Summary of East Gondwanan Conodont Data Through the Ireviken Event at Boree Creek

Total Page:16

File Type:pdf, Size:1020Kb

Summary of East Gondwanan Conodont Data Through the Ireviken Event at Boree Creek Journal of Earth Science, Vol. 32, No. 3, p. 512–523, June 2021 ISSN 1674-487X Printed in China https://doi.org/10.1007/s12583-021-1310-9 Summary of East Gondwanan Conodont Data through the Ireviken Event at Boree Creek Andrew Simpson *1, David Mathieson2, Jiri Frýda3, Barbora Frýdová3 1. Archives and Collections, University Library, Macquarie University, Sydney NSW 2109, Australia 2. Department of Biological Sciences, Macquarie University, Sydney NSW 2109, Australia 3. Department of Environmental Geosciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic Andrew Simpson: https://orcid.org/0000-0001-6584-6451 ABSTRACT: The Ireviken Event was the first Middle Paleozoic event consisting of synchronised faunal, isotopic and facies change to be recognised. An analysis of the conodont faunas throughout the Boree Creek/Borenore Limestone succession in the central western region of the Tasman fold belt of New South Wales (Australia) revealing all five conodont zones that comprise the event is presented. While some zonal boundaries are precise, allowing direct comparison of stratigraphic intervals on other paleo-continents, some can only be approximated. Conodont data from pre-Ireviken Event strata, in contrast, only permit the identification of a broad Telychian chronology. The identification of Wenlock post-Ireviken Event conodont zones is incomplete due to lithological variability, namely the presence of tuffaceous beds near the top of the formation and an unconformity between the Boree Creek and overlying Borenore Lime- stone. The Boree Creek Formation contains the only example of the Ireviken Event discovered to date from the Tasman fold belt of eastern Gondwanaland. KEY WORDS: conodonts, extinction, Ireviken Event, Silurian, Boree Creek, eastern Gondwanaland. 0 INTRODUCTION 2007; Munnecke et al., 2003) and the Avalonian part of Laurussia The Early Silurian Ireviken Event is one of the most pro- (e.g., Loydell and Frýda, 2007). There is one study from tropical found intervals of species turnover during the Paleozoic that Gondwana (New South Wales; Talent et al., 1993) and only two has been identified to date. Jeppsson (1990, 1984) first devel- records from higher latitudes of peri-Gondwana (Frýda et al., oped an oceanic model for the Silurian based on observed pat- 2015) and Gondwana (Vecoli et al., 2009; Wenzel, 1997). The terns of change in conodont faunas through time. He proposed only available geochemical measurements from eastern Gond- 13 two types of stable and four types of unstable oceanic states, wana are 5 elevated δ Ccarb values reported by Talent et al. (1993) the former referred to as an “episode” and the latter, an “event”. from the Boree Creek Formation, a unit of limestones and vol- He (Jeppsson, 1998) postulated strong causal links between the caniclastic sediments from the Middle Paleozoic Waugoola Group, characteristics of an event and the preceding and subsequent in the Lachlan fold belt of central western New South Wales, Aus- episodes. Events exhibited an internal architecture of datum tralia. The only closely sampled conodont data from eastern planes and step-wise sequential extinction of conodont taxa. Gondwana through this time interval also comes from the Boree Although the model was derived to explain the patterns of Creek Limestone (Molloy, 2006; Cockle, 1999; Bischoff, 1986). chronology of conodont taxa in the intensely sampled Gotland succession, geographic terms were applied to event nomencla- 1 GEOLOGICAL SETTING ture so as not to limit the effectiveness of these terms with The stratigraphy of the Boree Creek Formation has been non-specialists (Jeppsson, 1998, p. 240). considered in several papers, principally by Walker (1959), The Ireviken Event is associated with a prominent early Sherwin (1971), Talent et al. (2003a, 1993, 1975), Pickett Sheinwoodian carbonate carbon isotope anomaly that reaches up (1982), Bischoff (1986), Holloway and Lane (1998), Jell and to +5 δ13C (Munnecke et al., 2003). This perturbation of carbon Talent (1989), Cockle (1999), and Valentine et al. (2003). Tal- cycle has been reported from different parts of Laurussia, includ- ent et al. (1975) and Pickett (1982) have covered discussion on ing its Laurentian part (e.g., Brand et al., 2006; Saltzman, 2001), the relationship of the Boree Creek Formation to other units. the Baltoscandian Basin (e.g., Racki et al., 2012; Kaljo et al., The Boree Creek Formation (Sherwin, 1971) is a Silurian unit of limestones and volcaniclastic sediments forming part of *Corresponding author: [email protected] the Middle Paleozoic Waugoola Group (Pogson and Watkins, © China University of Geosciences (Wuhan) and Springer-Verlag 1998; Jenkins, 1978) in the Lachlan fold belt of central western GmbH Germany, Part of Springer Nature 2021 New South Wales, Australia. This suite of rocks is interpreted as representing a marginal platform to deep water sequence Manuscript received October 10, 2020. (Downes et al., 2013) formed through the deposition of strata Manuscript accepted May 13, 2021. from the accretion of the intra-oceanic Macquarie arc to the Simpson, A., Mathieson, D., Frýda, J., et al., 2021. Summary of East Gondwanan Conodont Data through the Ireviken Event at Boree Creek. Journal of Earth Science, 32(3): 512–523. https://doi.org/10.1007/s12583-021-1310-9. http://en.earth-science.net Summary of East Gondwanan Conodont Data through the Ireviken Event at Boree Creek 513 Gondwana Plate (Glenn et al., 2007). thickness of up to 600 m (Pickett, 1982) that is believed to be the The Boree Creek Formation (Figs. 1 and 2) unconformably lateral equivalent of the Mirrabooka Formation and the Molong overlies volcanics and volcaniclastics of the Cheesemans Creek Limestone (Pickett, 1982; Talent et al., 1975). Formation (Sherwin, 1971) dated as Late Ordovician on grapto- Three informal units have previously been identified lite evidence (Percival and Glen, 2007; Percival et al., 2001). The within the Boree Creek Formation (Sherwin, 1971) in ascend- formation is unconformably overlain by the Borenore Limestone, ing order: (1) the lowest, limestone unit A, essentially equiva- a bedded to massive and brecciated unit of carbonates with a lent to the Rosyth Limestone of Walker (1959), consists of Figure 1. Regional geological map of the Boree Creek area (after Cockle, 1999 and Molloy and Simpson, 2012) showing the location of Kalinga Gully and the stratigraphic sequence sampled (Fig. 3). 514 Andrew Simpson, David Mathieson, Jiri Frýda and Barbora Frýdová Figure 2. Detailed geological map of the Kalinga Gully area studied (after Molloy and Simpson, 2012). thinly bedded nodular limestones rich in fossils including small position as Bischoff’s (1986) B Section. This work identified a brachiopods and corals topped by a reddish coarse grained major isotopic excursion corresponding to Jeppsson’s (1998, limestone (Cockle, 1999); (2) tuffaceous trilobite bed; (3) lime- 1997a, b, 1990) Datum 2 of the Ireviken Event. stone unit B, a thin to moderately thickly bedded, partially In Kalinga Gully, six separate lithological units of the Boree dolomotised interval of limestones (Bischoff, 1986). Creek Formation can be discriminated (Fig. 3). The lowermost This three-fold subdivision (Sherwin, 1971) was largely unit is a thinly bedded argillaceous limestone. The contact with adopted by subsequent authors such as Pickett (1982), Bischoff the underlying Cheesemans Creek volcanics is obscured by soil (1986), Holloway and Lane (1998) and Cockle (1999). These cover, but the unit was estimated to be approximately 40 m thick three units are easy to discriminate in the designated type sec- (Cockle, 1999), it is highly fossiliferous with pyritised fo- tion at Cheesemans Creek, however, it has been noted by a raminifers, gastropods, ostracods and brachiopods (Valentine et number of authors that lateral facies variation and interfinger- al., 2003). Algae, stromatoporoid fragments and silicified corals ing lithologies can make the identification of unit boundaries have also been reported from this interval (Valentine et al., 2003). problematic (Valentine et al., 2003; Pickett, 1982). Overlying this is a massive coarse grained red 5 m thick lime- The section studied in this investigation is the easternmost stone unit. Molloy and Simpson (2012) reported subtle differ- exposure of the Boree Creek Formation outcropping on both ences in lithology within the red limestone unit. Valentine et al. sides of Kalinga Gully, approximately 1 km from Borenore (2003) indicated that the red colour is the result of fine grained Caves (Fig. 2). This is the same section studied by Bischoff haematite iron particles and stylolites. These two units combined (1986, Section B) and also the subject of a study of lingulifor- comprise the equivalent of Sherwin’s (1971) limestone unit A mean brachiopods through the Ireviken Event (Valentine et al., (Fig. 3). Overlying the red limestone is a 5 m thick unit of 2003: BM Section). The section was resampled by Molloy fine-grained lensoidal grey limestone considered to be the basal (2006: BM Section) in a quest for better chronologic resolution portion of Sherwin’s tuffaceous trilobite bed (Fig. 3), this unit is through the event using conodonts, and for partial correlation of not present in the type section of the Boree Creek Formation. these results with intervals on other continental blocks (e.g., Valentine et al. (2003) reported that this unit is topped with a thin Molloy and Simpson, 2012). As part of an earlier investigation coarse-grained
Recommended publications
  • Early Silurian Oceanic Episodes and Events
    Journal of the Geological Society, London, Vol. 150, 1993, pp. 501-513, 3 figs. Printed in Northern Ireland Early Silurian oceanic episodes and events R. J. ALDRIDGE l, L. JEPPSSON 2 & K. J. DORNING 3 1Department of Geology, The University, Leicester LE1 7RH, UK 2Department of Historical Geology and Palaeontology, SiSlvegatan 13, S-223 62 Lund, Sweden 3pallab Research, 58 Robertson Road, Sheffield $6 5DX, UK Abstract: Biotic cycles in the early Silurian correlate broadly with postulated sea-level changes, but are better explained by a model that involves episodic changes in oceanic state. Primo episodes were characterized by cool high-latitude climates, cold oceanic bottom waters, and high nutrient supply which supported abundant and diverse planktonic communities. Secundo episodes were characterized by warmer high-latitude climates, salinity-dense oceanic bottom waters, low diversity planktonic communities, and carbonate formation in shallow waters. Extinction events occurred between primo and secundo episodes, with stepwise extinctions of taxa reflecting fluctuating conditions during the transition period. The pattern of turnover shown by conodont faunas, together with sedimentological information and data from other fossil groups, permit the identification of two cycles in the Llandovery to earliest Weniock interval. The episodes and events within these cycles are named: the Spirodden Secundo episode, the Jong Primo episode, the Sandvika event, the Malm#ykalven Secundo episode, the Snipklint Primo episode, and the lreviken event. Oceanic and climatic cyclicity is being increasingly semblages (Johnson et al. 1991b, p. 145). Using this recognized in the geological record, and linked to major and approach, they were able to detect four cycles within the minor sedimentological and biotic fluctuations.
    [Show full text]
  • Revised Correlation of Silurian Provincial Series of North America with Global and Regional Chronostratigraphic Units 13 and D Ccarb Chemostratigraphy
    Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units 13 and d Ccarb chemostratigraphy BRADLEY D. CRAMER, CARLTON E. BRETT, MICHAEL J. MELCHIN, PEEP MA¨ NNIK, MARK A. KLEFF- NER, PATRICK I. MCLAUGHLIN, DAVID K. LOYDELL, AXEL MUNNECKE, LENNART JEPPSSON, CARLO CORRADINI, FRANK R. BRUNTON AND MATTHEW R. SALTZMAN Cramer, B.D., Brett, C.E., Melchin, M.J., Ma¨nnik, P., Kleffner, M.A., McLaughlin, P.I., Loydell, D.K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F.R. & Saltzman, M.R. 2011: Revised correlation of Silurian Provincial Series of North America with global 13 and regional chronostratigraphic units and d Ccarb chemostratigraphy. Lethaia,Vol.44, pp. 185–202. Recent revisions to the biostratigraphic and chronostratigraphic assignment of strata from the type area of the Niagaran Provincial Series (a regional chronostratigraphic unit) have demonstrated the need to revise the chronostratigraphic correlation of the Silurian System of North America. Recently, the working group to restudy the base of the Wen- lock Series has developed an extremely high-resolution global chronostratigraphy for the Telychian and Sheinwoodian stages by integrating graptolite and conodont biostratigra- 13 phy with carbonate carbon isotope (d Ccarb) chemostratigraphy. This improved global chronostratigraphy has required such significant chronostratigraphic revisions to the North American succession that much of the Silurian System in North America is cur- rently in a state of flux and needs further refinement. This report serves as an update of the progress on recalibrating the global chronostratigraphic correlation of North Ameri- can Provincial Series and Stage boundaries in their type area.
    [Show full text]
  • Records of Carbon and Sulfur Cycling During the Silurian Ireviken Event in Gotland, Sweden
    Accepted Manuscript Records of Carbon and Sulfur Cycling During the Silurian Ireviken Event in Gotland, Sweden Catherine V. Rose, Woodward W. Fischer, Seth Finnegan, David A. Fike PII: S0016-7037(18)30660-4 DOI: https://doi.org/10.1016/j.gca.2018.11.030 Reference: GCA 11025 To appear in: Geochimica et Cosmochimica Acta Received Date: 4 September 2018 Revised Date: 15 November 2018 Accepted Date: 21 November 2018 Please cite this article as: Rose, C.V., Fischer, W.W., Finnegan, S., Fike, D.A., Records of Carbon and Sulfur Cycling During the Silurian Ireviken Event in Gotland, Sweden, Geochimica et Cosmochimica Acta (2018), doi: https:// doi.org/10.1016/j.gca.2018.11.030 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Records of Carbon and Sulfur Cycling During the Silurian Ireviken Event in Gotland, Sweden Catherine V. Rose1*, Woodward W. Fischer2, Seth Finnegan3, & David A. Fike4* 1School of Earth & Environmental Sciences, University of St Andrews, Fife, KY16 9AL, UK; 2Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 USA; 3Department of Integrative Biology, University of California, Berkeley, CA 94720-3140 USA; 4Department of Earth & Planetary Sciences, Washington University, St.
    [Show full text]
  • On the Causes of Mass Extinctions
    ÔØ ÅÒÙ×Ö ÔØ On the causes of mass extinctions David P.G. Bond, Stephen E. Grasby PII: S0031-0182(16)30691-5 DOI: doi: 10.1016/j.palaeo.2016.11.005 Reference: PALAEO 8040 To appear in: Palaeogeography, Palaeoclimatology, Palaeoecology Received date: 16 August 2016 Revised date: 2 November 2016 Accepted date: 5 November 2016 Please cite this article as: Bond, David P.G., Grasby, Stephen E., On the causes of mass extinctions, Palaeogeography, Palaeoclimatology, Palaeoecology (2016), doi: 10.1016/j.palaeo.2016.11.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT On the causes of mass extinctions David P.G. Bond1* and Stephen E. Grasby2, 3 1School of Environmental Sciences, University of Hull, Hull, HU6 7RX, United Kingdom 2Geological Survey of Canada, 3303 33rd St. N.W. Calgary AB Canada, T2L 2A7. 3Department of Geoscience, University of Calgary, Calgary AB Canada. *Corresponding author. E-mail: [email protected] (D. Bond). ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT ABSTRACT The temporal link between large igneous province (LIP) eruptions and at least half of the major extinctions of the Phanerozoic implies that large scale volcanism is the main driver of mass extinction.
    [Show full text]
  • Integrated Biostratigraphy of the Lower Silurian of the Aizpute-41 Core, Latvia
    Geol. Mag. 140 (2), 2003, pp. 205–229. c 2003 Cambridge University Press 205 DOI: 10.1017/S0016756802007264 Printed in the United Kingdom Integrated biostratigraphy of the lower Silurian of the Aizpute-41 core, Latvia D. K. LOYDELL*, P. MANNIK¨ † &V.NESTOR† *School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, UK †Institute of Geology, Tallinn Technical University, 7 Estonia Avenue, 10143 Tallinn, Estonia (Received 20 November 2001; accepted 28 November 2002) Abstract –Integrated graptolite, conodont and chitinozoan biostratigraphical data is presented from the Rhuddanian through to lower Sheinwoodian of the Aizpute-41 core, Latvia. Correlation of the biozonation schemes based upon the three groups is achieved from the cyphus through to lowermost riccartonensis graptolite biozones, except for the upper Aeronian and lower Telychian, which lack both chitinozoans and graptolites, and upper lapworthi through to approximately base murchisoni graptolite Biozone, where there is interpreted to be an unconformity. Datum 2 of the Ireviken Event is correlated with a level at the base of or within the murchisoni Biozone. It is possible that the changes in conodont assemblages at Datum 2 on Gotland are the result of an unconformity here. Streptograptus? kaljoi sp. nov., from the lower spiralis graptolite Biozone, is described. Keywords: graptolites, Chitinozoa, Conodonta, Silurian, biostratigraphy. 1. Introduction setting is further off-shore than that of Ohesaare (Fig. 1; see Loydell, Kaljo & Mannik,¨ 1998, for details of the Recognition of the importance of integrated biostrati- Ohesaare core), and the succession within the core graphical studies in the precise cross-facies correlation is significantly more complete, most notably in the required to test models of biotic and facies change in Aeronian.
    [Show full text]
  • Greenhouse−Icehouse Transition in the Late Ordovician Marks a Step Change in Extinction Regime in the Marine Plankton
    Greenhouse−icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton James S. Cramptona,b, Roger A. Coopera,1, Peter M. Sadlerc, and Michael Footed aDepartment of Paleontology, GNS Science, Lower Hutt 5040, New Zealand; bSchool of Geography, Environment and Earth Science, Victoria University of Wellington, Wellington 6140, New Zealand; cDepartment of Earth Sciences, University of California, Riverside, CA 92521; and dDepartment of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved December 22, 2015 (received for review September 25, 2015) Two distinct regimes of extinction dynamic are present in the major commonly are inferred to be good approximations of their true marine zooplankton group, the graptolites, during the Ordovician ranges in time, and empirical graptoloid range data have been and Silurian periods (486−418 Ma). In conditions of “background” used as examples of, or tests for, macroevolutionary rates (3, 4, extinction, which dominated in the Ordovician, taxonomic evolu- 11–13). Like most of the marine macroplankton, their evolu- tionary rates were relatively low and the probability of extinction tionary dynamics are interpreted to have depended closely on was highest among newly evolved species (“background extinction those of the microphytoplankton and bacterioplankton (13–16), mode”). A sharp change in extinction regime in the Late Ordovician the primary producers in the food web and which, in the modern marked the onset of repeated severe spikes in the extinction rate oceans, are sensitive indicators of oceanic circulation, nutrient curve; evolutionary turnover increased greatly in the Silurian, and flux, and global climate (1, 17); in addition, they depended on the extinction mode changed to include extinction that was inde- physical properties of the water mass such as temperature and pendent of species age (“high-extinction mode”).
    [Show full text]
  • Paleozoic–Mesozoic Eustatic Changes and Mass Extinctions: New Insights from Event Interpretation
    life Article Paleozoic–Mesozoic Eustatic Changes and Mass Extinctions: New Insights from Event Interpretation Dmitry A. Ruban K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Zemlyanoy Val Street 73, 109004 Moscow, Russia; [email protected] Received: 2 November 2020; Accepted: 13 November 2020; Published: 14 November 2020 Abstract: Recent eustatic reconstructions allow for reconsidering the relationships between the fifteen Paleozoic–Mesozoic mass extinctions (mid-Cambrian, end-Ordovician, Llandovery/Wenlock, Late Devonian, Devonian/Carboniferous, mid-Carboniferous, end-Guadalupian, end-Permian, two mid-Triassic, end-Triassic, Early Jurassic, Jurassic/Cretaceous, Late Cretaceous, and end-Cretaceous extinctions) and global sea-level changes. The relationships between eustatic rises/falls and period-long eustatic trends are examined. Many eustatic events at the mass extinction intervals were not anomalous. Nonetheless, the majority of the considered mass extinctions coincided with either interruptions or changes in the ongoing eustatic trends. It cannot be excluded that such interruptions and changes could have facilitated or even triggered biodiversity losses in the marine realm. Keywords: biotic crisis; global sea level; life evolution 1. Introduction During the whole Phanerozoic, mass extinctions stressed the marine biota many times. They triggered disappearances of numerous species, genera, families, and even high-order groups of marine organisms, and they were often associated with outstanding environmental catastrophes such as global events of anoxia and euxinia, unusual warming and planetary-scale glaciations, massive volcanism, and extraterrestrial impacts. Mass extinctions were highly complex events, with the intensity amplified by the interplay among atmosphere, oceans, geologic activity, and extraterrestrial influences. The relevant knowledge is huge, and it continues to grow.
    [Show full text]
  • Type of the Paper (Article
    life Article Dynamics of Silurian Plants as Response to Climate Changes Josef Pšeniˇcka 1,* , Jiˇrí Bek 2, Jiˇrí Frýda 3,4, Viktor Žárský 2,5,6, Monika Uhlíˇrová 1,7 and Petr Štorch 2 1 Centre of Palaeobiodiversity, West Bohemian Museum in Pilsen, Kopeckého sady 2, 301 00 Plzeˇn,Czech Republic; [email protected] 2 Laboratory of Palaeobiology and Palaeoecology, Geological Institute of the Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Prague 6, Czech Republic; [email protected] (J.B.); [email protected] (V.Ž.); [email protected] (P.Š.) 3 Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic; [email protected] 4 Czech Geological Survey, Klárov 3/131, 118 21 Prague 1, Czech Republic 5 Department of Experimental Plant Biology, Faculty of Science, Charles University, Viniˇcná 5, 128 43 Prague 2, Czech Republic 6 Institute of Experimental Botany of the Czech Academy of Sciences, v. v. i., Rozvojová 263, 165 00 Prague 6, Czech Republic 7 Institute of Geology and Palaeontology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic * Correspondence: [email protected]; Tel.: +420-733-133-042 Abstract: The most ancient macroscopic plants fossils are Early Silurian cooksonioid sporophytes from the volcanic islands of the peri-Gondwanan palaeoregion (the Barrandian area, Prague Basin, Czech Republic). However, available palynological, phylogenetic and geological evidence indicates that the history of plant terrestrialization is much longer and it is recently accepted that land floras, producing different types of spores, already were established in the Ordovician Period.
    [Show full text]
  • Back Matter (PDF)
    Index Numbers in italic indicate figures, numbers in bold indicate tables abiotic environment change 43 Anticosti Island, Qu6bec Acanthocythereis meslei meslei 298, 304, 305 conodont fauna 73-100 Achilleodinium 263 geology 74 Achmosphaera 263 Anticostiodus species 93, 99 Achmosphaera alcicornu 312, 319 Aphelognathus grandis 79, 83-84 Acodus delicatus 50 Apiculatasporites variocorneus 127, 128 acritarch extinction 28, 29 Apiculatisporites verbitskayae 178, 182 Actinoptychus 282, 286, 287 Apsidognathus tuberculatus 96 Actinoptychus senarius 280, 283, 284, 287 Apteodinium 263 adaptation, evolutionary 35 Araucariacites 252 A dnatosphaeridium 312, 314, 321 Archaeoglobigerina blowi 220, 231,232 buccinum 261,264 Archaeoglobigerina cretacea 221 Aequitriradites spinulosus 180, 182 Arctic Basin Aeronian Pliensbachian-Toarcian boundary 137-171, 136 conodont evolutionary cycles 93-96 palaeobiogeography 162, 165, 164, 166, 170 sea-level change 98-100 palaeoclimate 158-160 age dating, independent 237 Aren Formation, Pyrenees 244, 245 age-dependency, Cenozoic foraminifera 38-39, Arenobulimina 221,235 41-44 Areoligera 321 Ailly see Cap d'Ailly coronata 264 Alaska, Pliensbachian-Toarcian boundary, medusettiformis 264, 263, 259 stratigraphy 155-157 Areosphaeridium diktyoplokum 315, 317, 319 Alatisporites hofjmeisterii 127, 128, 129 Areosphaeridium michoudii 314, 317 Albiconus postcostatus 54 Argentina, Oligocene-Miocene palynomorphs Aleqatsia Fjord Formation, Greenland 92 325-341 Alterbidinium 262 Ashgillian Ammobaculites lobus 147, 149, 153, 155, 157
    [Show full text]
  • Cyclo and Chemostratigraphic Characteristics of the Middle Silurian in Gotland, Sweden M.C.M
    Cyclo and chemostratigraphic characteristics of the Middle Silurian in Gotland, Sweden M.C.M. Arts1, B. Cramer2, M. Calner3, C. M.Ø. Rasmussen4 5, A. M. Bancroft5, S. C. Oborny2, E. Hartke2, E. Biebesheimer2, A.C. Da Silva1 3Lithosphere and Biosphere Science, Lund University, Sweden 1 Sedimentary Petrology, Geology Department, Liège University, Belgium 4Natural History Museum of Denmark, University of Copenhagen, Denmark corresponding author: [email protected] 5GLOBE Institute, University of Copenhagen, Denmark 2 Earth and Environmental Sciences, University of Iowa, U.S.A. 6Indiana Geological Survey, University of Indiana, U.S.A Introduction The cumulative work of geoscientists over the past decades has shown that the Silurian Period which was once thought as warm and climatically stable time interval is in fact punctuated by numerous paleoenvironmental perturbations or events. These Silurian events follow a similar pattern where a minor extinction event precedes a substantial carbon isotope excursion (Jeppsen 2000 &1997). Many theories have been brought forward to explain these events ranging from glaciations, to changes in precipitations patterns, ocean currents, volcanism induced ocean anoxia and SEDEX deposit formation. Constraints on the duration and timing of these extinction events and subsequent positive carbon isotope excursions are weak, which hampers a full understanding of the processes at play. The Altajme well drilled in South Central Gotland in Sweden in 2015 spans the latest Ordovician to Homerian succession of Gotland. The data from theAltajme core provides us with a unique opportunity to look at two of these climatic perturbations during the Silurian. The Altajme core spans both the Sheinwoodian Ireviken event and the Homerian Mulde event.
    [Show full text]
  • View That Primary Carbon Isotope Signatures Have Been Preserved [Samtleben Et Al., 1996; Bickert Et Al., 1997; Cramer and Saltzman, 2005]
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2017 Investigation of Paleoredox Conditions across the Llandovery- Wenlock (Silurian) Boundary: Implications for the Ireviken Extinction Event and Carbon Isotope Excursion Andrew Thomas Kleinberg Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES INVESTIGATION OF PALEOREDOX CONDITIONS ACROSS THE LLANDOVERY- WENLOCK (SILURIAN) BOUNDARY: IMPLICATIONS FOR THE IREVIKEN EXTINCTION EVENT AND CARBON ISOTOPE EXCURSION By ANDREW KLEINBERG A Thesis submitted to the Department of Earth, Ocean, and Atmospheric Science in partial fulfillment of the requirements for the degree of Master in Science 2017 Andrew Kleinberg defended this thesis on June 29, 2017. The members of the supervisory committee were: Seth Young Professor Directing Thesis Jeremy Owens Committee Member Angie Knapp Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that this thesis has been approved in accordance with university requirements. ii ACKNOWLEDGMENTS I would like to take the time to thank my thesis advisor, Dr. Seth Young, whose invaluable guidance, patience, and positive encouragement has pushed me well past the precipice of my own capabilities and expectations throughout my Masters career. I am so grateful for the opportunities he has provided me and being given the chance to study my Masters under him. I would also like to take the chance to thank my other committee members: Dr. Jeremy Owens for his equal involvement during my Masters and his light-hearted and humorous, yet engaging and helpful, mentoring approach; and Dr.
    [Show full text]
  • Early Silurian Δ Corg Excursions in the Foreland Basin of Baltica, Both Familiar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portsmouth University Research Portal (Pure) 13 1 Early Silurian δ Corg excursions in the foreland basin of Baltica, both familiar 2 and surprising 3 4 Emma U. Hammarlund1,2*, David K. Loydell3, Arne T. Nielsen4, and Niels H. Schovsbo5 5 6 Affiliations: 7 1Translational Cancer Research, Laboratory Medicine, Lund University, Medicon Village 8 404:C3, Scheelevägen 2, 223 63 Lund, Sweden. 9 2Nordic Center for Earth Evolution, University of Southern Denmark, Campusvej 55, 5230 10 Odense M, Denmark. 11 3School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Road, 12 Portsmouth PO1 3QL, United Kingdom. 13 4Department of Geosciences and Natural Resource Management, University of Copenhagen, 14 Øster Voldgade 10, 1350 København K, Denmark. 15 5Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, 16 Denmark. 17 18 *Corresponding author e-mail: [email protected] 19 20 1 21 Abstract 22 The Sommerodde-1 core from Bornholm, Denmark, provides a nearly continuous 23 sedimentary archive from the Upper Ordovician through to the Wenlock Series (lower Silurian), 24 as constrained by graptolite biostratigraphy. The cored mudstones represent a deep marine 25 depositional setting in the foreland basin fringing Baltica and we present high-resolution data 13 26 on the isotopic composition of the section’s organic carbon (δ Corg). This chemostratigraphical 27 record is correlated with previously recognized δ13C excursions in the Upper Ordovician–lower 28 Silurian, including the Hirnantian positive isotope carbon excursion (HICE), the early Aeronian 29 positive carbon isotope excursion (EACIE), and the early Sheinwoodian positive carbon isotope 30 excursion (ESCIE).
    [Show full text]