati et al., 2013). Durian is a very popular tropical fruits and often Sensory properties are one of the most important referred as the king of tropical fruits in South East quality parameters in crop breeding and frequently used Asia. Durian has a special shape and nutrient content. as the primary consideration in product development It possesses strong aroma and unique taste. In (Cevallos et al., 2009). Both sensory properties Indonesia, durian is not only eaten as a fresh fruit but and physicochemical parameters determined by its also used as ingredient for ice cream, pudding, juices metabolites. These metabolites existence associate and in various food products. Durian cultivars are to primary and secondary biochemical pathways very diverse in taste, smell, texture and flesh color, as that are influenced by many factors, such as genetic well as variations in the shape and size of the fruits and growth conditions including climate, irrigation (Weenan et al., 1996; Uji, 2007; Norjana and Aziah, strategy or soil type (Callahan, 2003; Kader, 2008). 2011). New cultivars which have combination in sensory, Indonesia is one of the Durio genetic diversity nutritive and physical properties of lai and durian are centers in the world. One of edible and famous eagerly awaited to be developed. Therefore, breeders Durio species in Kutai, Kalimantan, Indonesia, is lai need more information and perspective analytical (D.kutejensis) (Uji, 2005). Lai has different physical tools in order to produce new fruit cultivars with characteristics compared with durian. Lai fruit peel better flavor (Uji, 2005; Baldwin, 2008). Studies color is light yellowish but the shape is similar to on several physicochemical and sensory properties durian. Lai has an attractive flesh color from orange to of Malaysian durians (Voon et al., 2007; Maninang red and low aroma intensity, therefore most probable et al., 2011) and their volatiles composition (Voon their physicochemical and sensory properties also et al., 2006; Zhang et al., 2006; Rahman and differ. Some of lai cultivars are being developed in Hashim, 2007) has been conducted. However, Kalimantan including Batuah, Kutai, Mahakam, information on lai physicochemical composition Merah and Gincu. These species are interesting to and sensory attributes is very limited. This study *Corresponding author. Email: [email protected] Tel: +62251-8620069 1467 Belgis et al./IFRJ 23(4): 1466-1473 aimed to provide comprehensive information on pH meter. Calibration was done by using buffer pH physicochemical composition and sensory attributes 4.0 and 7.0 solutions. All the chemical results were profiles (taste and mouth feel) of several Indonesian obtained in duplicate. lai and durian cultivars. The relationship between Color measurements were performed using a sensory, physical and chemical composition of lai Colorimeter 3 (Minolta CR-300/CR-310). Random and durian cultivar were also studied. Correlation readings, 3 measurements, were taken at 3 different analysis would make the selection process of lai locations on the flesh of each sample. The mean of and durian breeding programs easier (Saftner et al., these 3 readings were taken and color description 2008; Gadze et al., 2011; Eggink et al., 2012). The for each sample was expressed as CIE values for comprehensive information of physicochemical and lightness (L*), redness (a*) and yellowness (b*). sensory characteristics can be used as indicators of Lightness parameter L declared value 0 = black, 100 the genotype and phenotype diversity as the basis for = white. Chromatic colors red-green color mixture selection to produce new fruit genotypes having a was shown by the value of (a) = 0-80 red and (a-) = better flavor (Kader, 2008). 0 - (-80) for the green color. Whereas, for the blue- yellow chromatic mixture color was shown by the Materials and Methods value of (b) = 0-70 yellow and (b-) = 0 - (-70) blue. Plant material Sensory analysis Lai and durian fruit cultivars used in this research Quantitative descriptive analysis method (QDA) were harvested in January to February 2013. Five lai was applied for detailed sensory characterization of cultivars, (‘Batuah’, ‘Merah’, ‘Mahakam’,’Kutai’ lai and durian by 10 selected and trained panelists and ‘Gincu) were obtained from Batuah villages, (7 females and 3 males, aged from 26 to 45 years). districts Loa Janan, Kutai Kartanegara, East Sensory characterization was also evaluated by Kalimantan, Indonesia. Lai cultivar ‘Mas’ and four a panel using FGD (Focus Group Discussion) as durian cultivars (‘Matahari’, ’Sukarno’, ’Ajimah’ and described in Meilgaard et al. (1999). In QDA test, ‘Hejo’) were obtained from Mekarsari Fruit Garden the samples were described using each 3 attributes Bogor, West Java, Indonesia. Lai and durian fruits of taste (sweetness, sourness, bitterness) and mouth were harvested at the same physiological maturity. feel (texture, moist and stickiness). A continuous, 15 Dropped naturally ripened, free of visual defect cm unstructured scale (assuming a scale of 0 -100) and not rotten fruits were collected. The fruits were was used for the evaluation (0 indicates not detected stored at 30ºC and 80% RH for 2 days to optimize intensity - scale 100 indicates very strong intensity). ripening (Ketsa and Daengkanit, 1999). Afterward Three replicated measurements were made for each lai and durian was cut opened along the rind, the sample. pulp was separated from the seed manually and then delivered to the laboratory immediately. Sample was Statistical analysis homogenized for about 2 min (using blender). Four Data obtained from chemical and sensory analyses hundred grams of separated blended fruit pulps of were subjected to analysis of variance (ANOVA) each cultivar was packed in a commercial aluminum and means were separated by Duncan’s multiple foil, then was packaged using vacuum sealer and range test at P=0.05 (IBM SPSS Statistics version stored at -30±2ºC in freezer. Prior to the analysis, all 20). For sensory and physic chemical characteristics fruit pulps were fully thawed. correlation, raw data was used to calculate Pearson correlation coefficient which was used to model the Physicochemical analysis relationships. PCA was applied for lai and durian Moisture content was determined by AOAC cultivars physicochemical and sensory mapping (The 934.01 (2005) method. Ash content was determined Unscrambler Windows Version 9.7 software package, by AOAC 930.05 (2005) method. Protein content CAMO A/S, Trondheim, Norway). was measured by Micro Kjeldahl method (AOAC 978.04, 2005). Fat content was determined by AOAC Results and Discussion 963.15 (2005). Total sugar content was determined by Luff-Schoorl method (INS, 1992). Physicochemical analysis Soluble solids content was measured according The results of the physicochemical analysis of to Voon et al. (2007), by using hand refractometer lai and durian were shown in Tables 1, 2 and 3. For and the results were expressed as °Brix. The pH of all cultivars, significant differences (p< 0.05) were the pulp was determined by using a Methrom 620 observed in the physicochemical composition. Lai Belgis et al./IFRJ 23(4): 1466-1473 1468 Table 1. Fat, protein, carbohydrate, moisture, ash, total sugar, SSC and pH of lai (D. kutejensis) and durian
Recommended publications
  • Phytochemicals from the Roots of Northern Highbush Blueberry (Vaccinium Corymbosum)
    University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2013 Phytochemicals from the Roots of Northern Highbush Blueberry (Vaccinium Corymbosum) Amanda Cirello University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Cirello, Amanda, "Phytochemicals from the Roots of Northern Highbush Blueberry (Vaccinium Corymbosum)" (2013). Open Access Master's Theses. Paper 716. https://digitalcommons.uri.edu/theses/716 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. PHYTOCHEMICALS FROM THE ROOTS OF NORTHERN HIGHBUSH BLUEBERRY ( VACCINIUM CORYMBOSUM ) BY AMANDA CIRELLO A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE IN PHARMACEUTICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2013 MASTER OF PHARMACEUTICAL SCIENCES THESIS OF AMANDA CIRELLO APPROVED: Thesis Committee: Major Professor Navindra Seeram David Worthen Joanna Norris Clinton Chichester Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2013 ABSTRACT Growing evidence from many in vitro studies suggest that plants produce secondary metabolites which may have potential physiological properties. The northern highbush blueberry ( Vaccinium corymbosum L.) plant is commercially cultivated for its valuable dark-blue fruit, which has been extensively researched and has been shown to contain phenolic compounds recognized to have positive health benefits. Thus, an evaluation of other parts of the plant, that as of yet have not been investigated, could be worthwhile.
    [Show full text]
  • Durio Zibethinus
    1 The Draft Genome of Tropical Fruit Durian (Durio zibethinus) 2 1,2,3,4,5,6# 2,7 2,7 3 3 Bin Tean Teh , Kevin Lim *, Chern Han Yong *, Cedric Chuan Young Ng *, Sushma Ramesh 8,14,15,16 3 2,4, 7 9 10 4 Rao , Vikneswari Rajasegaran , Weng Khong Lim , Choon Kiat Ong , Ki Chan , Vincent Kin 11 12 8,14,15,16,17 2,4,7 13 5 Yuen Cheng , Poh Sheng Soh , Sanjay Swarup , Steven G Rozen , Niranjan Nagarajan , 1,2,4,5,13# 6 Patrick Tan 7 8 1 9 Thorn Biosystems Pte Ltd, Singapore 2 10 Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 3 11 Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre, Singapore 4 12 SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore 5 13 Cancer Science Institute of Singapore, National University of Singapore, Singapore 6 14 Institute of Molecular and Cellular Biology, Singapore 7 15 Centre for Computational Biology, Duke-NUS Medical School, Singapore 8 16 Department of Biological Sciences, National University of Singapore, Singapore 9 17 Lymphoma Genomic Translational Research Laboratory, National Cancer Centre, Singapore 10 18 Global Databank, Singapore 11 19 Verdant Foundation, Hong Kong 12 20 Samsoney Group, Malaysia 13 21 Genome Institute of Singapore, Singapore 14 22 Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 23 Singapore 15 24 Metabolites Biology Lab, National University of Singapore, Singapore 16 25 NUS Synthetic Biology for Clinical and Technological Innovation, Life Sciences Institute, National 26 University of Singapore, Singapore 17 27 NUS Environmental Research Institute, National University of Singapore, Singapore 28 29 30 * Denotes equal contribution 31 32 # Address correspondence: [email protected] (B.T.T.) or [email protected] 33 (P.T.) 34 2 35 Abstract 36 Durian (Durio zibethinus) is a South East Asian tropical plant species, well-known for its hefty spine- 37 covered fruit and notorious sulfury and onion-like odor.
    [Show full text]
  • Fabrication of Dye Sensitized Solar Cell Based on Natural Photosensitizers
    Available online at www.worldscientificnews.com WSN 149 (2020) 128-139 EISSN 2392-2192 Fabrication of Dye Sensitized Solar Cell Based on Natural Photosensitizers M. Nirmala*, S. Sahana, B. Iswarya, K. Maruvarasi, A. Adline Jenita and B. Kavitha Sri GVG Visalakshi College for Women, Udumalpet, Tamil Nadu, 642126, India *E-mail address: [email protected] ABSTRACT Dye Sensitized solar cells were fabricated using with natural extracts and TiO2 is used as a semiconducting layer. The layer of nanocrytalline titanium dioxide was deposited on conductive side of the transparent Fluorine doped Tin Oxide (FTO) glass plate and the other side of the plate is coated with graphite. Voltage and Current values are measured for natural dyes coated FTO plate and I-V characteristic curves of all fabricated cells were drawn and analyzed. The highest power conversion efficiencies of Blueberry (0.79872%) and Beetroot (0.745813 %.) dyes were achieved among 10 dyes. The functional groups of Beetroot and Turmeric natural dyes were confirmed under FTIR spectroscopy. The ease and cost efficiency of the overall fabrication process, extensive availability of these fruits/juices render them novel and low-cost candidates for Solar cell applications. Keywords: Natural Dyes, nanocrystalline materials, nanocrytalline titanium dioxide, Solar cell, FTIR spectroscopy, Efficiency, Functional 1. INTRODUCTION The dye sensitized solar cell (DSSC) provides a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. The dye molecules are quite small so in order to capture amount of the incoming light the layer of dye molecules needs ( Received 04 September 2020; Accepted 26 September 2020; Date of Publication 27 September 2020 ) World Scientific News 149 (2020) 128-139 to be made fairly thick, much thicker than the molecules themselves.
    [Show full text]
  • Blueberry Coconut Crumb
    Blueberry-Mango Crumb Pie Here we take a traditional blueberry pie and give it a tropical twist with some chopped mango and - if you like - a little bit of canned pineapple. Then, in keeping with the tropical vibe, we add flaked coconut to the topping. Use your favorite crust or the Buttermilk Pie Dough that follows. -Buttermilk Pie Dough (page 2) -1/2 cup sugar Filling -1 1/2 tablespoons cornstarch -3 cups fresh blueberries (1 1/2 pints) -pinch of salt -1 1/2 cups frozen mango chunks, cut in Coconut Crumb Topping small dice OR 1 cup mango plus 1/2 cup -3/4 cup all-purpose flour crushed or diced pineapple -3/4 cup sweetened flaked coconut -1 tablespoon lemon juice -1/2 cup sugar -2 teaspoons finely grated lemon zest -1/4 teaspoon salt -3/4 teaspoon coconut extract (optional) -5 tablespoons cold unsalted butter, diced 1. Prepare and refrigerate the pie dough for 30 to 45 minutes, if you haven't already. Roll the dough into an 11 1/2 to 12-inch circle and line a standard - not deep- dish - 9 or 9 1/2 inch pie pan with it, sculpting the overhanging dough into an upstanding ridge. Flute, if desired, then refrigerate the pie shell. 2. Prepare the Coconut Crumb Topping: Combine the flour, coconut, sugar, and salt in a food processor. Process briefly, to mix. Add the butter and pulse repeatedly, until the mixture resembles coarse crumbs. Turn it out into a shallow casserole dish and rub with your fingers to smear the butter into the mixture.
    [Show full text]
  • Genetic Diversity of Hybrid Durian Resulted from Cross Breeding Between Durio Kutejensis and Durio Zibethinus Based on Random Amplified Polymorphic Dnas (Rapds)
    American Journal of Molecular Biology, 2013, 3, 153-157 AJMB http://dx.doi.org/10.4236/ajmb.2013.33020 Published Online July 2013 (http://www.scirp.org/journal/ajmb/) Genetic diversity of hybrid durian resulted from cross breeding between Durio kutejensis and Durio zibethinus based on random amplified polymorphic DNAs (RAPDs) Tati Hariyati1, Joni Kusnadi1, Estri Laras Arumingtyas2 1Agroindustrial Biotechnology, Faculty of Agricultural Technology, University of Brawijaya, Malang, Indonesia 2Laboratory of Molecular Biology, Department of Biology, University of Brawijaya, Malang, Indonesia Email: [email protected], [email protected], [email protected] Received 17 April 2013; revised 17 May 2013; accepted 16 June 2013 Copyright © 2013 Tati Hariyati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT cal rain forests with the biggest biodiversity in the world, including genetic diversity of tropical fruits. Indonesia is One of the ways to improve the quality of Indonesian one of the eight centres of plant genetic diversity in the Durian is by utilizing germplasm diversity. Durio world, especially for tropical fruits like durian [1]. That zibethinus is the most cultivated durian in Indonesia, great amount of genetic diversity of Durio spp. in Indo- whereas Durio kutejensis is a unique durian cultivar nesia’s serves an essential base for plant breeding [2]. which has golden yellow fruit flesh without smell. Durian is one fruit commodities that has an important Crossbreeding of those two cultivars, in order to gen- economic value.
    [Show full text]
  • Collection and Evaluation of Under-Utilized Tropical and Subtropical Fruit Tree Genetic Resources in Malaysia
    J]RCAS International Symposium Series No. 3: 27-38 Session 1-3 27 Collection and Evaluation of Under-Utilized Tropical and Subtropical Fruit Tree Genetic Resources in Malaysia WONG, Kai Choo' Abstract Fruit tree genetic resources in Malaysia consist of cultivated and wild species. The cul­ tivated fruit trees number more than 100 species of both indigenous and introduced species. Among these fruits, some are popular and are widely cultivated throughout the country while others are less known and grown in small localized areas. The latter are the under-utilized fruit species. Apart from these cultivated fruits, there is also in the Malaysian natural forest a diversity of wild fruit tree species which produce edible fruits but are relatively unknown and unutilized. Many of the under-utilized and unutilized fruit species are known to show economic potential. Collection and evaluation of some of these fruit tree genetic resources have been carried out. These materials are assessed for their potential as new fruit trees, as sources of rootstocks for grafting and also as sources of germplasm for breeding to improve the present cultivated fruit species. Some of these potential fruit tree species within the gen­ era Artocarpus, Baccaurea, Canarium, Dimocarpus, Dialium, Durio, Garcinia, Litsea, Mangif era, Nephelium, Sa/acca, and Syzygium are highlighted. Introduction Malaysian fruit tree genetic resources comprise both cultivated and wild species. There are more than 100 cultivated fruit species of both major and minor fruit crops. Each category includes indigenous as well as introduced species. The major cultivated fruit crops are well known and are commonly grown throughout the country.
    [Show full text]
  • Le Monde Brunch Menu
    B R U N C H S A T U R D A Y & S U N D A Y 1 1 A M - 4 P M E G G S S A N D W I C H E S E G G W H I T E A V A I L A B L E 2 17 3 EGGS ANY STYLE 17 CROQUE MONSIEUR GRILLED HAM, SWISS CHEESE, BECHAMEL SAUCE LAMB MERGUEZ SAUSAGE OR APPLEWOOD SMOOKED [ADD] SUNNY-SIDE UP EGG 2 BACON WITH TOAST, HOUME FRIES 19 BAGEL & LOX 17 SHAKSHUKA SALMON, CREAM CHEESE, ONIONS, TOMATO, THREE EGGS BAKED IN TOMATO SAUCE, RED PEEPER, NEW YORK BAGEL GREEN PEPPER, GOAT CHEESE, MERGUEZ ORGANIC CHICKEN 17 CLASSIC BENEDICT* 17 AVOCADO, TOMATO, BOSTON LETTUCE, ONIONS, PROVOLONE CHEESE, SPICY MAYO, BAGUETTE POACHED EGGS, CANADIAN BACON, HOLLANDAISE, 18 ENGLISH MUFFIN LE MONDE BURGER* FLORENTINE* 18 NATURAL FARM RAISED BEEF, GRUYERE, LETTUCE, TOMATOES, CARAMELIZED ONIONS, BERNAISE SAUCE, POACHED EGGS, SPINASH, HOLLANDAISE, ENGLISH HAND CUT FRENCH FRIES MUFFIN 17 AVOCADO TOAST* SCANDINAVIAN* 19 AVOCADO, POACHED EGG, TOMATO, CILANTRO, SHALLOTS, OLIVE OIL, LIME JUICE, COUNTRY BREAD POACHED EGGS, SMOKED SALMON, HOLLANDAISE, [ADD] SMOKED SALMON 6 ENGLISH MUFFIN LOBSTER CRAB BENEDICT* 23 S A L A D S 16 ARUGULA, TOMATO, FENNEL SALAD, POACHED EGGS, GOAT CHEESE HOLLANDAISE ARTICHOKE HEARTS, ARUGULA, ROASTED BEETS, 25 STEAK & EGGS* ENDIVE, OLIVE TAPENADE, DIJON 22 HAND CUT FRIES NICOISE* GRILLED TUNA, BOSTON LETTUCE, STRING BEANS, RED 18 MAKE YOUR OWN OMELETTE PEPPERS, RED ONIONS, POTATOES, ANCHOVY, NICOISE OLIVES, CITRUS DRESSING CHOOSE 3: HAM, SMOKED SALMON, SWISS CHEESE, GOAT CHEESE, SPINACH, ONIONS, TOMATO, RED BROILED SHRIMP 18 PEPPER, MERGUEZ WATERCRESS, HEART OF PALM, TOMATO, AVOCADO, QUINOA, PINEAPPLE SALSA S I D E S S W E E T S SCROISSANT 5 13 CHOCOLATE CROISSANT 6 FRESH FRUIT PLATE SEASONAL SELECTION FRENCH FRIES 7 HOME-MADE GRANOLA 14 HOME FRIED POTATOES 6 MIX BERRIES, ACAI, GREEK YOGURT BACON 7 BLUEBERRY PANKACES 15 8 LAMB MERGUEZ SAUSGE HOUSE MADE BERRY JAM, WHIPPED CREAM 7 16 BAGEL W/ CREAM CHEESE CHALLAH FRENCH TOAST SEASONAL FRUIT, PASSION FRUIT COULIS *CONSUMING RAW OR UNDERCOOKED MEATS, POULTRY, SEAFOOD, SHELLFISH, OR EGGS MAY INCREASE YOUR RISK OF FOOD BORNE ILLNESS.
    [Show full text]
  • THE HANDBOOK Your South Beach Success Starts Here!
    THE HANDBOOK Your South Beach Success Starts Here! Instructions, food lists, recipes and exercises to lose weight and get into your best shape ever CONTENTS HOW TO USE THIS HANDBOOK You’ve already taken the biggest step: committing to losing weight and learning to live a life of strength, energy PHASE 1 and optimal health. The South Beach Diet will get you there, and this handbook will show you the way. The 14-Day Body Reboot ....................... 4 The goal of the South Beach Diet® program is to help Diet Details .................................................................6 you lose weight, build a strong and fit body, and learn to Foods to Enjoy .......................................................... 10 live a life of optimal health without hunger or deprivation. Consider this handbook your personal instruction manual. EXERCISE: It’s divided into the three phases of the South Beach Beginner Shape-Up: The Walking Workouts ......... 16 Diet® program, color-coded so it’ll be easy to locate your Walking Interval Workout I .................................... 19 current phase: Walking Interval Workout II .................................. 20 PHASE 1 PHASE 2 PHASE 3 10-Minute Stair-Climbing Interval ...........................21 What you’ll find inside: PHASE 2 • Each section provides instructions on how to eat for that specific phase so you’ll always feel confident that Steady Weight Loss ................................. 22 you’re following the program properly. Diet Details .............................................................. 24 • Phases 1 and 2 detail which foods to avoid and provide Foods to Enjoy ......................................................... 26 suggestions for healthy snacks between meals. South Beach Diet® Recipes ....................................... 31 • Phase 2 lists those foods you may add back into your diet and includes delicious recipes you can try on EXERCISE: your own that follow the healthy-eating principles Beginner Body-Weight Strength Circuit ..............
    [Show full text]
  • Getting Nutty on the Menu
    Getting Nutty on the Menu Breakfast Add chopped nuts to breakfast cereal, such as oatmeal, porridge, granola, or cold cereal Add chopped nuts to quick breads, such as pecan pancakes, walnut waffles, blueberry hazelnut muffins, or pistachio orange biscuits Sprinkle nuts, such as almonds, pistachios or brazil nuts over Greek yogurt with fruit for an easy breakfast Spread nut butter, such as almond, walnut, or cashew butter over toast, bagels, or English muffins Lunch Use nut butter, such as almond or cashew butter, as a spread on sandwiches instead of margarine or mayo; even savory sandwiches! Toss nuts into salads, such as romaine salad with toasted walnuts, kale salad with almonds, or 3-bean salad with pinenuts Make a simple meal of cottage cheese, seasonal fruit and nuts, such as pistachios, almonds, macadamia nuts and pecans Enjoy an Asian vegetable stir-fry with a sprinkling of nuts, such as almonds Dinner Add nut butter to savory sauces, such as curry, mole, or Thai sauce Sprinkle nuts, such as pistachios, macadamia, walnuts, or almonds into sautéed vegetables, such as spinach, asparagus or Brussels sprouts, as a side dish Top lean proteins with herbs and chopped nuts, such as pine nuts, hazelnuts, cashews, or pistachios and roast Whiz up a pesto sauce with basil, garlic, EVOO, and nuts, such as almonds, pine nuts, pistachios or walnuts Mix finely diced nuts into bread crumb toppings for casseroles, such as macaroni and cheese, broccoli cheese, or green bean casserole for a nutritious crunch Press chopped nuts, such
    [Show full text]
  • Chapter 1 Definitions and Classifications for Fruit and Vegetables
    Chapter 1 Definitions and classifications for fruit and vegetables In the broadest sense, the botani- Botanical and culinary cal term vegetable refers to any plant, definitions edible or not, including trees, bushes, vines and vascular plants, and Botanical definitions distinguishes plant material from ani- Broadly, the botanical term fruit refers mal material and from inorganic to the mature ovary of a plant, matter. There are two slightly different including its seeds, covering and botanical definitions for the term any closely connected tissue, without vegetable as it relates to food. any consideration of whether these According to one, a vegetable is a are edible. As related to food, the plant cultivated for its edible part(s); IT botanical term fruit refers to the edible M according to the other, a vegetable is part of a plant that consists of the the edible part(s) of a plant, such as seeds and surrounding tissues. This the stems and stalk (celery), root includes fleshy fruits (such as blue- (carrot), tuber (potato), bulb (onion), berries, cantaloupe, poach, pumpkin, leaves (spinach, lettuce), flower (globe tomato) and dry fruits, where the artichoke), fruit (apple, cucumber, ripened ovary wall becomes papery, pumpkin, strawberries, tomato) or leathery, or woody as with cereal seeds (beans, peas). The latter grains, pulses (mature beans and definition includes fruits as a subset of peas) and nuts. vegetables. Definition of fruit and vegetables applicable in epidemiological studies, Fruit and vegetables Edible plant foods excluding
    [Show full text]
  • Particleboards from Durian Peel and Coconut Coir
    The First Thai-Biomass Utilization Symposium __ _______________________________________________________ Effective Utilization of Forest Biomass for Regional People in Thailand Particleboards from Durian Peel and Coconut Coir Sarocha Charoenvai*, Jongjit Hirunlabh*, and Joseph Khedari* Abstract Manufacturing particleboards from tropical fruit peel particle; durian (Durio zibethinus ) peels and coconut coir ( Cocos nucifera ); with low thermal conductivity is the main purpose of this study. Two main parameters were investigated namely binder types, (UF 12%, PF 6% and IC 3%) and board density. In general, the effect of adhesive type on the properties of boards was not obvious whereas that of the density was more significant on most properties of boards. Experimental investigation indicated that the mechanical properties of all boards increased with increasing board density, but this decrease the dimension stability, expressed by the thickness swelling and the thermal conductivity as well. Keywords: Synthetic Binder; Thermal Conductivity; Modulus of Rupture; Modulus of Elasticity; Agriculture waste ______________________________________________________________ *Building Scientific Research Center, King Mongkut’s University of Technology Thonburi, Bangmod Rasburana, 91 Pracha U-thit Rd., Thungkru, Bangkok 10140, Thailand Email address: [email protected] www.kmutt.ac.th/organization/bsrc The First Thai-Biomass Utilization Symposium __ _______________________________________________________ Effective Utilization of Forest Biomass for Regional People in Thailand Introduction Nowadays, due to forest production and environment awareness the use of natural wood is steadily decreasing. Technology is used to manufacture materials from agricultural waste which is considered to substitute natural wood. The productivity of Thai fruit [1] is anticipated to increase in the future and the associated produced waste will lead to social and environmental problems, if we are unable to dispose them.
    [Show full text]
  • Minnesota Harvester Handbook
    Minnesota Harvester Handbook sustainable livelihoods lifestyles enterprise Minnesota Harvester Handbook Additonal informaton about this resource can be found at www.myminnesotawoods.umn.edu. ©2013, Regents of the University of Minnesota. All rights reserved. Send copyright permission inquiries to: Copyright Coordinator University of Minnesota Extension 405 Cofey Hall 1420 Eckles Avenue St. Paul, MN 55108-6068 Email to [email protected] or fax to 612-625-3967. University of Minnesota Extension shall provide equal access to and opportunity in its programs, facilites, and employment without regard to race, color, creed, religion, natonal origin, gender, age, marital status, disability, public assistance status, veteran status, sexual orientaton, gender identty, or gender expression. In accordance with the Americans with Disabilites Act, this publicaton/material is available in alternatve formats upon request. Direct requests to the Extension Regional Ofce, Cloquet at 218-726-6464. The informaton given in this publicaton is for educatonal purposes only. Reference to commercial products or trade names is made with the understanding that no discriminaton is intended and no endorsement by University of Minnesota Extension is implied. Acknowledgements Financial and other support for the Harvester Handbook came from University of Minnesota Extension, through the Extension Center for Food, Agricultural and Natural Resource Sciences (EFANS) and the Northeast Regional Sustainable Development Partnership (RSDP). Many individuals generously contributed to the development of the Handbook through original research, authorship of content, review of content, design and editng. Special thanks to Wendy Cocksedge and the Centre for Livelihoods and Ecology at Royal Roads University for their generosity with the Harvester Handbook concept. A special thanks to Trudy Fredericks for her tremen- dous overall eforts on this project.
    [Show full text]