Nepali Times
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GLACIERS of NEPAL—Glacier Distribution in the Nepal Himalaya with Comparisons to the Karakoram Range
Glaciers of Asia— GLACIERS OF NEPAL—Glacier Distribution in the Nepal Himalaya with Comparisons to the Karakoram Range By Keiji Higuchi, Okitsugu Watanabe, Hiroji Fushimi, Shuhei Takenaka, and Akio Nagoshi SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD Edited by RICHARD S. WILLIAMS, JR., and JANE G. FERRIGNO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1386–F–6 CONTENTS Glaciers of Nepal — Glacier Distribution in the Nepal Himalaya with Comparisons to the Karakoram Range, by Keiji Higuchi, Okitsugu Watanabe, Hiroji Fushimi, Shuhei Takenaka, and Akio Nagoshi ----------------------------------------------------------293 Introduction -------------------------------------------------------------------------------293 Use of Landsat Images in Glacier Studies ----------------------------------293 Figure 1. Map showing location of the Nepal Himalaya and Karokoram Range in Southern Asia--------------------------------------------------------- 294 Figure 2. Map showing glacier distribution of the Nepal Himalaya and its surrounding regions --------------------------------------------------------- 295 Figure 3. Map showing glacier distribution of the Karakoram Range ------------- 296 A Brief History of Glacier Investigations -----------------------------------297 Procedures for Mapping Glacier Distribution from Landsat Images ---------298 Figure 4. Index map of the glaciers of Nepal showing coverage by Landsat 1, 2, and 3 MSS images ---------------------------------------------- 299 Figure 5. Index map of the glaciers of the Karakoram Range showing coverage -
Landscape Change in Sagarmatha (Mt. Everest) National Park, Khumbu, Nepal
HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies Volume 17 Number 2 Himalayan Research Bulletin: Article 16 Solukhumbu and the Sherpa 1997 Landscape Change in Sagarmatha (Mt. Everest) National Park, Khumbu, Nepal Alton C. Byers Follow this and additional works at: https://digitalcommons.macalester.edu/himalaya Recommended Citation Byers, Alton C.. 1997. Landscape Change in Sagarmatha (Mt. Everest) National Park, Khumbu, Nepal. HIMALAYA 17(2). Available at: https://digitalcommons.macalester.edu/himalaya/vol17/iss2/16 This Research Article is brought to you for free and open access by the DigitalCommons@Macalester College at DigitalCommons@Macalester College. It has been accepted for inclusion in HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. Landscape Change in Sagarmatha (Mt. Everest) National Park, Khumbu, Nepal Alton C. Byers The Mountain Institute This study uses repeat photography as the primary Introduction research tool to analyze processes of physical and Repeat photography, or precise replication and cultural landscape change in the Khumbu (M!. Everest) interpretation of historic landscape scenes, is an region over a 40-year period (1955-1995). The study is analytical tool capable of broadly clarifying the patterns a continuation of an on-going project begun by Byers in and possible causes of contemporary landscapellanduse 1984 that involves replication of photographs originally changes within a given region (see: Byers 1987a1996; taken between 1955-62 from the same five photo 1997). As a research tool, it has enjoyed some utility points. The 1995 investigation reported here provided in the United States during the past thirty years (see: the opportunity to expand the photographic data base Byers 1987b; Walker 1968; Heady and Zinke 1978; from five to 26 photo points between Lukla (2,743 m) Gruell 1980; Vale, 1982; Rogers et al. -
Inventory of Glaciers, Glacial Lakes and the Identification of Potential
Asia‐Pacific Network for Global Change Research Inventory of Glaciers, Glacial Lakes and the Identification of Potential Glacial Lake Outburst Floods (GLOFs) Affected by Global Warming in the Mountains of India, Pakistan and China/Tibet Autonomous Region Final report for APN project 2004-03-CMY-Campbell J. Gabriel Campbell (Ph.D.), Director General International Centre for Integrated Mountain Development G. P. O. Box 3226, Kathmandu, Nepal, [email protected] The following collaborators worked on this project: Prof. Xin Li (Ph. D.), Cold and Arid Regions Environmental and Engineering Research Institute, (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou, P. R. China, [email protected] Mr. Gong Tongliang, Bureau of Hydrology Tibet Autonomous Region, Lhasa, P. R. China, [email protected] Dr. Tej Partap. CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India, [email protected] Prof. Dr. B. R. Arora, Wadia Institute of Himalayan Geology (WIHG), Department of Science & Technology, Government of India, Dehra Dun, Uttaranchal, India, [email protected] Dr. Badaruddin Soomro, Pakistan Agricultural Research Council (PARC), Islamabad, Pakistan, [email protected] Inventory of Glaciers and Glacial Lakes and the Identification of Potential Glacial Lake Outburst Floods (GLOFs) Affected by Global Warming in the Mountains of India, Pakistan and China/Tibet Autonomous Region 2004-03-CMY-Campbell Final Report submitted to APN J. Gabriel Campbell (Ph.D.) Director General, International Centre for Integrated Mountain -
Everest Base Camp Trek 12 D/11 N
Everest Base Camp Trek 12 D/11 N Pre Trek: Travel to Kathmandu (1,300m): To ensure all permit paperwork and other necessary arrangements are completed before you trip it is important that you are in Kathmandu at least 24 hours prior to the trek commencement. The local operator will contact you to collect the required documents early in the afternoon. At 5:00 pm (17:00) a rickshaw will pick you up from your hotel and bring you to the trekking offices for a safety briefing on the nature of the trek, equipment and team composition. You will meet your trek leader and other team members. You can also make your last minute purchases of personal items as you will be flying to the Himalayas tomorrow. At 6:00 pm (18:00) we will make our way to a welcome dinner and cultural show where you will learn about Nepali culture, music and dance and get to know your trekking team. Overnight in Kathmandu (self selected) Included meals: Dinner DAY 01: Kathmandu to Lukla then trek to Phakding (2,652m): 25 minute flight, plus 3 to 4 hour trek. After breakfast you will be escorted to the domestic terminal of Kathmandu airport for an early morning flight to Lukla (2,800m), the gateway destination where our trek begins. After an adventurous flight above the breathtaking Himalaya, we reach the Tenzing-Hillary Airport at Lukla. This is one of the most beautiful air routes in the world culminating in a dramatic landing on a hillside surrounded by high mountain peaks. -
Damage from the April-May 2015 Gorkha Earthquake Sequence in the Solukhumbu District (Everest Region), Nepal David R
Damage from the april-may 2015 gorkha earthquake sequence in the Solukhumbu district (Everest region), Nepal David R. Lageson, Monique Fort, Roshan Raj Bhattarai, Mary Hubbard To cite this version: David R. Lageson, Monique Fort, Roshan Raj Bhattarai, Mary Hubbard. Damage from the april-may 2015 gorkha earthquake sequence in the Solukhumbu district (Everest region), Nepal. GSA Annual Meeting, Sep 2016, Denver, United States. hal-01373311 HAL Id: hal-01373311 https://hal.archives-ouvertes.fr/hal-01373311 Submitted on 28 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DAMAGE FROM THE APRIL-MAY 2015 GORKHA EARTHQUAKE SEQUENCE IN THE SOLUKHUMBU DISTRICT (EVEREST REGION), NEPAL LAGESON, David R.1, FORT, Monique2, BHATTARAI, Roshan Raj3 and HUBBARD, Mary1, (1)Department of Earth Sciences, Montana State University, 226 Traphagen Hall, Bozeman, MT 59717, (2)Department of Geography, Université Paris Diderot, 75205 Paris Cedex 13, Paris, France, (3)Department of Geology, Tribhuvan University, Tri-Chandra Campus, Kathmandu, Nepal, [email protected] ABSTRACT: Rapid assessments of landslides Valley profile convexity: Earthquake-triggered mass movements (past & recent): Traditional and new construction methods: Spectrum of structural damage: (including other mass movements of rock, snow and ice) as well as human impacts were conducted by many organizations immediately following the 25 April 2015 M7.8 Gorkha earthquake and its aftershock sequence. -
Modeling the Glacial Lake Outburst Flood Process Chain in the Nepal
Hydrol. Earth Syst. Sci., 22, 3721–3737, 2018 https://doi.org/10.5194/hess-22-3721-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Modeling the glacial lake outburst flood process chain in the Nepal Himalaya: reassessing Imja Tsho’s hazard Jonathan M. Lala1, David R. Rounce2, and Daene C. McKinney1 1Center for Water and the Environment, University of Texas at Austin, Austin, TX, USA 2Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA Correspondence: Jonathan M. Lala ([email protected]) Received: 22 November 2017 – Discussion started: 14 December 2017 Revised: 13 June 2018 – Accepted: 26 June 2018 – Published: 13 July 2018 Abstract. The Himalayas of South Asia are home to many applicable to lakes in the greater region. Neither case re- glaciers that are retreating due to climate change and caus- sulted in flooding outside the river channel at downstream ing the formation of large glacial lakes in their absence. villages. The worst-case model resulted in some moraine ero- These lakes are held in place by naturally deposited moraine sion and increased channelization of the lake outlet, which dams that are potentially unstable. Specifically, an impulse yielded greater discharge downstream but no catastrophic wave generated by an avalanche or landslide entering the collapse. The site-specific model generated similar results, lake can destabilize the moraine dam, thereby causing a but with very little erosion and a smaller downstream dis- catastrophic failure of the moraine and a glacial lake out- charge. These results indicated that Imja Tsho is unlikely to burst flood (GLOF). -
Front Matter Template
Copyright by Marcelo Arturo Somos Valenzuela 2014 The Dissertation Committee for Marcelo Arturo Somos Valenzuela Certifies that this is the approved version of the following dissertation: Vulnerability and Decision Risk Analysis in Glacier Lake Outburst Floods (GLOF). Case Studies: Quillcay Sub Basin in the Cordillera Blanca in Peru and Dudh Koshi Sub Basin in the Everest Region in Nepal Committee: Daene C. McKinney, Supervisor David R. Maidment Ben R. Hodges Ginny A. Catania Randall J. Charbeneau Vulnerability and Decision Risk Analysis in Glacier Lake Outburst Floods (GLOF). Case Studies: Quillcay Sub Basin in the Cordillera Blanca in Peru and Dudh Koshi Sub Basin in the Everest Region in Nepal by Marcelo Arturo Somos Valenzuela, B.S; M.S.E. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN AUGUST, 2014 Dedication To my mother Marina Victoria Valenzuela Reyes for showing me that I could always achieve a little more. A mi madre Marina Victoria Valenzuela Reyes por mostrarme que siempre podia lograr un poco mas. Acknowledgements There are many people to whom I want to thank for this achievement. I start with my children Sebastian and Antonia for their patience and unconditional love despite the difficult times we have experienced in the last 5 years, I hope that someday this achievement will lead to better opportunities for you and justify to be apart for all these years. Thank to my fiancée, Stephanie, for her love, for her tenacity and intelligence that inspire me, but most of all for giving me our beautiful son Julian whose smile makes us happy every day. -
Multiscale Integrated River Basin Management from a Hindu Kush Himalayan Perspective RESOURCE BOOK
RESOURCE BOOK Multiscale Integrated River Basin Management From a Hindu Kush Himalayan perspective RESOURCE BOOK Published by Multiscale International Centre for Integrated Mountain Development GPO Box 3226, Kathmandu, Nepal Integrated River ISBN 978 92 9115 6818 (printed) Copyright © 2019 978 92 9115 6825 (online) Basin Management International Centre for Integrated Mountain Production team Development (ICIMOD) A Beatrice Murray (Consultant editor) From a Hindu Kush Himalayan This work is licensed under a Creative Commons Samuel Thomas (Senior editor) perspective Attribution Non-Commercial, No Derivatives 4.0 Rachana Chettri (Editor) International License Kundan Shrestha (Editor) Mohd Abdul Fahad (Graphic designer) (https://creativecommons.org/licenses/by-nc-nd/4.0/) Anil Kumar Jha (Editorial assistance) Editors Note Photos: This publication may be reproduced in whole or in part Santosh Nepal, Arun B Shrestha, Chanda G Goodrich, Alex Treadway: pp iii, iv-v, vii, viii-ix, 2, 5, 7, 9, 11, 25, 30-31, and in any form for educational or nonprofit purposes Arabinda Mishra, Anjal Prakash, Sanjeev Bhuchar, 32-33, 44-45, 46-47, 48, 50-51, 52-53, 54-55, 56-57, 58-59, 63, without special permission from the copyright holder, Laurie A Vasily, Vijay Khadgi, Neera S Pradhan provided acknowledgement of the source is made. 68-69, 70-71, 73, 74, 77, 81, 84-85, 94-95, 96-97, 98-99, 101, ICIMOD would appreciate receiving a copy of any 111, 113, 117, 136, 148, 157, 165, 169, 186-187; publication that uses this publication as a source. No ICIMOD archive: pp 123, 132-133, 135, 139, 170; use of this publication may be made for resale or for any Jalal Naser Faqiryar: Cover, pp 18-19, 29, 86-87, 90-91, 126- other commercial purpose whatsoever without prior 127, 128-129, 140-141; permission in writing from ICIMOD. -
Glacial Lakes and Glacial Lake Outburst Floods in Nepal
Glacial Lakes and Glacial Lake Outburst Floods in Nepal THE WORLD BANK 1 Note This assessment of glacial lakes and glacial lake outburst flood (GLOF) risk in Nepal was conducted with the aim of developing recommendations for adaptation to, and mitigation of, GLOF hazards (potentially dangerous glacial lakes) in Nepal, and contributing to developing an overall strategy to address risks from GLOFs in the future. The assessment is also intended to provide information about GLOF risk assessment methodology for use in GLOF risk management in Nepal. The methodology that was developed and applied in the assessment can also be broadly applied throughout the Hindu Kush-Himalayan region. The assessment has been completed through activities carried out in collaboration with national partners, which include government and non-government institutions as well as academic institutions and universities. This report was prepared by the following team: • Pradeep K Mool, ICIMOD • Pravin R Maskey, Ministry of Irrigation, Government of Nepal • Achyuta Koirala, ICIMOD • Sharad P Joshi, ICIMOD • Wu Lizong, CAREERI • Arun B Shrestha, ICIMOD • Mats Eriksson, ICIMOD • Binod Gurung, ICIMOD • Bijaya Pokharel, Department of Hydrology and Meteorology, Government of Nepal • Narendra R Khanal, Department of Geography, Tribhuvan University • Suman Panthi, Department of Geology, Tribhuvan University • Tirtha Adhikari, Department of Hydrology and Meteorology, Tribhuvan University • Rijan B Kayastha, Kathmandu University • Pawan Ghimire, Geographic Information Systems and Integrated Development Center • Rajesh Thapa, ICIMOD • Basanta Shrestha, Nepal Electricity Authority • Sanjeev Shrestha, Nepal Electricity Authority • Rajendra B Shrestha, ICIMOD Substantive input was received from Professor Jack D Ives, Carleton University, Ottawa, Canada who reviewed the manuscript at different stages in the process, and Professor Andreas Kääb, University of Oslo, Norway who carried out the final technical review. -
Hydro-Meteorology of the Country
Chapter 3 Hydro-Meteorology of the Country 3.1 RIVER B ASINS For hydrological studies, Nepal is divided into seven drainage basins: the Kankai Mai River Basin, the Koshi River Basin, the Bagmati River Basin, the Narayani River Basin, the West Rapti River Basin, the Karnali River Basin, and the Mahakali River Basin. Among them only the four basins described below contain glaciers and glacial lakes. The Koshi River basin The river system of eastern Nepal is occupied by the Koshi River Basin, which is also known as the Sapta Koshi River, i.e., a network of seven major rivers flowing through the Koshi River Basin. All these seven rivers, namely, the Tamor River, the Arun River, the Dudh Koshi River, the Likhu River, the Tama Koshi River, the Sun Koshi River, and the Indrawati River, from east to west, originate from the High Himalaya. Among the tributaries, the Sun Koshi-Bhote Koshi, the Tama Koshi, and the Arun River originate in Tibet. The Gandaki River basin The river network of central Nepal is occupied by the Gandaki River system, which is popularly known as Narayani. The river network forming Narayani comprises the Trishuli River, the Budhi Gandaki River, the Marsyangdi River, the Seti Gandaki River, and the Kali Gandaki River. Among these rivers, some parts of the Kali Gandaki River and the Budhi Gandaki River and major parts of the Trishuli River lie in Tibetan territory and flow down through the Himalayan range to Nepal. The Karnali River basin The Karnali River is about 507 km in length and is formed by the joining of Mugu Karnali and Humla Karnali at Galwa. -
Disaster Risk Reduction and Climate Change Adaptation in the Koshi River Basin, Nepal
Disaster Risk Reduction and Climate Change Adaptation in the Koshi River Basin, Nepal Nepal Development Research Institute January 2013 NDRI Disaster Risk Reduction And Climate Change Adaptation in the Koshi River Basin, Nepal Nepal Development Research Institute January 2013 Disaster Risk Reduction and Climate Change Adaptation in the Koshi River Basin, Nepal This publication is a product of research on "Disaster Risk Reduction and Climate Change Adaptation in Koshi River Basin, Nepal” carried out by Nepal Development Research Institute with the financial support of Climate and Development Knowledge Network (CDKN) and global change SysTem for Analysis Research and Training (START) from June 2012 to December 2013. Study Team Investigators Principal Investigator: Dr. Laxmi P. Devkota, NDRI Co-Investigator: Dr. Manjeshowri Singh, NDRI Co-Investigator: Dr. Sunil Babu Shrestha, NDRI Co-Investigator: Dr. Rijan Bhakta Kayastha, Kathmandu University, Nepal Research Associates Mr. Dibesh Shrestha: NDRI Mr. Dhiraj Gyawali: NDRI Ms. Anita Khadka: NDRI Mr. Pallav Shrestha: NDRI Research Students Ms. Surya N. Shrestha: Institute of Engineering, Tribhuwan University, Nepal Ms. Gunjan Silwal: Central Department of Environmental Science, Tribhuwan University, Nepal Mr. Jeevan Chhetri: College of Applied Sciences, Tribhuwan University, Nepal Mr. Mahesh Chaulagain: Nepal Engineering College, Pokhara Universtiy, Nepal Ms. Rekha Uprety: Central Department of Sociology, Tribhuwan University, Nepal Steering Committee Coordinator Dr. Divas B. Basnyat: Former Executive Director, NDRI, Nepal Co-Coordinator Dr. Jaya K. Gurung: Executive Director, NDRI, Nepal Members: Prof. Ram Manohar Shrestha: Professor Emeritus Asian Institute of Technology (AIT), Thailand Dr. Madan Lall Shrestha: Academician, Nepal Academy of Science and Technology, Nepal Dr. Gun Nidhi Paudel: Water Resources Expert, Danish Hydraulic Institute (DHI), Bangladesh Dr. -
Ground Penetrating Radar Survey for Risk Reduction at Imja Lake, Nepal
CRWR Online Report 12-03 Ground Penetrating Radar Survey for Risk Reduction at Imja Lake, Nepal by Marcelo Somos-Valenzuela Daene C. McKinney Alton C. Byers Katalyn Voss Jefferson Moss James C. McKinney October 2012 CENTER FOR RESEARCH IN WATER RESOURCES Bureau of Engineering Research • The University of Texas at Austin J.J. Pickle Research Campus • Austin, TX 78712-4497 This document is available online via World Wide Web at http://www.crwr.utexas.edu/online.shtml High Mountain Glacial Watershed Program Ground Penetrating Radar Survey for Risk Reduction at Imja Lake, Nepal This report was produced for review by the United States Agency for International Development (USAID). It was prepared by The University of Texas at Austin and The Mountain Institute for Engility under Contract EPP-I-00-04-00024-00 order no 11 IQC Contract No. AID-EPP-I-00-04-00024 Task Order No. AID-OAA-TO-11-00040 October 2012 DISCLAIMER: The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government TABLE OF CONTENTS ACRONYMS AND SPECIAL TERMS ········································································· I PROJECT TEAM AND CONTACT INFORMATION ··················································· II EXECUTIVE SUMMARY ························································································ III INTRODUCTION ··································································································· 1 METHODS ·············································································································