Electrical Power Systems Technology

Total Page:16

File Type:pdf, Size:1020Kb

Electrical Power Systems Technology Electrical Power Systems Technology Third Edition This page intentionally left blank Electrical Power Systems Technology Third Edition Stephen W. Fardo Dale R. Patrick Library of Congress Cataloging-in-Publication Data Fardo, Stephen W. Electrical power systems technology / Stephen W. Fardo, Dale R. Patrick. - - 3rd ed. p. cm. Includes index. ISBN-10: 0-88173-585-X (alk. paper) -- ISBN-10: 0-88173-586-8 (electronic) -- ISBN-13: 978-1-4398-0027-0 (Taylor & Francis : alk. paper) 1. Electric power systems. 2. Electric machinery. I. Patrick, Dale R. II. Title. TK1001.F28 2008 621.31--dc22 2008033611 Electrical Power Systems Technology / Stephen W. Fardo, Dale R. Patrick. ©2009 by The Fairmont Press. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Published by The Fairmont Press, Inc. 700 Indian Trail Lilburn, GA 30047 tel: 770-925-9388; fax: 770-381-9865 http://www.fairmontpress.com Distributed by Taylor & Francis Ltd. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487, USA E-mail: [email protected] Distributed by Taylor & Francis Ltd. 23-25 Blades Court Deodar Road London SW15 2NU, UK E-mail: [email protected] Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 10: 0-88173-585-X (The Fairmont Press, Inc.) 13: 978-1-4398-0027-0 (Taylor & Francis Ltd.) While every effort is made to provide dependable information, the publisher, authors, and editors cannot be held responsible for any errors or omissions. iv Contents Preface .................................................................................................................ix UNIT I POWER MEASUREMENT SYSTEMS AND FUNDAMENTALS .................................................................... 1 Chapter 1 Power Measurement Fundamentals ....................................... 5 Units of Measurement—Conversion of SI Units— Scientific Notation Chapter 2 Power System Fundamentals .................................................15 The System Concept—Basic System Functions—A Simple Electrical System Example—Energy, Work, and Power—Types of Electrical Circuits—Power in DC Electrical Circuits— Maximum Power Transfer—Overview of Alternating Current (AC) Circuits—Vector and Phasor Diagrams—Impedance in AC Circuits—Power Relationships in AC Circuits—Power Relationships in Three—Phase Circuits Chapter 3 Power Measurement Equipment ...........................................59 Measurement Systems—Measuring Electrical Power— Measuring Electrical Energy—Measuring Three-Phase Electrical Energy—Frequency Measurement—Synchroscopes— Ground -Fault Indicators—Megohmeters—Clamp-On Meters Telemetering Systems UNIT II ELECTRICAL POWER PRODUCTION SYSTEMS .............79 Chapter 4 Modern Power Systems .......................................................... 83 Electrical Power Plants—Fossil Fuel Systems—Steam Turbines— Boilers—Hydroelectric Systems—Nuclear Fission Systems— Operational Aspects of Modem Power Systems Chapter 5 Alternative Power Systems ...................................................117 Potential Power Sources—Solar Energy Systems—Geothermal Power Systems—Wind Systems—Magnetohydrodynamic (MHD) Systems—Nuclear-Fusion Power Systems—Nuclear-Fusion Methods—Future of Nuclear Fusion—Fuel-Cell Systems—Tidal Power Systems—Coal-Gasification Fuel Systems—Oil-Shale Fuel-Production Systems—Alternative Nuclear Power Plants— Biomass Systems v Chapter 6 Alternating Current Power Systems ................................... 137 Electromagnetic Induction—Basic Generator Operation— Single-Phase AC Power Systems—Single-Phase AC Generators— Three-Phase AC Generators—High-Speed and Low-Speed Generators—Generator Frequency—Generator Voltage Regulation—Generator Efficiency Chapter 7 Direct Current Power Systems .............................................157 DC Production Using Chemical Cells—Characteristics of Primary Cells—Characteristics of Secondary Cells—DC Generating Sys- tems—DC Conversion Systems—DC Filtering Methods—DC Reg- ulation Methods UNIT III ELECTRICAL POWER DISTRIBUTION SYSTEMS ......... 203 Chapter 8 Power Distribution Fundamentals ......................................207 Overview of Electrical Power Distribution—Power Transmission and Distribution—Radial, Ring, and Network Distribution Systems—Use of Transformers for Power Distribution— Conductors in Power Distribution Systems—Conductor Area— Resistance of Conductors—Conductor Sizes and Types— Ampacity of Conductors—Ampacity Tables—Use of Insulation in Power Distribution Systems Chapter 9 Power Distribution Equipment ............................................239 Equipment Used at Substations—Power System Protective Equipment—Power Distribution Inside Industrial and Commercial Buildings—The Electrical Service Entrance—Service Entrance Terminology Chapter 10 Single-Phase and Three-Phase Distribution Systems ............................................................. 255 Single-Phase Systems— Three-Phase Systems—Grounding of Distribution Systems—System Grounding—Ground-Fault Protection—Wiring Design Considerations for Distribution Systems—Branch Circuit Design Considerations—Feeder Circuit Design Considerations—Determining Grounding Conductor Size—Parts of Interior Electrical Wiring Systems UNIT IV ELECTRICAL POWER CONVERSION SYSTEMS ...........289 Chapter 11 Fundamentals of Electrical Loads ........................................293 Load Characteristics—Three-Phase Load Characteristics vi Chapter 12 Heating Systems .....................................................................307 Basic Heating Loads—Electrical Welding Loads—Power Considerations for Electric Welders—Electric Heating and Air Conditioning Systems Chapter 13 Lighting Systems ....................................................................327 Characteristics of Light—Electrical Lighting Circuits— Branch Circuit Design—Lighting Fixture Design— Factors in Determining Light Output Chapter 14 Mechanical Systems ...............................................................349 Basic Motor Principles—DC Motors—Specialized DC Motors— Single-Phase AC Motors—Three-Phase AC Motors—Specialized Mechanical Power Systems—Electric Motor Applications UNIT V ELECTRICAL POWER CONTROL SYSTEMS .................. 401 Chapter 15 Power Control Devices ..........................................................405 Power Control Standards, Symbols, and Definitions—Power Control Using Switches—Control Equipment for Electric Motors—other Electromechanical Power Control Equipment— Electronic Power Control Chapter 16 Operational Power Control Systems ...................................427 Basic Control Systems—Motor—Starting Systems— Specialized Control Systems—Frequency—Conversion Systems—Programming the PLC Chapter 17 Control Devices ...................................................................... 453 Silicon Controlled Rectifiers—SCR Construction—SCR I-V Characteristics—DC Power Control with SCRs—AC Power Control with SCRs—Triac Power Control—Triac Construction— Triac Operation—Triac I-V Characteristics—Triac Applications— Static Switching—Start-Stop Triac Control—Triac Variable Power Control—Diac Power Control—Electronic Control Considerations Appendix A Trigonometric Functions .......................................................471 Appendix B The Elements ...........................................................................473 Appendix C Metric Conversions ................................................................475 Index ................................................................................................................ 481 vii This page intentionally left blank Preface Electrical Power Systems Technology (Third Edition) provides a broad overview of the production, distribution, control, conversion, and mea- surement of electrical power. The presentation method used in this book will allow the reader to develop an understanding of electrical power sys- tems. The units of the book are organized in a systematic manner, begin- ning with electrical power production methods. The fundamentals of each major unit of the book are discussed at the beginning of the unit. These fundamentals provide a framework for the information that follows in each unit. The last unit has been expanded to include control devices. This book deals with many important aspects of electrical power, not just with one or two areas. In this way, it will give the reader a better un- derstanding of the total electrical power system—from the production of electricity to its conversion to other forms of energy. Each unit deals with a specific system, such as production, distribution, control, conversion, or measurement. Each system is broken down into subsystems. The subsys- tems are then explored in greater detail in the chapters that make up each unit. In order to understand the contents of this book in depth, the reader should have a knowledge of basic electrical fundamentals. The mathemat- ical presentations given are very simple and are used only to show the practical relationships that are important in electrical power system op- eration. This book is recommended as a textbook for an “electrical power” or “electrical generators and motors” course. It would be a suitable text for vocational-technical schools, community colleges, universities, and, pos- sibly, some technical high school programs. Many illustrations
Recommended publications
  • Trends in Electricity Prices During the Transition Away from Coal by William B
    May 2021 | Vol. 10 / No. 10 PRICES AND SPENDING Trends in electricity prices during the transition away from coal By William B. McClain The electric power sector of the United States has undergone several major shifts since the deregulation of wholesale electricity markets began in the 1990s. One interesting shift is the transition away from coal-powered plants toward a greater mix of natural gas and renewable sources. This transition has been spurred by three major factors: rising costs of prepared coal for use in power generation, a significant expansion of economical domestic natural gas production coupled with a corresponding decline in prices, and rapid advances in technology for renewable power generation.1 The transition from coal, which included the early retirement of coal plants, has affected major price-determining factors within the electric power sector such as operation and maintenance costs, 1 U.S. BUREAU OF LABOR STATISTICS capital investment, and fuel costs. Through these effects, the decline of coal as the primary fuel source in American electricity production has affected both wholesale and retail electricity prices. Identifying specific price effects from the transition away from coal is challenging; however the producer price indexes (PPIs) for electric power can be used to compare general trends in price development across generator types and regions, and can be used to learn valuable insights into the early effects of fuel switching in the electric power sector from coal to natural gas and renewable sources. The PPI program measures the average change in prices for industries based on the North American Industry Classification System (NAICS).
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • Electric Power Generation and Distribution
    ATP 3-34.45 MCRP 3-40D.17 ELECTRIC POWER GENERATION AND DISTRIBUTION JULY 2018 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. This publication supersedes TM 3-34.45/MCRP 3-40D.17, 13 August 2013. Headquarters, Department of the Army Foreword This publication has been prepared under our direction for use by our respective commands and other commands as appropriate. ROBERT F. WHITTLE, JR. ROBERT S. WALSH Brigadier General, USA Lieutenant General, USMC Commandant Deputy Commandant for U.S. Army Engineer School Combat Development and Integration This publication is available at the Army Publishing Directorate site (https://armypubs.army.mil) and the Central Army Registry site (https://atiam.train.army.mil/catalog/dashboard). *ATP 3-34.45 MCRP 3-40D.17 Army Techniques Publication Headquarters No. 3-34.45 Department of the Army Washington, DC, 6 July 2018 Marine Corps Reference Publication Headquarters No. 3-40D.17 Marine Corps Combat Development Command Department of the Navy Headquarters, United States Marine Corps Washington, DC, 6 July 2018 Electric Power Generation and Distribution Contents Page PREFACE.................................................................................................................... iv INTRODUCTION .......................................................................................................... v Chapter 1 ELECTRICAL POWER ............................................................................................. 1-1 Electrical Power Support to Military Operations
    [Show full text]
  • Sources of Total Energy Used in City of Portland for 2007
    Energy PORTLAND PLAN BACKGROUND REPORT FALL 2009 Acknowledgments Energy Bureau of Planning and Sustainability (BPS) PROSPERITY AND BUSINESS SUCCESS Mayor Sam Adams, Commissioner-in-charge Susan Anderson, Director SUSTAINABILITY AND THE NATURAL ENVIRONMENT Michael Armstrong, Senior Sustainability Manager Joe Zehnder, Chief Planner DESIGN, PLANNING AND PUBLIC SPACES Steve Dotterrer, Principal Planner Eric Engstrom, Principal Planner Gil Kelley, Former Director, Bureau of Planning NEIGHBORHOODS & HOUSING Primary Author Kyle Diesner, Policy Analyst, BPS TRANSPORTATION, TECHNOLOGY AND ACCESS Contributors Dan Bower, Transportation Options EDUCATION AND SKILL DEVELOPMENT Policy Program Manager, Portland Bureau of Transportation Michele Crim, Sustainable Government HUMAN HEALTH, FOOD AND PUBLIC SAFETY Policy and Program Manager, BPS Dave Tooze, Senior Energy Specialist, BPS QUALITY OF LIFE, CIVIC ENGAGEMENT AND EQUITY ARTS, CULTURE AND INNOVATION To help ensure equal access to City programs, services and activities, the City of Portland will reasonably modify policies/procedures and provide auxiliary aids/services to persons with disabilities. Call (503) 823-7700 with such requests. www.PDXPlan.com The Portland Plan TABLE OF CONTENTS TABLE OF CONTENTS .....................................................................................................................1 OVERVIEW.........................................................................................................................................2 Introduction and Research Purpose
    [Show full text]
  • International Comparison of Fossil Power Efficiency and CO2 Intensity - Update 2018
    International comparison of fossil power efficiency and CO2 intensity - Update 2018 FINAL REPORT International comparison of fossil power efficiency and CO2 intensity – Update 2018 FINAL REPORT By: Sam Nierop and Simon Humperdinck Date: September 28, 2018 Project number: 205329 © Ecofys 2018 by order of: MRI Research Associates, Japan ECOFYS Netherlands B.V. | Kanaalweg 15G | 3526 KL Utrecht| T +31 (0)30 662-3300 | F +31 (0)30 662-3301 | E [email protected] | I www.ecofys.com Chamber of Commerce 30161191 Summary The purpose of this study is to compare the power generating efficiency and CO2-intensity of fossil- fired power plants for Australia, China, France, Germany, India, Japan, Nordic countries (Denmark, Finland, Sweden and Norway aggregated), South Korea, United Kingdom and Ireland (aggregated), and the United States. This is done by calculating separate benchmark indicators for the generating efficiency of gas-, oil- and coal-fired power plants. Additionally, an overall benchmark for fossil-fired power generation is determined. The benchmark indicators are based on deviations from average generating efficiencies. The study is based on data from the IEA Energy Balances (2018 edition). Trends in power generation Total power generation in 2016 is largest in China with 5,936 TWh, with the United States following as second (4,119 TWh), and India (1,226 TWh) and Japan (873 TWh) as third and fourth respectively. Total power generation is smallest in Australia (232 TWh), United Kingdom and Ireland (312 TWh) and the Nordic countries (383 TWh). The countries included in the study generated 64% of public power generation worldwide in 2016, while the share of fossil power used in the public power production mix was 67%.
    [Show full text]
  • Electrical Energy Systems
    Electrical Energy Systems (Power Applications of Electricity) Summary of selected topics from University of Washington course EE 351: Energy Systems taught Fall 2015 by Prof. Baosen Zhang (BXZ) compiled by Michael C. McGoodwin (MCM). Content last updated 5/17/2016 Table of Contents Table of Contents ......................................................................................................................................... 1 Introduction ................................................................................................................................................. 2 Book chapters included in the course {and/or discussed in this summary} .................................... 3 History and Basic Science ............................................................................................................................ 4 Notable Persons in the History of Electricity ........................................................................................ 4 Voltage ............................................................................................................................................... 5 Current and Charge ............................................................................................................................ 5 Relating Voltage, Current, and Power .................................................................................................. 6 Resistance and Conductance, Resistance of a Wire (Pouillet's law) ......................................................
    [Show full text]
  • Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants
    sustainability Article Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants Hee-Kwan Shin 1,2, Jae-Min Cho 2 and Eul-Bum Lee 2,3,* 1 KEPCO (Korea Electrical Power Company), R&D Department, 211 Moonwha-ro, Najoo 58326, Korea; [email protected] 2 Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea; [email protected] 3 Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea * Correspondence: [email protected]; Tel.: +82-54-279-0136 Received: 23 September 2019; Accepted: 4 November 2019; Published: 6 November 2019 Abstract: The intention of this paper is to respond to the increase in electric power demand and global environmental issues in iron and steel plants. In particular, the authors studied the characteristics of the power flow from a distributed generation (DG) system connected to the electrical power system of a steel plant. In addition, the authors carried out an economic analysis of the DG system by calculating the capital investment cost that could convert the profit of the DG into a certain profit. The research was conducted based on the power system configuration and basic data of a steel plant in operation in Korea. To analyze the unconnected DG of the power system, a transmission voltage target was set, and the voltage characteristics of 22.9 and 6.6 kV systems were analyzed. The authors analyzed the connected DG system in terms of the effect of link location, power factor, and output power by case.
    [Show full text]
  • Electric Power Distribution Systems Operations
    Naval Facilities Engineering Command 200 Stovall Street Alexandria, Virginia 22332-2300 Electric Power Distribution Systems Operations NAVFAC MO-201 April 1990 SN 0525-LP-320-1900 FOREWORD This manual on electric power distribution systems is one of a series developed to aid utility supervisory personnel at shore establishments in the performance of their duties. It includes information obtained from extensive research of current literature on the subject and preferred practices based on practical experience. The principles and procedures described are in accordance with national professional society, association, and institute codes. Additional information concerning procedures, suggestions, recommendations or modifications that will improve this manual are invited and should be submitted through appropriate channels to the Commander, Naval Facilities Engineering Command, (Attention: Code 165), 200 Stovall Street, Alexandria, VA 22332-2300. This publication has been reviewed and approved in accordance with the Secretary of the Navy Instruction 5600.16A and is certified as an official publication of the Naval Facilities Engineering Command. It cancels and supersedes Operation of Electric Power Distribution Systems, NAVFAC MO-201, November 1963, in its entirety. D. B. CAMPBELL Assistant Commander for Public Works Centers and Departments i PAGE ii INTENTIONALLY LEFT BLANK ABSTRACT Application principles and procedures for the operation of electric power distribution systems and associated major apparatus are presented. The contents include principles of power systems, cabling systems, electrical equipment, power system protection and coordination, instruments and meters, operational procedures, and electrical utilization systems. iii PAGE iv INTENTIONALLY LEFT BLANK CHANGE CONTROL SHEET Document all changes, page replacements, and pen and ink alterations posted in this manual.
    [Show full text]
  • Renewable Power Options for Electricity Generation on Kaua'i
    Renewable Power Options for Electrical Generation on Kaua’i: Economics and Performance Modeling K. Burman, J. Keller, and B. Kroposki National Renewable Energy Laboratory P. Lilienthal, R. Slaughter, and J. Glassmire HOMER Energy, LLC NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-7A40-52076 November 2011 Contract No. DE-AC36-08GO28308 Renewable Power Options for Electrical Generation on Kaua’i: Economics and Performance Modeling K. Burman, J. Keller, and B. Kroposki National Renewable Energy Laboratory P. Lilienthal, R. Slaughter, and J. Glassmire Homer Energy, LLC Prepared under Task No. DP08.9176 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 1617 Cole Boulevard NREL/TP-7A40-52076 Golden, Colorado 80401 November 2011 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Handbook on Battery Energy Storage System
    HANDBOOK ON BATTERY ENERGY STORAGE SYSTEM DECEMBER 2018 ASIAN DEVELOPMENT BANK HANDBOOK ON BATTERY ENERGY STORAGE SYSTEM DECEMBER 2018 ASIANASIAN DEVELOPMENT DEVELOPMENT BANKBANK Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) © 2018 Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines Tel +63 2 632 4444; Fax +63 2 636 2444 www.adb.org Some rights reserved. Published in 2018. ISBN 978-92-9261-470-6 (print), 978-92-9261-471-3 (electronic) Publication Stock No. TCS189791-2 DOI: http://dx.doi.org/10.22617/TCS189791-2 The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. The mention of specific companies or products of manufacturers does not imply that they are endorsed or recommended by ADB in preference to others of a similar nature that are not mentioned. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area. This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) https://creativecommons.org/licenses/by/3.0/igo/. By using the content of this publication, you agree to be bound by the terms of this license.
    [Show full text]
  • Energy Industry Fundamentals Study Guide – Students
    Energy Industry Fundamentals Study Guide How to Use This Study Guide The first part of this study guide uses concept maps to help you organize the content of the Energy Industry Fundamentals Course. Concept mapping is based on the idea that learners do their best learning when they are able to visualize ideas in relationship to one another rather than simply stating them verbally. The essential element of concept maps is the graphic or visual display of information in a form that allows learners to quickly and easily organize the information in a meaningful way. The various concept maps presented here are intended to provide you with a framework to construct your own concept maps. Completed samples of the concept maps are included at the end of this study guide for you to check your maps and add anything you might have overlooked. Your concept maps may not be identical and the samples provide the minimum that should captured. Feel free to add relevant information in the space provided and in the margins and white space on each page. The goal is for you to customize each concept map in a way that allows you to best make sense of the material and aid in the recall of that information. The second feature is a set of review questions to help your review of information in the Energy Industry Fundamentals Student Guide. After you have completed the answers, you may check your answers with those provided at the end of this study guide. Reread the text to resolve any differences between your answers and those provided.
    [Show full text]
  • United States Electricity Industry Primer
    July 2015 United States Electricity Industry Primer Office of Electricity Delivery and Energy Reliability U.S. Department of Energy DOE/OE-0017 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability ACKNOWLEDGMENTS This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and Devon Streit, Deputy Assistant Secretary. Specific questions about information in this report may be directed to Jamie Clark, Infrastructure Systems Analyst ([email protected]). Contributors include Matthew Gilstrap, Shravan Amin, and Kevin DeCorla-Souza. 1 | P a ge U.S. Department of Energy Office of Electricity Delivery and Energy Reliability TABLE OF CONTENTS 1 Industry Overview ................................................................................................................................. 4 2 Electricity Basics .................................................................................................................................... 5 3 Electricity Supply Chain ......................................................................................................................... 6 3.1 Generation .................................................................................................................................... 6 3.2 Transmission and the Grid .......................................................................................................... 11 3.3 Distribution ................................................................................................................................
    [Show full text]