Nevada Hydrographic Areas and Sub-Areas/Listed Alphabetically by Primary County of Location Basin Area Area Area Num
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11 -
Water Resources-Reconnaissance Series Report 54
STATE OF NEVADA ·DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES Carson City / Photograph by Lawrence Radiation Laboratory· Sedan Crater was formed in the dry a ll uv ium of Yucca Flat by on underground atomic detonation. WATER RESOURCES-RECONNAISSANCE SERIES REPORT 54 REGIONAL GROUND-WATER SYSTEMS IN THE NEVADA TEST SITE AREA, NYE, LINCOLN, AND CLARK COUNTIES, NEVADA By F. Eugene Rush Prepared cooperatively by the Geological Survey, U.S. Department of the Interior 1970 WATER RESOURCES - RECONNAISSANCE: SEJUES REPORT 54 ·. REGIONAL GROUND-WATER SYSTEMS·IN THE NEVADA TEST SITE AREA, NYE, LINCOLN, AND CLARK COUN'riE:S, NEVADA By F. Eugene Rush PreparBd cooperatively by the Geological Survey, u.s. Department of the Interior 1971 -\ FOREWORD The progr~m of reconnaissance water-resources studies was authorized by the 1960 Legislature to be carried on by Division of Water Resources of the Departc.ment of· Conservation and Natural Resources in cooperation with the u.s. Geological Survey. This report is the 54th in the series to be prepared by the staff of the Nevada District Office of the U.S. Geological Survey. These 54 reports describe the hydrology of 185 valleys. The reconnaissance surveys make available pertinent information of great and immediate value to many State and Federal agencies, the State cooperating agency, and the public. As development takes place in any area, ,]c,,mands for more detailed information will arise, and studies to supply such information will be undertaken. In the meantime, these reconnaissance studies are timely and adequately In<'eet tlle immediate needs for information on the wate.r resources of the areas covered by the reports. -
Ar Iz Onautah California Cal If Orn Ia Oregon Idaho
DESIGNATED GROUNDWATER BASINS OF NEVADA £ * # £ 47N £ £ J OREGON IDAHO k a 11 e Jackpot r 18E 19E 10 24E 25E e b 20E 21E 5 McDermitt r 47N Denio £ 22E 26E 28E i 23E C 27E d E E Owyhee g e 2 2 68E 69E 70E / / 1 66E 67E 1 55E 6 1 47N 63E 64E 65E 4 46N 3 44E 46E 49E 50E 51E 52E 53E 57E 59E 60E 61E 62E 45E 47E 48E 5 2 54E 47N 56E 58E 30E 31E 32E 33E s 140 34E 35E 38E 41E B l 36E 37E 39E l 13 U 40E 42E 43E ru C V a K n a r e n F i R 46N n e a y g 39 o v u Mountain i n s i v 41 R 12 R e iv r Jarbidge Peak City e * 45N 2 *Capitol Peak 34 46N r 46N * Matterhorn C O re w ek 45N No y Copper Mtn. rth h n Fo e * o R rk e 33B 37 lm i L R a 44N v it 45N S 30A e t iv 4 140 r le e VU r 7 45N H u m Sun C 44N n bo 38 reek n ld 0 i t 40 u 68 9 Q Granite Peak 35 Wildhorse 44N 1 43N 33A * 8 3 29 Reservoir 9 44N 43N Vya U M a r 42N 43N ys Orovada* Santa Rosa Peak 30B 43N T 42N 27 *McAfee Peak 14 67 41N *Jacks Peak 42N A R S N 42N out h i F o v 41N e o r r r k t h 189B 189C L i 189A H t t l 40N Chimney e 41N 15 F 41N H Reservoir o u r r 25 e m k Tecoma v 42 40N i b 44 R o l d Humboldt t 36 R 40N i 39N 69 v r e 40N r e 93 v H U M B O L D T i £ 26 ¤ 189D 39N R t Montello ld 63 o b 39N 32 m R 38N 39N u E Li K O v 233 H e VU r 38N e 225 n l t VU in t u i Q ¤£95 L 31 38N 38N 66 Cobre 37N 16 37N Wells Ma 28 gg 80 ie ¨¦§ 37N Pilot Peak* A 37N Oasis 36N 36N C I r R e 93 e o ¤£ k c k 36N * Hole in the 36N Mtn. -
Us Department of the Interior
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY FIELD TRIP GUIDE TO THE SOUTHERN EAST HUMBOLDT RANGE AND NORTHERN CURRIE HILLS, NORTHEAST NEVADA: AGE AND STYLE OF ATTENUATION FAULTS IN PERMIAN AND TRIASSIC ROCKS by Charles H. Thorman1 and William E. Brooks1 Open-File Report 94-439 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Denver, Colorado 1994 FIELD TRIP GUIDE TO THE SOUTHERN EAST HUMBOLDT RANGE AND NORTHERN CURRIE HILLS, NORTHEAST NEVADA: AGE AND STYLE OF ATTENUATION FAULTS IN PERMIAN AND TRIASSIC ROCKS by Charles H. Thorman and William E. Brooks U.S. Geological Survey, Box 25046, MS 905, Denver, CO 80225 INTRODUCTION One of the most difficult aspects in unraveling Basin and Range geology is dating attenuation faults, which are low-angle younger-over-older faults that can be interpreted as contractional or extensional in origin. Units are typically thinned or eliminated, commonly with little discordance between juxtaposed beds. Hintze (1978) documented this style of faulting in western Utah and attributed it to the Sevier orogeny. Attenuation faults abound in the region, but are commonly difficult to date because of a lack of crosscutting or overlapping features (Nutt and others, 1992; Nutt and Thorman, 1994). Being unable to date an attenuation fault makes it difficult to relate the fault to extensional or contractional tectonics. In the case of the southern East Humboldt Range, we consider the attenuation faulting to be related to Jurassic (Elko) or Cretaceous (Sevier) contractional tectonics; on this field trip we will see some of the field evidence on which this conclusion is based. -
Bibliography on the Conservation of Biological Diversity: Biological
Bibliography on the Conservation of Biological Diversity: $4 Biological/Ecological, Economic, and Policy Issues 0, Stephen Polasky, Associate Professor Steve Pavich, M.S. Student Michael Jaspin, M.S . Student Department of Agricultural and Resource Economics, Oregon State University, 213 Ballard Extension Hall, Corvallis, OR 9733 1-3601 Nmcy Bergeron, Ph.D. Student Department of ~griculturaland Resource Economics, University of Maryland Dedicated to the memory of our friend and colleague Susanne Szentandrasi. October 3 1, 1994 Comments, additions, and corrections welcomed (Please direct to Stephen Polasky or Steve Pavich at Oregon State University Phone: (541) 737-1406; e-mail: [email protected] or [email protected]) Prepared in part for and with support from the Agricultural Experiment Station, Oregon State University, Project 143 and the Environment, Mhstructure, and Agriculture Division, Policy I Research Department, World Bank, RPO ##679-40. General Biodiversity Conservation . General B~odversityConservation .......................................... :................................... 1 . * Marine and Freshwater Biodversity ........................................................................... Area Case Studies...................................................................................................... Environmental Ethics................................................................................................. Patterns and History of Extmct~ons........................................................................... -
Section 3 Water Resources and Use Assessment
Nevada Division of Water Planning Nevada State Water Plan SUMMARY Section 3 Water Resources and Use Assessment Introduction An understanding of the state’s water resources and its usage is a necessary component to the planning and management process. This section provides an overview of the physical characteristics of Nevada’s water resources and historic water use for the last 25 years. Water Resources Background The following discussion provides an overview of Nevada’s surface water and groundwater resources. Topography The topography of Nevada and the surrounding areas makes for a unique and diversified climate. Nearly all of Nevada is in the Basin and Range Province of the Intermountain Plateaus, a rugged elevated area between the Rocky Mountains and the Pacific mountain system. The topography of the Basin and Range province is characterized by isolated, long and narrow, roughly north-south trending, parallel mountain ranges and broad, intervening valleys. Internal drainage is a significant feature of the hydrology of much of Nevada with about 84 percent of the drainage flowing to low areas in enclosed basins rather than to the sea. The topography and related geology of the State has resulted in complex surface and ground water systems, complicating the management of these resources. In the 1960s, the Nevada State Engineer’s Office and the U.S. Geological Survey (USGS) recognized the need for a systematic identification of the valleys or hydrographic areas, and developed a hydrographic area map. The current hydrographic area map delineates 256 hydrographic areas within 14 major hydrographic regions and basins (Figure 3-1, Table 3-1). -
Monsoon Passage Fact Sheet
Monsoon Passage Fact Sheet Safe haven stepping stones from the Mojave Desert to the Northern Great Basin East Pass a few years after a fire in the Clover Mountains of the southern Great Basin looking down into the Mojave’s Tule Desert © Louis Provencher/TNC Monsoon Passage The connected mountain ranges and wet valley bottoms of this natural highway provide desert tortoises, bighorn sheep, Cooper’s hawk, mule deer and other species escape routes from growing climate impacts, allowing them to find new homes where they can thrive. The region's name comes from being at the western edge of the summer monsoons that provide needed eastern-facing moisture to buffer rising temperatures and a pathway for species moving north. Imagine populations of raptors, small carnivores, small mammals, mule deer, bighorn sheep, passerine birds, insects, and plant species pushed northward or up and around mountains by warming temperatures and changes in precipitation patterns. Non-migratory species flow from the hot Mojave Desert ecoregion to the cooler Columbia Plateau ecoregion passing through the entirety of the Great Basin ecoregion is not easily guaranteed. There are less than five corridors of passably connected mountains ranges and wet valley bottoms that fully allow species movement within a viable thermal environment that may be viewed as steppingstones of safe havens. The Nevada Chapter is proposing one such thermal corridor in eastern Nevada titled Monsoon Passage. The corridor follows the Nevada-Utah border and is mostly in Nevada. For those familiar -
27 November, 2002
Antelope & North Spring Valleys, Steptoe Valley & Uplands, Newark Valley Extended Watershed, and Meadow Valley Wash & Uplands Conservation Area Assessment Executive Summary by Louis Provencher1, Jan Nachlinger, & Tara Forbis, The Nature Conservancy of Nevada & William Morrill, Eastern Nevada Landscape Coalition April 2003 Egan Range from Steptoe Valley salt desert shrubland near Steptoe Ranch Photo: Louis Provencher, TNC, 2002 1Recommended citation: Provencher, L., J. Nachlinger, T. Forbis, and W. M. Morrill. 2003. Antelope and North Spring Valleys, Steptoe Valley and Uplands, Newark Valley Extended Watershed, and Meadow Valley Wash and Uplands conservation area assessment executive summary. Final draft. The Nature Conservancy of Nevada, Reno, NV. Abstract The Nature Conservancy of Nevada hosted a series of conservation area assessment workshops for Antelope and North Spring Valleys, Steptoe Valley and Uplands, Newark Valley Extended Watershed, and Meadow Valley Wash and Uplands from September 2002 to February 2003 in Ely, Nevada. Approximately 40 experts representing federal and state agencies, non- governmental conservation organizations, tribal governments, ranchers, citizens, academia, and state extension services, comprised multi-partner teams of 7-12 experts assigned to each area. The four areas total approximately 3 million acres (1,214,574 ha). The assessment followed The Nature Conservancy’s 5-S methodology that encourages experts to identify systems (conservation targets), stresses to the systems, sources of those stresses, strategies to abate high-ranked sources of stress, and measures of success. High priority systems and species, both those that are particularly rare and those that are particularly threatened, were identified. The teams developed common strategies for five systems that share the same ecological characteristics and sources of stress across all four sites: sagebrush-grass-pinyon-juniper mosaic, “historic” pinyon-juniper ecological sites, montane woodlands, springs and creeks, and salt desert shrublands. -