Bat Predation by Spiders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arachnides 57
The electronic publication Arachnides - Bulletin de Terrariophile et de Recherche N°57 (2009) has been archived at http://publikationen.ub.uni-frankfurt.de/ (repository of University Library Frankfurt, Germany). Please include its persistent identifier urn:nbn:de:hebis:30:3-371618 whenever you cite this electronic publication. ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 57 Novembre 2009 ISSN 1148-9979 1 NOUVELLES ESPECES DE SCORPIONS (ARACHNIDA, SCORPIONES) DECRITES EN 2008. ADDITIF G. DUPRE Nous complétons la précédente synthèse (Arachnides n°56) à partir d’articles pour lesquels nous n’avons pris connaissance qu’en 2009. Il y a donc 41 nouvelles espèces de décrites en 2008. I. Buthidae C.L. Koch, 1837. 10 nouvelles espèces dont 2 étant des revalidations. Androctonus togolensis Lourenço, 2008, Togo (Mandouri, région de Dapango) Dans le même article, l’auteur revalide l’espèce Androctonus eburneus Pallary, 1928 du sud de l’Algérie (Djanet). Buthus yemenensis Lourenço, 2008, Yemen (Province du Dhamar, district d’Anis, sud de Ma’bar). Dans le même article , l’auteur revalide l’espèce Buthus berberensis Pocock, 1900 de Somalie. Tityus longidigitus Gonzalez-Sponga, 2008a, Venezuela (Estados Monagas) Tityus quiriquirensis Gonzalez-Sponga, 2008a, Venezuela (Estados Monagas) Tityus romeroi Gonzalez-Sponga, 2008a, Venezuela (Estados Bolivar) Tityus sanfernandoi Gonzalez-Sponga, 2008a, Venezuela (Estados Sucre) Tityus ivani Gonzalez-Sponga, 2008b, Venezuela (Estados Méripa) Tityus maturinensis Gonzalez-Sponga, 2008b, Venezuela (Estados Monagas). III. Chactidae Pocock, 1893. 3 nouvelles espèces. Brotheas bolivianus Lourenço 2008, Bolivie (ouest de Manoa) Chactas iutensis Gonzalez-Sponga, 2008b, Venezuela (Estados Mérida) Chactas venegasi Gonzalez-Sponga, 2008b, Venezuela (Estados Mérida) REFERENCES : GONZALEZ-SPONGA M.A., 2008a. -
Linnaeus at Home
NATURE-BASED ACTIVITIES FOR PARENTS LINNAEUS 1 AT HOME A GuiDE TO EXPLORING NATURE WITH CHILDREN Acknowledgements Written by Joe Burton Inspired by Carl Linnaeus With thanks to editors and reviewers: LINNAEUS Lyn Baber, Melissa Balzano, Jane Banham, Sarah Black, Isabelle Charmantier, Mark Chase, Maarten Christenhusz, Alex Davey, Gareth Dauley, AT HOME Zia Forrai, Jon Hale, Simon Hiscock, Alice ter Meulen, Lynn Parker, Elizabeth Rollinson, James Rosindell, Daryl Stenvoll-Wells, Ross Ziegelmeier Share your explorations @LinneanLearning #LinnaeusAtHome Facing page: Carl Linnaeus paper doll, illustrated in 1953. © Linnean Society of London 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrival system or trasmitted in any form or by any means without the prior consent of the copyright owner. www.linnean.org/learning “If you do not know Introduction the names of things, the knowledge of them is Who was Carl Linnaeus? Contents Pitfall traps 5 lost too” Carl Linnaeus was one of the most influential scientists in the world, - Carl Linnaeus A bust of ‘The Young Linnaeus’ by but you might not know a lot about him. Thanks to Linnaeus, we Bug hunting 9 Anthony Smith (2007). have a naming system for all species so that we can understand how different species are related and can start to learn about the origins Plant hunting 13 of life on Earth. Pond dipping 17 As a young man, Linnaeus would study the animals, plants, Bird feeders 21 minerals and habitats around him. By watching the natural world, he began to understand that all living things are adapted to their Squirrel feeders 25 environments and that they can be grouped together by their characteristics (like animals with backbones, or plants that produce Friendly spaces 29 spores). -
Predation by the Centipede Scolopendra Viridicornis (Scolopendromorpha, Scolopendridae) on Roof-Roosting Bats in the Atlantic Forest of Southeastern Brazil
Chiroptera Neotropical 18(2): 1128-1131, December 2012 Predation by the centipede Scolopendra viridicornis (Scolopendromorpha, Scolopendridae) on roof-roosting bats in the Atlantic Forest of southeastern Brazil Ana Carolina Srbek-Araujo1,2, Marcelo Rodrigues Nogueira3, Isaac Passos de Lima3, Adriano Lúcio Peracchi3 1 Programa de Pós-graduação em Ecologia, Conservação e Manejo de Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil. 2 Vale S.A. / Reserva Natural Vale, Caixa Postal n° 91, Centro, 29900-970, Linhares, ES, Brazil. 3 Laboratório de Mastozoologia – IB, Universidade Federal Rural do Rio de Janeiro, 23890-000, Seropédica, RJ, Brazil. * Corresponding author: [email protected] SHORT COMMUNICATION Abstract. Few invertebrates are currently known to feed upon bats, Manuscript history: particularly on adult individuals, fully capable of flying. Herein we Submmited in 01/Sep/2012 present new records of bat predation by centipedes, an interaction Accept in 22/Dec/2012 only previously known from observations on a Venezuelan cave. Available on line in 31/Dec/2012 Two predation events were recorded, both relating Scolopendra Section editor: Ludmilla M.S. Aguiar viridicornis (Chilopoda, Scolopendromorpha, Scolopendridae) to bats roosted in the roof of houses in the Reserva Natural Vale, an Atlantic Forest remain located in northern Espírito Santo state, southeastern Brazil. Information available from the second event includes the identification of the predated bat (adult female Eptesicus furinalis - Vespertilionidae) and the body parts (viscera and muscles of the skull, neck, shoulder, upper arm, and chest) ingested by the Scolopendra. Key words: Chiroptera, Eptesicus furinalis, Espírito Santo, feeding behavior, Vespertilionidae. -
Toxins-67579-Rd 1 Proofed-Supplementary
Supplementary Information Table S1. Reviewed entries of transcriptome data based on salivary and venom gland samples available for venomous arthropod species. Public database of NCBI (SRA archive, TSA archive, dbEST and GenBank) were screened for venom gland derived EST or NGS data transcripts. Operated search-terms were “salivary gland”, “venom gland”, “poison gland”, “venom”, “poison sack”. Database Study Sample Total Species name Systematic status Experiment Title Study Title Instrument Submitter source Accession Accession Size, Mb Crustacea The First Venomous Crustacean Revealed by Transcriptomics and Functional Xibalbanus (former Remipedia, 454 GS FLX SRX282054 454 Venom gland Transcriptome Speleonectes Morphology: Remipede Venom Glands Express a Unique Toxin Cocktail vReumont, NHM London SRP026153 SRR857228 639 Speleonectes ) tulumensis Speleonectidae Titanium Dominated by Enzymes and a Neurotoxin, MBE 2014, 31 (1) Hexapoda Diptera Total RNA isolated from Aedes aegypti salivary gland Normalized cDNA Instituto de Quimica - Aedes aegypti Culicidae dbEST Verjovski-Almeida,S., Eiglmeier,K., El-Dorry,H. etal, unpublished , 2005 Sanger dideoxy dbEST: 21107 Sequences library Universidade de Sao Paulo Centro de Investigacion Anopheles albimanus Culicidae dbEST Adult female Anopheles albimanus salivary gland cDNA library EST survey of the Anopheles albimanus transcriptome, 2007, unpublished Sanger dideoxy Sobre Enfermedades dbEST: 801 Sequences Infeccionsas, Mexico The salivary gland transcriptome of the neotropical malaria vector National Institute of Allergy Anopheles darlingii Culicidae dbEST Anopheles darlingi reveals accelerated evolution o genes relevant to BMC Genomics 10 (1): 57 2009 Sanger dideoxy dbEST: 2576 Sequences and Infectious Diseases hematophagyf An insight into the sialomes of Psorophora albipes, Anopheles dirus and An. Illumina HiSeq Anopheles dirus Culicidae SRX309996 Adult female Anopheles dirus salivary glands NIAID SRP026153 SRS448457 9453.44 freeborni 2000 An insight into the sialomes of Psorophora albipes, Anopheles dirus and An. -
Seasonal Abundance and Diversity O F Web-Building Spiders in Relation to Habita T Structure on Barro Colorado Island, Panama
Lubin, Y . D. 1978 . Seasonal abundance and diversity of web-building spiders in relation to habita t structure on Barro Colorado Island, Panama . J. Arachnol. 6 :31-51 . SEASONAL ABUNDANCE AND DIVERSITY O F WEB-BUILDING SPIDERS IN RELATION TO HABITA T STRUCTURE ON BARRO COLORADO ISLAND, PANAMA Yael D . Lubin Smithsonian Tropical Research Institute P. O. Box 2072, Balboa, Canal Zone ABSTRAC T Web-building spiders were censused by a visual censuring method in tropical forest understory o n Barro Colorado Island (BCI), Panama Canal Zone. An overall trend of low numbers of spiders in th e late dry season and early wet season (March to May) was seen on all transects . The majority of th e species on the transects had wet season distribution patterns . Some species which occurred year-round on the forest transects had wet season distributions on a clearing-edge transect . A shortage of flyin g insect prey or dessication may have been responsible for the observed distributions . Species diversity and diversity of web types followed the overall seasonal pattern of spider abun- dance. The diversities of species and of web types were greatest on the forest transect with the highes t diversity of structural supports for spider webs . Web density, however, was greatest on the transect a t the edge of a small clearing . Faunal composition, diversity of web types, and seasonal patterns of distribution of spiders on th e BCI transects differed markedly from similar measures derived from censuses taken in a tropica l montane habitat in New Guinea . The differences were attributed in part to differences in the habitat s and in the evenness of the climate . -
Exposure of Humans Or Animals to Sars-Cov-2 from Wild, Livestock, Companion and Aquatic Animals Qualitative Exposure Assessment
ISSN 0254-6019 Exposure of humans or animals to SARS-CoV-2 from wild, livestock, companion and aquatic animals Qualitative exposure assessment FAO ANIMAL PRODUCTION AND HEALTH / PAPER 181 FAO ANIMAL PRODUCTION AND HEALTH / PAPER 181 Exposure of humans or animals to SARS-CoV-2 from wild, livestock, companion and aquatic animals Qualitative exposure assessment Authors Ihab El Masry, Sophie von Dobschuetz, Ludovic Plee, Fairouz Larfaoui, Zhen Yang, Junxia Song, Wantanee Kalpravidh, Keith Sumption Food and Agriculture Organization for the United Nations (FAO), Rome, Italy Dirk Pfeiffer City University of Hong Kong, Hong Kong SAR, China Sharon Calvin Canadian Food Inspection Agency (CFIA), Science Branch, Animal Health Risk Assessment Unit, Ottawa, Canada Helen Roberts Department for Environment, Food and Rural Affairs (Defra), Equines, Pets and New and Emerging Diseases, Exotic Disease Control Team, London, United Kingdom of Great Britain and Northern Ireland Alessio Lorusso Istituto Zooprofilattico dell’Abruzzo e Molise, Teramo, Italy Casey Barton-Behravesh Centers for Disease Control and Prevention (CDC), One Health Office, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, United States of America Zengren Zheng China Animal Health and Epidemiology Centre (CAHEC), China Animal Health Risk Analysis Commission, Qingdao City, China Food and Agriculture Organization of the United Nations Rome, 2020 Required citation: El Masry, I., von Dobschuetz, S., Plee, L., Larfaoui, F., Yang, Z., Song, J., Pfeiffer, D., Calvin, S., Roberts, H., Lorusso, A., Barton-Behravesh, C., Zheng, Z., Kalpravidh, W. & Sumption, K. 2020. Exposure of humans or animals to SARS-CoV-2 from wild, livestock, companion and aquatic animals: Qualitative exposure assessment. FAO animal production and health, Paper 181. -
BATS of the Golfo Dulce Region, Costa Rica
MURCIÉLAGOS de la región del Golfo Dulce, Puntarenas, Costa Rica BATS of the Golfo Dulce Region, Costa Rica 1 Elène Haave-Audet1,2, Gloriana Chaverri3,4, Doris Audet2, Manuel Sánchez1, Andrew Whitworth1 1Osa Conservation, 2University of Alberta, 3Universidad de Costa Rica, 4Smithsonian Tropical Research Institute Photos: Doris Audet (DA), Joxerra Aihartza (JA), Gloriana Chaverri (GC), Sébastien Puechmaille (SP), Manuel Sánchez (MS). Map: Hellen Solís, Universidad de Costa Rica © Elène Haave-Audet [[email protected]] and other authors. Thanks to: Osa Conservation and the Bobolink Foundation. [fieldguides.fieldmuseum.org] [1209] version 1 11/2019 The Golfo Dulce region is comprised of old and secondary growth seasonally wet tropical forest. This guide includes representative species from all families encountered in the lowlands (< 400 masl), where ca. 75 species possibly occur. Species checklist for the region was compiled based on bat captures by the authors and from: Lista y distribución de murciélagos de Costa Rica. Rodríguez & Wilson (1999); The mammals of Central America and Southeast Mexico. Reid (2012). Taxonomy according to Simmons (2005). La región del Golfo Dulce está compuesta de bosque estacionalmente húmedo primario y secundario. Esta guía incluye especies representativas de las familias presentes en las tierras bajas de la región (< de 400 m.s.n.m), donde se puede encontrar c. 75 especies. La lista de especies fue preparada con base en capturas de los autores y desde: Lista y distribución de murciélagos de Costa Rica. Rodríguez -
Tarantulas and Social Spiders
Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences. -
Orb-Weaving Spider, Argiope Savignyi (Araneidae), Predation on the Proboscis Bat Rhynchonycteris Naso (Emballonuridae)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KU ScholarWorks 282 NOTES Caribbean Journal of Science, Vol. 43, No. 2, 282-284, 2007 Copyright 2007 College of Arts and Sciences University of Puerto Rico, Mayagu¨ ez Orb-weaving Spider, Argiope savignyi (Araneidae), Predation on the Proboscis Bat Rhynchonycteris naso (Emballonuridae) ROBERT M. TIMM1 AND MAURICIO LOSILLA2 1Natural History Museum and Biodiversity Re- search Center & Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7561, USA; 2Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica. Corresponding au- thor: [email protected] ABSTRACT.—We report an observation of an orb- weaving spider (Argiope savignyi; Araneidae) cap- turing and feeding on a proboscis bat (Rhynchonyc- teris naso; Emballonuridae) at the La Selva Biological Station in the Caribbean lowlands of Costa Rica. This observation and others suggest that spiders prey upon small bats more frequently than has been noted previously, and that invertebrates should now be considered as regular predators on small bats. KEYWORDS.—Argiope, Chiroptera, Costa Rica, preda- tion, Rhynchonycteris, sac-winged bat Bats are preyed upon by a wide range of vertebrate predators but there are few re- cords of invertebrate predators. Gillette and Kimbrough (1970) listed five inverte- brate groups as potential predators— American cockroaches (Pariplaneta america- nus), Australian cockroaches (Pariplaneta australis), driver ants, scorpions, and large spiders. Molinari et al. (2005) documented predation on three species of bats by giant centipedes (Scolopendra gigantea) in a Ven- ms. received Aug. 29, 2006; accepted April 23, 2007 NOTES 283 ezuelan cave; the centipedes killed and consumed adult bats that were captured while they roosted on the ceiling of the cave. -
Hemolymph and Hemocytes of Tarantula Spiders: Physiological Roles and Potential As Sources of Bioactive Molecules
In: Advances in Animal Science and Zoology. Volume 8 ISBN: 978-1-63483-552-7 Editor: Owen P. Jenkins © 2015 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 8 HEMOLYMPH AND HEMOCYTES OF TARANTULA SPIDERS: PHYSIOLOGICAL ROLES AND POTENTIAL AS SOURCES OF BIOACTIVE MOLECULES Tatiana Soares, Thiago H. Napoleão, Felipe R. B. Ferreira and Patrícia M. G. Paiva∗ Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil ABSTRACT Arachnids compose the most important and numerous group of chelicerates and include spiders, scorpions, mites and ticks. Some arachnids have a worldwide distribution and can live for more than two decades. This is in part due to their efficient defense system, with an innate immunity that acts as a first line of protection against bacterial, fungal and viral pathogens. The adaptive success of the spiders stimulates the study of their defense mechanisms at cellular and molecular levels with both biological and biotechnological purposes. The hemocytes (plasmatocytes, cyanocytes, granulocytes, prohemocytes, and leberidocytes) of spiders are responsible for phagocytosis, nodulation, and encapsulation of pathogens as well as produce substances that mediate humoral mechanisms such as antimicrobial peptides and factors involved in the coagulation of hemolymph and melanization of microorganisms. -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Molecular Phylogenetics and Evolution 69 (2013) 961–979 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A molecular phylogeny of nephilid spiders: Evolutionary history of a model lineage ⇑ Matjazˇ Kuntner a,b,c, , Miquel A. Arnedo d, Peter Trontelj e, Tjaša Lokovšek a, Ingi Agnarsson b,f a Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia b Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA c College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China d Institut de Recerca de la Biodiversitat & Departament de Biologia Animal, Universitat de Barcelona, Spain e Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia f Department of Biology, University of Vermont, Burlington, VT, USA article info abstract Article history: The pantropical orb web spider family Nephilidae is known for the most extreme sexual size dimorphism Available online 27 June 2013 among terrestrial animals. -
Publications a Conservation Roadmap for the Subterranean Biome Wynne, J
Pedro Miguel Cardoso Curator Zoology Zoology Postal address: PL 17 (Pohjoinen Rautatiekatu 13) 00014 Finland Email: [email protected] Mobile: 0503185685, +358503185685 Phone: +358294128854, 0294128854 Publications A conservation roadmap for the subterranean biome Wynne, J. J., Howarth, F. G., Mammola, S., Ferreira, R. L., Cardoso, P., Di Lorenzo, T., Galassi, D. M. P., Medellin, R. A., Miller, B. W., Sanchez-Fernandez, D., Bichuette, M. E., Biswas, J., BlackEagle, C. W., Boonyanusith, C., Amorim, I. R., Vieira Borges, P. A., Boston, P. J., Cal, R. N., Cheeptham, N., Deharveng, L. & 36 others, Eme, D., Faille, A., Fenolio, D., Fiser, C., Fiser, Z., Gon, S. M. O., Goudarzi, F., Griebler, C., Halse, S., Hoch, H., Kale, E., Katz, A. D., Kovac, L., Lilley, T. M., Manchi, S., Manenti, R., Martinez, A., Meierhofer, M. B., Miller, A. Z., Moldovan, O. T., Niemiller, M. L., Peck, S. B., Pellegrini, T. G., Pipan, T., Phillips-Lander, C. M., Poot, C., Racey, P. A., Sendra, A., Shear, W. A., Silva, M. S., Taiti, S., Tian, M., Venarsky, M. P., Yancovic Pakarati, S., Zagmajster, M. & Zhao, Y., 13 Aug 2021, (E-pub ahead of print) In: Conservation Letters. 6 p., 12834. The Atlantic connection: coastal habitat favoured long distance dispersal and colonization of Azores and Madeira by Dysdera spiders (Araneae: Dysderidae) Crespo, L. C., Silva, I., Enguidanos, A., Cardoso, P. & Arnedo, M. A., 10 Aug 2021, (E-pub ahead of print) In: Systematics and Biodiversity. 22 p. Insect threats and conservation through the lens of global experts Milicic, M., Popov, S., Branco, V. V. & Cardoso, P., Aug 2021, In: Conservation Letters.