Preface to the 3Rd Edition Preface to the 1St Edition the Importance of Alexander Schleicher Founding, Pioneering and Growing A

Total Page:16

File Type:pdf, Size:1020Kb

Preface to the 3Rd Edition Preface to the 1St Edition the Importance of Alexander Schleicher Founding, Pioneering and Growing A Index Preface to the 3rd Edition 9 Preface to the 1st Edition 10 The importance of Alexander Schleicher 13 Founding, pioneering and growing 16 The period from 1927 to 1945 From primary gliders to the cantilever wing high-performance sailplanes by the leading sailplane designers of the time History: From Frankfurt to Fränzchen 23 A home-built Luftkurort Poppenhausen 29 Research Sailplanes built at Schleicher 32 A fresh start, beginning 1951, with sailplanes 43 of proven designs ES 49, a two-seater Baby by Edmund Schneider 43 Baby III und Baby lib, new series of Schneider’s success- 48 ful sailplane designs Rhönlerche I, the last design of Alexander Schleicher 51 Condor IV, the first post-war high-performance two-seater 53 Rudolf Kaiser, a new era begins 58 Ka 1 und Ka 3, small home built sailplanes for the 59 slim post-war purse, today a rare treat for the eyes Ka 2 “Rhönschwalbe”, Tandem two-seater for training 63 and performance flying, today a treasured oldtimer Ka 4 “Rhönlerche II”, basis for sailplane training 66 “Rhönsegler”, the Ka 6 and their offspins the К 10 and К 6 E 74 Worldwide accepted standard for performance and flight characteristics Ka 6 B/BR, OSTIV-award and world champion 79 Ka 6 C/CR, World wide success in the standard class 80 К 10, first Ka 6 series with improved laminar wing 82 К 6 E, The pinnacle of the wooden standard class sailplane 84 with slimmed fuselage and laminar airfoil К 7 “Rhönadler”, tandem-two-seater, successor of the Ka 2 88 with fabric covered wooden wings and steel tube fuselage К 8, training sailplane, the single seated К 7 for 92 advanced students and performance flights К 9, Rudolf Kaiser's simple sailplane for home-building 98 completely in wood, forerunner of the К 11 Ka 11, single seat motor glider, developed by Rudolf Kaiser 100 for his personal use. Also served as feasibility study for the К 12/ASK 14 series К 12/ASK 14, Kaiser's motor glider with tractor propeller and 101 retractable landing gear, a self launching “Rhönsegler" for fun flying With Gerhard Waibel into the composite area 106 ASW 12, Gerhard Waibel’s entry: A stunning world-record 108 sailplane in monocoque construction ASK 13, Kaiser’s mid-wing sailplane of mixed structure 116 with a large blown canopy, superseding the К 7 and Ka 2 ASW 15, WaibeTs composite standard class sailplanes sets 120 new records in characteristics and performance ASK 16, touring motor glider with side-by-side seating and 126 retractable undercarriage, user-friendly and comfortable ASW 17, pilots of the ASW 17 reached new dimensions in 132 long distance flights; greater distances at higher speeds and world cup glories ASK 18, a sailplane in the club-class and successor to the 139 legendary К 8, a single-seat training sailplane for the two-seater ASK 13 ASW 19, world champion sailplane in the standard class 142 and test aircraft for airfoil research and winglets ASW 20, Waibel's answer to the new FAI 15m-class rules, 150 immediately successful in competition and distance flights ASK 21, Rudolf Kaiser gave his composite training two-seater 162 the usual gentle flight characteristics ASW 22, a third generation high performance sailplane 175 with 24 to 26,4 m span, a top scorer for decades ASK 23, composite training single-seater, Rudolf Kaiser’s last 192 design is his legacy with respect to good flight characteristics ASW 24, competition single-seater for the standard class with 196 outstanding gliding performance and flight handling and also exceptionally strong cockpit shell construction With Martin Heide into the next millenium 208 From the AS 22-2 to the ASH 25, Martin Heide’s first work 209 exceeded all expectations, a two-seater with incredible performance ASH 26, Martin Heide’s next design for the 18meter-class 222 equipped with the most environmentally friendly engine for a high performance sailplane with retractable propeller ASW 27, 15m sailplane with plain flaps by Gerhard Waibel 235 with maximum passive security features Karl Striedieck and his World Records with Schleicher sailplanes 245 Propeller and Jets, Schleicher gliders with engine 248 for launching and sustaining World Record dreams 254 Dreamflights, with ASH 25 256 ASW 28, a superior standard-class sailplane with regards 268 to performance and also active and passive safety features. The last design of Gerhard Waibel and its 18 meter version ASW 22 DB “The ETA-biter” and Concordia 274 Dick Butler's conversion and new superior open class sailplane With Michael Greiner in the third generation 284 ASG 29, success worldwide in the 18m-class, as well as sustainer - 284 Michael Greiner’s first work ASH 30, the new Schleicher flagship by Martin Heide 298 ASH 31, the handy single seater by Martin Heide, with the 312 performance level of the open class, well accepted by the market ASG 32, the long yearned 20m two-seater for competition and 3 2 6 cross country soaring enjoyed by two, by Michael Greiner Bibliography 342 Acknowledgements 343 Epilogue to the first edition 344 Epilogue to the second edition 346 Epilogue to the third edition, Acknowledgements 347 Epilogue to the English edition 349 Captions to the color photo plates 350.
Recommended publications
  • November 2020
    November 2020 e- Water Landing, Lake Tahoe, 2020 Presidents Message Editorial Safety Lessons from 2020 PASCO OGN Project Update 2020 PASCO Scholarship Update 2020 PASCO Flight Awards 2020 1 Statement of Purpose The purpose of this Corporation shall be to initiate, sponsor, promote, and carry out plans, policies, and activities that will further the growth and development of the soaring movement in Region 11 of the Soaring Society of America. Activities will be targeted at increasing the number of soaring pilots in the region in addition to the development of soaring pilots to promote safety of flight, training in the physiology of flight, cross country and high altitude soaring and the development of competition pilots and contest personnel at the local, regional, national and international level. Current dues are $25 annually from the month after receipt of payment. PASCO is a 501c(3) not for profit corporation and contributions are tax deductible. Consider PASCO in your charitable giving plans this year! WORLD WIDE WEB ADDRESSES - REGION 11 Soaring Society of America http://www.ssa.org Pacific Soaring Council http://www.pacificsoaring.org Air Sailing Inc. http://www.airsailing.org Bay Area Soaring Associates http://www.flybasa.org Central California Soaring Club http://www.soaravenal.com Las Vegas Valley Soaring Association http://www.lvvsa.org Minden Soaring Club http://www.mindensoaringclub.com/int2/ Northern California Soaring Assoc. http://www.norcalsoaring.org/ Silverado Soaring, Inc. http://www.silveradosoaring.org/ Hollister Soaring Center https://hollistersoaringcenter.com/ SoaringNV http://www.soaringnv.com/ Williams Soaring Center http://www.williamssoaring.com/ Valley Soaring Association http://www.valleysoaring.net/ Presidents Message It has been a challenging year for everyone for many reasons and, due to the ongoing health concerns, I am sorry to report that there will not be a PASCO safety seminar / awards banquet this winter.
    [Show full text]
  • State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications
    Dissertations and Theses Fall 2011 State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications Lori Anne Costello Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Costello, Lori Anne, "State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications" (2011). Dissertations and Theses. 37. https://commons.erau.edu/edt/37 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATE OF THE ART OF PILOTED ELECTRIC AIRPLANES, NASA’S CENTENNIAL CHALLENGE DATA AND FUNDAMENTAL DESIGN IMPLICATIONS by Lori Anne Costello A Thesis Submitted to the Graduate Studies Office in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida Fall 2011 1 Copyright by Lori Anne Costello 2011 All Rights Reserved 2 ACKNOWLEDGEMENTS This thesis is the culmination of two years of work on the Green Flight Challenge Eco-Eagle. The Eco- Eagle and this thesis would not have been possible without countless help and inspiration from friends and family. I would like to thank Dr. Anderson for giving me the opportunity to participate in Embry-Riddle’s Green Flight Challenge Team and for supporting me and the Eco-Eagle project. Without his guidance I would not have this paper and understood as much as I now do about electric airplanes.
    [Show full text]
  • Slingsby T61F Venture T MK2 Motor Glider, G-BUGV
    Slingsby T61F Venture T MK2 motor glider, G-BUGV AAIB Bulletin No: 2/99 Ref: EW/G98/11/10 Category: 1.3 Aircraft Type and Registration: Slingsby T61F Venture T MK2 motor glider, G-BUGV No & Type of Engines: 1 Rollason RS MK 2 piston engine Year of Manufacture: 1978 Date & Time (UTC): 21 November 1998 at 1035 hrs Location: Enstone Airport, Oxon Type of Flight: Private (Training) Persons on Board: Crew - 2 - Passengers - None Injuries: Crew - None - Passengers - N/A Nature of Damage: Damage to the aircraft's propeller Commander's Licence: Basic Commercial Pilot's Licence with Instrument Rating Commander's Age: 27 years Commander's Flying Experience: 604 hours (of which 102 were on type) Last 90 days - 124 hours Last 28 days - 36 hours Information Source: Aircraft Accident Report Form submitted by the pilot Before permitting a recently qualified member of the flying club to fly solo in crosswind conditions, the aircraft's commander decided to fly several circuits with him until he was satisfied with his ability to cope with the conditions. As the conditions were conducive to the formation of carburettor icing, with a temperature of +5°C and a dew point of +1.6°C, particular attention was paid to the use of carburettor heat during the run-up and immediately prior to take off. The engine reportedly performed normally and carburettor heat was used during the pre-landing downwind checks and again on base leg, with its selection maintained until after the glide approach and landing, in accordance with the normal operating procedure for this aircraft.
    [Show full text]
  • Glider Handbook, Chapter 2: Components and Systems
    Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil.
    [Show full text]
  • Kitplanes 2020 02.Pdf
    2020 ENGINE BUYER’S GUIDE ® KITPLANES February Punch? a Findlay 2020What’s • KnowLong-EZs About Didn’t You What Into an Overhaul • Turns Inspection an Engine Guide • How Buyer’s Engine 2020: Our Massive Vroom Tommy Meyer YOUR ENGINE CHOICES Makes One for Dad We List All the Popular FEBRUARY 2020 Engines for Homebuilts BELVOIR PUBLICATIONS BELVOIR TRICYCLE GEAR In the Shop: It’s All About the Attitude • ELT Gotchas • Glareshield Tips and Tricks THE SUBSONEX CONTINUES • IRAN vs Overhaul Tackling Wiring, Avionics and Plumbing www.kitplanes.com ENJOY THE VIEW. EVERY TIME YOU FLY. G3X TOUCH™ SERIES FOR EXPERIMENTAL AIRCRAFT TOUCHSCREEN, INTEGRATION WITH ADS-B TARGETTREND™ SUPPORTS ANY MODERN AUTOPILOT COMPLETE KNOB AND COMMS, TRANSPONDER, TRAFFIC AND COMBINATION OF 10.6” WITH ACCLAIMED SYSTEM STARTING BUTTON CONTROL IFR GPS AND MORE SIRIUSXM® WEATHER* AND 7” DISPLAYS, UP TO 4 PERFORMANCE AT $4,495** FOR MORE DETAILS, VISIT GARMIN.COM/EXPERIMENTAL *Additional equipment required. **MSRP: 7” display and fl ight sensors. © 2019 Garmin Ltd. or its subsidiaries. 19-MCJT19630 G3X ENJOY_THE_VIEW Ad-7.875x10.5-Kitplanes.indd 1 3/12/19 8:45 AM FebruaryCONTENTS 2020 | Volume 37, Number 2 2019 Engine Buyer’s Guide 16 YOUR AERO MOTIVATION IS HERE! By Tom Wilson. • Horizontally opposed four-stroke gasoline • Inline and vee four-stroke • Radial and rotary (traditional) • Rotary (Wankel) • Compression ignition (diesel and Jet A) • Volkswagen • Jets and turboprops • Corvair • Two-stroke 16 • Electric 18 NEW VS. USED: Understanding the difference between factory remanufactured, field overhauled, top overhauled, and just plain used. By Tom Wilson. Builder Spotlight 4 THE BIG TOOT: Tommy Meyer builds his father’s legacy.
    [Show full text]
  • MODEL AIRCRAFT a N | Map> H O B B Y M a G a Z in E
    OCTOBER 1967 TWO SHILLINGS & SIXPENCE Recommended Maximum Price USA & CANADA 60 CENTS INCORPORATING MODEL AIRCRAFT a n | map> h o b b y m a g a z in e r 2 F S 0 " '‘-‘•rCKi’im R .W .D . 8 WM - ;·· . : ' · r The incomparable Q u a lity DART diesel .5 c.c. 76/2 inc. Tax means a lot to the sports flier The light, who uses *5 to *8 cc easy to operate engines ba n ta m .75 c.c. only 45/8 inc. Tax. MERLIN .75 C .C . 60/4 inc. Tax and you’ll get it with f ENGINES and QUICKSTART ACCESSORIES Highest quality engineering using the latest precision techniques brings you the greatest range of model diesel engines for sports dying. Renowned for ease of starting, long life and consistent operation the “Quickstart” series are also among the quietest of engines when fitted with the inexpensive special silencer exhaust manifold. Marine versions too! These engines can be supplied SUPER with water cooled head, and special flywheel for model boat MERLIN operation. Other specialities in our range include the famous .75 c.c. D-C Control-line handle. Test Stand, Nylon Propellers, Quicklip 65/11 Connector, Quickstart Glowplugs and a full range of spares so inc. Tax that no Quickstart engine owner need ever be concerned about being “grounded”. DAVIES-CHARLTON LTD HILLS MEADOW, DOUGLAS, ISLE OF MAN PLEASE NOTE· ALL PRICES INCLUDE THE RECENT 10 PER CENT INCREASE ON PURCHASE TAX Editorial Director D. J. LAIDLAW-DICKSON EDITOR R.G. MOULTON Assistant Editor J .
    [Show full text]
  • Comparative Acoustical Characterization of Sailplane Interiors
    COMPARATIVE ACOUSTICAL CHARACTERIZATION OF SAILPLANE INTERIORS Jurica Ivošević1, Dubravko Miljković2, Tino Bucak1 1University of Zagreb, Faculty of Transport and Traffic Sciences, Department of Aeronautics, Vukelićeva 4, Zagreb, Croatia; 2HEP Zagreb, Croatia [email protected], [email protected], [email protected] Abstract: Aircraft interior noise of small engine powered aircraft and their comparison have been investigated by many researchers. This paper deals with a glider aircraft that, after being launched by towing aircraft, continues an autonomous, non-powered soaring flight. The interior noise is predominantly generated aerodynamically by wind slipstream during progressive flight. A number of interior noise measurements have been undertaken on two different types of glider aircraft, Schleicher K7 Rhönadler and Blanik L-13, at different phases of flight with various speeds and wing control surface configurations and some of the results will be presented and discussed. Key words: sailplane, glider, interior, acoustics, noise 1. INTRODUCTION 1.1. Sources of sailplane noise This paper focuses on the comparative acoustical The noise of small engine powered aircraft usually characterization of the interiors of two different types of consists of two major components: powerplant noise glider aircraft, Schleicher K7 Rhönadler and Blanik (engine, exhaust and propeller noise) and aerodynamic L-13, both being used for flight training and operated by (airframe) noise, [1]. In addition to the airframe noise and Aeroklub Zagreb. This contribution to the overall noise structure borne noise present during autonomous flight, image of sailplanes interior should be known, as those noise in a sailplane during a towing phase originates also findings can be used to control and minimize the noise from the towing aircraft (engine, propeller and exhaust effects on crew.
    [Show full text]
  • Aa2016-5 Aircraft Accident Investigation Report
    AA2016-5 AIRCRAFT ACCIDENT INVESTIGATION REPORT PRIVATELY OWNED J A 2 0 T D June 30, 2016 The objective of the investigation conducted by the Japan Transport Safety Board in accordance with the Act for Establishment of the Japan Transport Safety Board and with Annex 13 to the Convention on International Civil Aviation is to determine the causes of an accident and damage incidental to such an accident, thereby preventing future accidents and reducing damage. It is not the purpose of the investigation to apportion blame or liability. Kazuhiro Nakahashi Chairman, Japan Transport Safety Board Note: This report is a translation of the Japanese original investigation report. The text in Japanese shall prevail in the interpretation of the report. AIRCRAFT ACCIDENT INVESTIGATION REPORT CRASH DURING ATTEMPTING TO OFF-FIELD LANDING PRIVATELY OWNED, SCHEMPP-HIRTH DISCUS bT (SINGLE-SEAT MOTOR GLIDER), JA20TD URAUSU TOWN, KABATO DISTRICT, HOKKAIDO, JAPAN AT 12:36 JST, MAY 30, 2015 June 3, 2016 Adopted by the Japan Transport Safety Board Chairman Kazuhiro Nakahashi Member Toru Miyashita Member Toshiyuki Ishikawa Member Sadao Tamura Member Keiji Tanaka Member Miwa Nakanishi SYNOPSIS <Summary of the Accident> On Saturday May 30, 2015, a privately owned Schempp-Hirth Discus bT, registered JA20TD, launched by aerotow from Takikawa Skypark for navigation training and was released from the towing aircraft in a point about 13 km west-southwest of Takikawa Skypark at an altitude of about 5,300 ft. At 12:36 Japan Standard Time (JST: UTC+9 hr: unless otherwise stated all times are indicated in JST), the glider crashed into the grassland about 11 km southwest of Takikawa Skypark at an elevation of about 85 m.
    [Show full text]
  • USE of ELECTRIC MOTORS in the CONTEXT of GLIDER AVIATION Zastosowanie Silników Elektrycznych W Szybownictwie
    Journal of KONBiN 2021 Volume 51, Issue 2 DOI 10.2478/jok-2021-0025 Jarosław KOZUBA, Tomasz WOJNAR, Magda MROZIK, Bartosz STOŁTNY The Silesian University of Technology (Politechnika Śląska) USE OF ELECTRIC MOTORS IN THE CONTEXT OF GLIDER AVIATION Zastosowanie silników elektrycznych w szybownictwie Abstract: In sailplane aviation, I attach great importance to the achieved aerodynamic parameters due to the main idea of sailplane flights, which is the flight of a sailplane without external energy supply for staying in the air and only in favourable weather conditions, e.g. increasing thermal movements of the air. Only during take-off, external devices, such as a winch or a towing plane, can be used. Therefore, the use of a propulsion installed in sailplanes and operating only during take-off is a very convenient solution. This is a step towards facilitating the access to flying for a wider group of people due to the reduction of costs related to the take-off processes, and also increases the level of safety of sailplane flights by enabling the use of propulsion at critical moments of the flight. The study presents the current trends in the development of gliding, in particular motor gliders. Additionally, as a result of research works, the energy storage system was shown, which is the weakest element of the system, and at the same time the one with the greatest development potential. Keywords: transport, glider, electric motor, Li-POL cell Streszczenie: W lotnictwie szybowcowym dużą wagę przywiązuje się do osiąganych parametrów aerodynamicznych ze względu na główną ideę, jaką jest lot bez zewnętrznego zasilania energią do przebywania w powietrzu i tylko w sprzyjających warunkach atmosferycznych, np.
    [Show full text]
  • XXXIV OSTIV CONGRESS Congress Program and Proceedings
    XXXIV OSTIV CONGRESS 28 July - 3 August 2018 Hosín, Czech Republic Congress Program and Proceedings Die Deutsche Bibliothek – CIP Einheitsaufnahme Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet unter http://dnb.d-nb.de abrufbar. Rolf Radespiel, Alexander Barklage, Tim Landa (Eds.) XXXIV OSTIV Congress – Congress Program and Proceedings © 2018 ISBN 978-3-947623-07-5 Copyright notice The copyright to all contributed articles collected in this volume resides with the authors. Any reproduction – in parts or as a whole, electronically or in print – of material from within this volume requires the written consent of the author(s). Publisher of OSTIV Conference Proceedings: TU Braunschweig – Niedersächsisches Forschungszentrum für Luftfahrt Hermann-Blenk-Straße 27 • 38108 Braunschweig Tel: 0531-391-9822 • Fax: 0531-391-9804 Mail: [email protected] Internet: www.tu-braunschweig.de/nfl Reis Dijital Baskı Sistemleri Sanayi ve Ticaret Limited Şirketi Davutpaşa V.D.:7340058478 Litros Yolu 2. Matbaacılar Sitesi 1 BD 20 Topkapı, Istanbul, Turkey Tel: +90212 5015957/61-61 Internet: http://www.reisdijital.com/ Copyright Title Page Photo: Julian West Abstract The XXXIV Congress of the International Scientific and Technical Organisation for Gliding (OSTIV) is held at the site of the 35th FAI World Gliding Championships in the 18m-, 20m-, and Open Class, in Hosín, Czech Republic, from 28 July - 3 August, 2018. OSTIV Congresses address all scientific and technical aspects of soaring flight. The Congress 2018 features presentations from 10 countries worldwide. These contributions describe new knowledge in the meteorological fields of atmospheric convection and atmospheric waves.
    [Show full text]
  • MAGNUS DESIGN DEFINITIONS MA-P-02 Valid As Of: 2009, Dec
    AMS – Flight, d.o.o. Kavciceva 4 SI-1000 Ljubljana Slovenia Tel.: +386 45 35 14 00 www.ams-flight.si Fax: +386 45 35 14 05 E-mail: [email protected] MAGNUS DESIGN DEFINITIONS MA-P-02 Valid as of: 2009, Dec. Magnus is a two seat, side-by-side advanced light-weight airplane family. The Magnus, with its custom designed wing profile is a unique multi functional and multi purpose single engine aircraft for primary and advanced flying. The Magnus combines the unequalled advantages of a high performance motor-glider with unparalleled efficiency during powered long-range cruise flight. Because it is equipped with high-tech features such as flaperons, wing upper side effective airbrakes and a ground adjustable or variable-pitch propeller the Magnus can excel at every task pilots put it to. Magnus exploitation and handling costs are low due to the simple design solutions and high aerodynamic performances. Advanced design engineering concepts, gliders designs advantages, excellent aerodynamics and unique safety features make it the performance future orientated choice of Ultra Light- and Advanced Light Aircraft categories. Magnus and Mingus load measurements, structural dimensions, calculations and proofs of compliance are being completed by the Magnus family experienced design team. This will result in certification in category UL LTF in Germany (MTOM 472.5 kg) and in ULA categories of many European countries (MTOM 450 kg) and with no technical changes in category LSA for US of America and in coming ELSA for Europe as well (MTOM 590 kg). Magnus (13,35 m / 43,8 ft span, 80 hp engine) deliveries will start first, Mingus (10,6 m / 34.8 ft span, 100 hp engine) deliveries will continue and Maxus with its 17 m + / 55,8 ft + wing span (wing candidates: custom design, LS6-18w modified, LS4-b modified) will make first flights in the second half of the year 2011.
    [Show full text]
  • Download GI MAY 2021
    MAY 2021 VOLUME 14 - No 8 GLIDINGlNTERNATIONAL May 2021ANOTHER JONKER TRIUMPH 1 May 2021 VOLUME 14 - No 8 Editor: John H. Roake Manager: Janice Armstrong Correspondents: lNTERNATIONAL Aldo Cernezzi GLIDING Robert (Bob) Downe Joseph King Myles Hynde Arthur Liddington Gliding International published by: Gliding International Ltd From Offices At: 79 Fifth Ave, Tauranga, New Zealand Phone +64-7-571-4161 Office email: [email protected] Editor’s email: [email protected] The magazine’s web pages can be viewed INDEX at www.glidinginternational.com Introducing the GFW – 4 4 You can subscribe through our web page Squawk 1202 – Compulsory ? 8 Gliding International is published Viewing Thermals Now Possible 9 monthly with the exception of December German Aerospace Centre Update – Hydrogen Power 10 and January Ten issues per annum. Prince Philip (5000 P.I.C. hours) 13 Subscriptions: Bird Strikes - 30 Year Review 14 Printed Version Air Mailed: New feature From Beringer 19 1 Year: $136 ($US82) or equivalent Smithsonian Museum and the Wright Brothers 20 2 Years: $259 ($US165) or equivalent (all prices quoted in NZ Dollars) or Forget Electric Cars For Trailer Towing 24 the equivalent in your currency. Is Gliding Getting too Expensive? 26 Digital Version emailed: Coldest Day Ever Recorded 28 1 Year $86 ($US56) or equivalent Electricity, Winds and Climate Change 29 2 Years $163 ($US106) or equivalent Covid 19 Afflicted Pilots 30 (all prices quoted in NZ Dollars) or the equivalent in your currency. Free Bonus Issue DVD 31 Personal
    [Show full text]