TARANTULA Araneae Family: Theraphosidae Genus: 113 Genera

Total Page:16

File Type:pdf, Size:1020Kb

TARANTULA Araneae Family: Theraphosidae Genus: 113 Genera TARANTULA Araneae Family: Theraphosidae Genus: 113 genera Range: World wide Habitat tropical and desert regions; greatest concentration S America Niche: Terrestrial or arboreal, carnivorous, mainly nocturnal predators Wild diet: as grasshoppers, crickets and beetles but some of the larger species may also eat mice, lizards and frogs or even small birds Zoo diet: Life Span: (Wild) varies with species and sexes, females tend to live long lives (Captivity) Sexual dimorphism: Location in SF Zoo: Children’s Zoo - Insect Zoo APPEARANCE & PHYSICAL ADAPTATIONS: Tarantulas are large, long-legged, long-living spiders, whose entire body is covered with short hairs, which are sensitive to vibration. They have eight simple eyes arranged in two distinct rows but rely on their hairs to send messages of local movement. These spiders do not spin a web but catch their prey by pursuit, killing them by injecting venom through their fangs. The injected venom liquefies their prey, allowing them to suck out the innards and leave the empty exoskeleton. The chelicerae are vertical and point downward making it necessary to raise its front end to strike forward and down onto its prey. Tarantulas have two pair of book lungs, which are situated on the underside of the abdomen. (Most spiders have only one pair). All tarantulas produce silk through the two or four spinnerets at the end of their abdomen (A typical spiders averages six). New World Tarantulas vs. Old World Tarantulas: New World species have urticating hairs that causes the potential predator to itch and be distracted so the tarantula can get away. They are less aggressive than Old World Tarantulas who lack urticating hairs and their venom is less potent. Arboreal vs. Terrestrial Tarantulas: The Arboreal species will typically reside in a silken "tube tent", while other species will line their burrows with silk to stabilize the burrow wall and facilitate climbing up and down or make silk covers for their burrow entrances as a defense. Arboreal species are more slender and quicker for moving around on the branches. They are able to leap from one branch to the next to escape or get prey. They have long lean bodies to give them speed. The Terrestrial species have a sit and wait approach. They are much heavier and will retreat into the safety of their burrow. They rely on their size to overcome prey. Indian Ornamental Tarantula or Ornamental Tree Spider Class Order Family Genus Species Arachnida Araneae Theraphosidae Poecilotheria regalis Range: Southeastern India Habitat: holes of tall trees where they make asymmetric funnel webs. Native to monsoon forests, where the climate alternates between very wet and very dry Niche: Arboreal, carnivorous Diet: Wild: flying insects Zoo: Special Adaptations: This species is fast and has exhibits a fairly aggressive behavior. They are considered to be a relatively dangerous spider, with venom that may cause intense pain. This species builds funnel web nest in holes of tall trees. Other: ▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼ Costa Rican Zebra Tarantula or Striped Knee Tarantula Class Order Family Genus Species Arachnida Araneae Theraphosidae Aphonopelma seemanni Range: Western Costa Rica, as well as other parts of Central America, such as Guatemala, Honduras and Nicaragua. Habitat: open semi-arid grasslands, rainforest Niche: Nocturnal, carnivorous, terrestrial - Deep burrows Diet: Wild: Many insects such as cockroaches, small lizards Zoo: Special Adaptations: Zebra tarantulas are deep-burrowing spiders. They live in open semi-arid grasslands in Costa Rica, and are found in large aggregations. The deep burrows keep the temperature below the highest daytime temperatures, and retain humidity. Other: Females can live up to 20 years. Males however, tend to live a much shorter life of up to five years. Has urticating hairs but would rather run and hide. CHACO GOLDEN KNEE or GODEN STRIPPED TARANTULA Class Order Family Genus Species Arachnida Araneae Theraphosidae Grammostola pulchripes Range: Chile Habitat: Tropical forests, prefer humidity levels 70+% Niche: Terrestrial, carnivorous Diet: Wild: crickets, cockroaches, mealworms and mice Zoo: Special Adaptations: The Chaco is an opportunistic burrowing terrestrial tarantula: they tend to burrow while younger and adopt a pre-existing hide as its home when it begins to mature. Other: The body of the Chaco golden stripe tarantula is covered in light-colored and pink hair, while the legs bear unmistakable golden bands. This species is the second largest tarantula; largest is the giant tarantula. Unlike other tarantula species, the Chaco golden stripe tarantula rarely utilizes their urticating hairs in self-defense. ▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼ GOLIATH TARANTULA or GOLIATH BIRDEATER SPIDER Class Order Family Genus Species Arachnida Araneae Theraphosidae Theraphosa blondi Range: Venezuela, through Guyana to northeastern Brazil Habitat: Primary rainforest areas, burrowing into the forest floor in Abandoned rodent burrows Niche: Terrestrial, nocturnal hunter Diet: Wild: Large arthropods and small rodents Zoo: Special Adaptations: The cephalothorax and abdomen, the front and rear parts of the body are round. Their 8 eyes are closely grouped, with a pair in the middle and 3 on each side of the face. They have large fangs, 2 pairs of slits on the underside of the abdomen that lead to respiratory organs called the book lungs. Book lungs have many folds lying close together like the pages of a book through which blood passes to acquire oxygen from the outside air. It does not spin a web to capture its prey but catches food by speed. It strikes with its fangs injecting venom into the prey, rolls the prey into a ball and secretes digestive juice on it, and sucks up the liquefied prey. Other: These animals readily flick painful urticating hairs from their abdomen, and when provoked will a painful, but not poisonous, bite with their one inch long fangs. This is the largest spider on earth. Adults have been known to exceed a quarter of a pound in weight with an 11 inches leg span. The females may live up to 18 years; the males will die within a few months of mating. Birdeaters are one of the few tarantula species that lack tibial spurs, located on the first pair of legs of most adult males, which serve to keep the fangs of the female immobilized during mating, so that the female does not eat the male. Females will sometimes eat their mates. MEXICAN RED-LEGGED or RED-KNEE TARANTULA Class Order Family Genus Species Arachnida Araneae Theraphosidae Brachypelma smithii Range: Mazatlan, Papagayo, Colima, Nayarit in Mexico Habitat: Grasslands, desert, up to 2,000 ft Niche: Nocturnal, terrestrial burrowor, carnivorous Diet: Wild: insects and other small animals Zoo: 1 cricket per week Special Adaptations: Both sexes are similar in appearance, with the male having a somewhat smaller body, but longer legs. Like most New World tarantulas, they will kick urticating hairs from their abdomens if disturbed, rather than bite. When the tarantula needs privacy, e.g. when molting or laying eggs, the entrance is sealed with silk sometimes supplemented with soil and leaves. Other: They are quite large, very docile and believed to be one of the most long-lived tarantulas. They grow very slowly and mature relatively late. Males can be expected to live for 10 to 15 years, while females can live considerably longer, somewhere between 20 and 40 years. They carve deep burrows into soil banks, which keeps them protected from predators, like the White-nosed Coati, and enables them to ambush passing prey. ▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼ Antilles Pink Toe Tarantula, Antilles Pink-toed Tree Spider or Martinique Red Tree Spider Class Order Family Genus Species Arachnida Araneae Theraphosidae Avicularia versicolor Range: Guadeloupe and Martinique in the Caribbean Sea, off the coast of South America Habitat: live in human structures or on plants rather than on the ground, trees Niche: Primarily arboreal, carnivorous, nocturnal Diet: Wild: mostly flying insects Zoo: Special Adaptations: They spin elaborate funnel webs in which they spend most of their time during the day. They come out at night to feed. Other: On average, males are slightly more brightly colored than females. Like most tarantulas, males stay much smaller than females- especially in the abdomen. Antilles pinktoes are naturally docile, although they are quick and can jump up to 30 cm (11.8 in) far or high. They have urticating hairs for defense, but unlike terrestrial new world tarantulas they generally do not kick them but instead press them against the perceived threat. CHILEAN ROSE TARANTULA Class Order Family Genus Species Arachnida Araneae Theraphosidae Grammostola rosea Range: N. Chile, Bolivia and Argentina Habitat: Dry desert and scrub regions Niche: Terrestrial burrower, carnivorous, nocturnal Diet: Wild: crickets, grass-hoppers, locusts, moths, mealworms, and cockroaches Zoo: Special Adaptations: Other: Females have been known to live 15 – 20 years ▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼ BRAZILIAN SALMON TARANTULA Class Order Family Genus Species Arachnida Araneae Theraphosidae Lasiodora parahybana Range: NE Brazil Habitat: Tropical rainforest Niche: Terrestrial, carnivorous, nocturnal Diet: Wild: insects, lizards, frogs Zoo: crickets, beetles & coackroaches Special Adaptations: This tarantula’s name comes from the long pink hairs that sprout forth from their abdomens, legs, and chelicerae. The Brazilian Salmon
Recommended publications
  • The First Haemolymph Analysis of Nhandu Chromatus Tarantulas — Biochemical Parameters
    DOI: 10.1515/FV-2016-0029 FOLIA VETERINARIA, 60, 3: 47—53, 2016 THE FIRST HAEMOLYMPH ANALYSIS OF NHANDU CHROMATUS TARANTULAS — BIOCHEMICAL PARAMETERS Muir, R. E., Halán, M. Department of Parasitology, University of Veterinary Medicine and Pharmacy Komenskeho 73, 041 81 Košice The Slovak Republic [email protected] ABSTRACT originally proposed for this investigation are based on 2 separate feeding regimes, differing in terms of feed Tarantulas are a relatively unstudied category of quantity and the effect on the aforementioned biochemi- invertebrate which are popular with hobbyists and in- cal parameters. Upon receipt of the biochemical results creasingly used in laboratory research. As their pres- from the first sampling, it became apparent that unex- ence in the veterinary setting is limited, very little is pected correlations could be made between the stage of known about the biochemistry of their haemolymph as ecdysis, susceptibility to anaesthesia and the total pro- obtained by in house sampling and analysis. A handful tein levels in the haemolymph. Those that were due to of studies have been performed to attempt to establish shed imminently, indicated by cessation in feeding, had a normal range for certain parameters in healthy mem- recognisably and significantly higher total protein levels bers of a few particular species, but that is the extent of and reached a better level of anaesthesia in less time. Ad- the current research. In this study, 12 tarantulas of the ditional samplings are planned in the future to specify Nhandu chromatus species purchased as immature sib- more definitive parameters. The observations made in- lings and kept under standardised conditions for 2.5 advertently so far could constitute novel information years were anaesthetised with isoflurane and had 0.2 ml and be practically useful to tarantula enthusiasts and of haemolymph sampled and analysed for: total protein, anaesthetists, and therefore, potentially of high clinical glucose, calcium, phosphorous and uric acid.
    [Show full text]
  • Activities for the Tarantula Scientist
    Activities for The Tarantula Scientist These activities were created by Leigh Lewis, a grade school teacher in Wynne, Arkansas. “Picture a Tarantula” is an activity that builds 1 observation skills. Students will listen to a description of a goliath birdeater tarantula and draw a picture from that description. This activity points out the importance of detail. It links science, reading/literacy, and art in a way that students love! “Classify, Classify, Classify” is an activity that can 2 be utilized in a variety of ways. Students will hear how living organisms are classified, and then they will look at the animals pictured in the book and decide how they should be classified. This is truly an adventure! Once students collect the data, they will organize the information in tables and graphs. Students can do this individually, or in groups. This activity links math, science and technology. “Creature Search” is an activity that combines 3 science, writing and reading. Students will be given a topic from The Tarantula Scientist to research. They will then do a written and oral report. As an added bonus students will be learning about many fascinating plants and animals that live in the jungles and rainforests that are rapidly being destroyed. The “Spider Crossword Puzzle” is a fun conclusion 4 to a great book. Students will read The Tarantula Scientist, and then put all of their newly acquired knowledge to use by filling in the puzzle. THE TARANTULA SCIENTIST by Sy Montgomery is published by Houghton Mifflin Company ISBN 0-618-14799-3 www.houghtonmifflinbooks.com PROJECT 1 Picture a Tarantula GRADE LEVEL: 4th-8th OBJECTIVE: TSW listen to a description of a Goliath birdeater tarantula from The Tarantula Scientist and tsw create a picture from the description.
    [Show full text]
  • Contact: Sondra Katzen 708.688.8351 [email protected]
    Contact: Sondra Katzen 708.688.8351 [email protected] Amazing Arachnids Fact Sheet Opening Amazing Arachnids is open from Saturday, May 26, through Monday, September 3. It features two sections—Art and Science of Arachnids and Mission Safari Maze . Purpose ° To provide Brookfield Zoo guests with an engaging and interactive experience where they can discover the incredible attributes of arachnids and how the species has played an important role in our lives. ° To inspire guests to gain a better understanding of arachnids and other species that could then lead to a greater appreciation for them. Location Brookfield Zoo’s West Mall Art and Science of Arachnids Art and Science of Arachnids invites guests to discover the cultural connections of these eight-legged creatures that have weaved their way into a variety of genres, including music, art, folklore, medicine, conservation, film, and literature. In addition to engaging, hands-on interactives, the exhibit features 100 live arachnids found around the world, making it the largest public collection of arachnids in North America. ° Arachnid Species —the live collection is primarily composed of tarantulas and scorpions with a sampling of whip scorpions and true spiders. Species include: Blue femur beauty tarantula Mahogany tree spider Brazilian blue violet tarantula Metallic pink toe tarantula Brazilian pink bloom tarantula Mexican fireleg tarantula Burgundy goliath birdeater Mexican red knee tarantula Columbian pumpkin patch tarantula Mozambique golden baboon tarantula Chaco golden knee
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • Arachnides 57
    The electronic publication Arachnides - Bulletin de Terrariophile et de Recherche N°57 (2009) has been archived at http://publikationen.ub.uni-frankfurt.de/ (repository of University Library Frankfurt, Germany). Please include its persistent identifier urn:nbn:de:hebis:30:3-371618 whenever you cite this electronic publication. ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 57 Novembre 2009 ISSN 1148-9979 1 NOUVELLES ESPECES DE SCORPIONS (ARACHNIDA, SCORPIONES) DECRITES EN 2008. ADDITIF G. DUPRE Nous complétons la précédente synthèse (Arachnides n°56) à partir d’articles pour lesquels nous n’avons pris connaissance qu’en 2009. Il y a donc 41 nouvelles espèces de décrites en 2008. I. Buthidae C.L. Koch, 1837. 10 nouvelles espèces dont 2 étant des revalidations. Androctonus togolensis Lourenço, 2008, Togo (Mandouri, région de Dapango) Dans le même article, l’auteur revalide l’espèce Androctonus eburneus Pallary, 1928 du sud de l’Algérie (Djanet). Buthus yemenensis Lourenço, 2008, Yemen (Province du Dhamar, district d’Anis, sud de Ma’bar). Dans le même article , l’auteur revalide l’espèce Buthus berberensis Pocock, 1900 de Somalie. Tityus longidigitus Gonzalez-Sponga, 2008a, Venezuela (Estados Monagas) Tityus quiriquirensis Gonzalez-Sponga, 2008a, Venezuela (Estados Monagas) Tityus romeroi Gonzalez-Sponga, 2008a, Venezuela (Estados Bolivar) Tityus sanfernandoi Gonzalez-Sponga, 2008a, Venezuela (Estados Sucre) Tityus ivani Gonzalez-Sponga, 2008b, Venezuela (Estados Méripa) Tityus maturinensis Gonzalez-Sponga, 2008b, Venezuela (Estados Monagas). III. Chactidae Pocock, 1893. 3 nouvelles espèces. Brotheas bolivianus Lourenço 2008, Bolivie (ouest de Manoa) Chactas iutensis Gonzalez-Sponga, 2008b, Venezuela (Estados Mérida) Chactas venegasi Gonzalez-Sponga, 2008b, Venezuela (Estados Mérida) REFERENCES : GONZALEZ-SPONGA M.A., 2008a.
    [Show full text]
  • Toxins-67579-Rd 1 Proofed-Supplementary
    Supplementary Information Table S1. Reviewed entries of transcriptome data based on salivary and venom gland samples available for venomous arthropod species. Public database of NCBI (SRA archive, TSA archive, dbEST and GenBank) were screened for venom gland derived EST or NGS data transcripts. Operated search-terms were “salivary gland”, “venom gland”, “poison gland”, “venom”, “poison sack”. Database Study Sample Total Species name Systematic status Experiment Title Study Title Instrument Submitter source Accession Accession Size, Mb Crustacea The First Venomous Crustacean Revealed by Transcriptomics and Functional Xibalbanus (former Remipedia, 454 GS FLX SRX282054 454 Venom gland Transcriptome Speleonectes Morphology: Remipede Venom Glands Express a Unique Toxin Cocktail vReumont, NHM London SRP026153 SRR857228 639 Speleonectes ) tulumensis Speleonectidae Titanium Dominated by Enzymes and a Neurotoxin, MBE 2014, 31 (1) Hexapoda Diptera Total RNA isolated from Aedes aegypti salivary gland Normalized cDNA Instituto de Quimica - Aedes aegypti Culicidae dbEST Verjovski-Almeida,S., Eiglmeier,K., El-Dorry,H. etal, unpublished , 2005 Sanger dideoxy dbEST: 21107 Sequences library Universidade de Sao Paulo Centro de Investigacion Anopheles albimanus Culicidae dbEST Adult female Anopheles albimanus salivary gland cDNA library EST survey of the Anopheles albimanus transcriptome, 2007, unpublished Sanger dideoxy Sobre Enfermedades dbEST: 801 Sequences Infeccionsas, Mexico The salivary gland transcriptome of the neotropical malaria vector National Institute of Allergy Anopheles darlingii Culicidae dbEST Anopheles darlingi reveals accelerated evolution o genes relevant to BMC Genomics 10 (1): 57 2009 Sanger dideoxy dbEST: 2576 Sequences and Infectious Diseases hematophagyf An insight into the sialomes of Psorophora albipes, Anopheles dirus and An. Illumina HiSeq Anopheles dirus Culicidae SRX309996 Adult female Anopheles dirus salivary glands NIAID SRP026153 SRS448457 9453.44 freeborni 2000 An insight into the sialomes of Psorophora albipes, Anopheles dirus and An.
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Chilean Rose-Haired Tarantula Native Range Map
    Chilean Rose-haired Tarantula Native Range Map Kingdom: Animalia Phylum: Arthropoda Subphylum: Chelicerata Class: Arachnida Order: Araneae Family: Theraphosidae Genus : Grammostola Species : gala Photo courtesy of Karen Marzynski Habitat • In the Wild: This species of tarantula can be found in Chile, in dry grassland regions at the edge of the desert. • Exhibit Location: Zoo to You Collection Characteristics • Adults grow to be 4.5 – 5.5 inches in diameter. • There are 2 different color schemes, depending on where in Chile they are from. Many are brownish, while others are more reddish or pink in color. • This tarantula has a hard external skeleton (exoskeleton) and 8 jointed legs. The exterior of the body is covered by long, bristle-like hairs. There is a smaller pair of sensory appendages called pedipalps. They have 8 eyes, 2 fangs, and are venomous (poisonous). They have a cephalothorax (composed of the head and thorax) to which all appendages except the spinnerets (tubular structures from which web silk are produced) are attached. The spinnerets are found on the abdomen. • Individual hairs may be sensitive to motion, heat, cold, and other environmental triggers. Hairs near the mouth are capable of sensing chemicals that give the spider a basic type of sense of smell and taste. • Lifespan: In the Wild males 3-10 years, females 15-20 years; In Captivity males less than 2 years, females 20 or more years (average is 12 years) Behaviors • The Chilean rose-haired tarantula is a nocturnal (nighttime) hunter and finds a shelter to web itself into at dawn. • Their digestive system is designed to deal with liquid food only.
    [Show full text]
  • Hemolymph and Hemocytes of Tarantula Spiders: Physiological Roles and Potential As Sources of Bioactive Molecules
    In: Advances in Animal Science and Zoology. Volume 8 ISBN: 978-1-63483-552-7 Editor: Owen P. Jenkins © 2015 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 8 HEMOLYMPH AND HEMOCYTES OF TARANTULA SPIDERS: PHYSIOLOGICAL ROLES AND POTENTIAL AS SOURCES OF BIOACTIVE MOLECULES Tatiana Soares, Thiago H. Napoleão, Felipe R. B. Ferreira and Patrícia M. G. Paiva∗ Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil ABSTRACT Arachnids compose the most important and numerous group of chelicerates and include spiders, scorpions, mites and ticks. Some arachnids have a worldwide distribution and can live for more than two decades. This is in part due to their efficient defense system, with an innate immunity that acts as a first line of protection against bacterial, fungal and viral pathogens. The adaptive success of the spiders stimulates the study of their defense mechanisms at cellular and molecular levels with both biological and biotechnological purposes. The hemocytes (plasmatocytes, cyanocytes, granulocytes, prohemocytes, and leberidocytes) of spiders are responsible for phagocytosis, nodulation, and encapsulation of pathogens as well as produce substances that mediate humoral mechanisms such as antimicrobial peptides and factors involved in the coagulation of hemolymph and melanization of microorganisms.
    [Show full text]
  • Despre Tarantule – Posibile Utilizări În Medicină About Tarantula - Possible Uses in Medicine
    Cîmpian și Cristina. Medicamentul Veterinar / Veterinary Drug Vol. 12(2) Decembrie 2018 Despre tarantule – posibile utilizări în medicină About tarantula - possible uses in medicine Diana Cîmpian, Romeo Teodor Cristina Facultatea de Medicină Veterinară Timișoara Cuvinte cheie: biologie, tarantule, venin, structură, utilizări Key words: biology, tarantulas, venom, structure, uses Rezumat În ultimii ani tarantulele au devenit tot mai populare în teraristică datorită faptului că sunt ușor de întreținut, nu necesită mult spațiu și datorită frumuseții lor. Veninul de la păianjeni, șerpi, pești, melci și scorpioni conțin o farmacopee evoluată a toxinelor naturale care vizează receptorii membranari și canalele de ioni pentru a produce șoc, paralizie, durere sau deces. Veninurile de tarantulă reprezintă una dintre cele mai mari colecții de combinații de compuși chimici din lume. Acestea au fost dezvoltate în mod selectiv pentru a genera în final niște structuri bioactive extrem de puternice, selective, care au fost supuse unui proces de optimizare naturală prin milioanele de ani de selecție naturală. Studiul diverselor tipuri de venin a devenit, în ultimii ani, o prioritate pentru științele medicale și biologie. În acest sens, medicii veterinari sunt chemați să cunoască tarantulele ca ființe, modul lor de viață, de hrănire, de înmulțire precum și modul de obținere, conservare, analiză și utilizare a veninurilor. Lucrarea aduce informații despre viața tarantulelor, modul de contenție și mai ales despre cum se recoltează și se stochează veninul de la această specie. Abstract In recent years, tarantulas have become increasingly popular in terrariums because they are easy to maintain, do not require much space and because of their beauty. Venom from spiders, snakes, fish, snails and scorpions contain an advanced pharmacopoeia of natural toxins that target membrane receptors and ion channels to produce shock, paralysis, pain or death.
    [Show full text]
  • Biogeografía Histórica Y Diversidad De Arañas Mygalomorphae De Argentina, Uruguay Y Brasil: Énfasis En El Arco Peripampásico
    UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO Biogeografía histórica y diversidad de arañas Mygalomorphae de Argentina, Uruguay y Brasil: énfasis en el arco peripampásico Trabajo de tesis doctoral TOMO II Lic. Nelson E. Ferretti Centro de Estudios Parasitológicos y de Vectores CEPAVE (CCT- CONICET- La Plata) (UNLP) Directora: Dra. Alda González Codirector: Dr. Fernando Pérez-Miles Argentina Año 2012 ÍNDICE DE CONTENIDOS TOMO II Referencias bibliográficas. 244 ANEXOS. 299 Anexo I. Distribución de las especies analizadas. 300 Anexo II. Mapas con la distribución geográfica de las especies de Mygalomorphae utilizadas en los análisis y sus respectivos trazos individuales. 324 Anexo III. Tablas. 359 Publicaciones generadas a partir de la presente tesis. 393 Referencias bibliográficas Aagesen, L., Szumik, C.A., Zuloaga, F.O. & Morrone, O. 2009. Quantitative biogeography in the South America highlands–recognizing the Altoandina, Puna and Prepuna through the study of Poaceae. Cladistics, 25: 295–310. Abrahamovich, A.H., Díaz, N.B. & Morrone, J.J. 2004. Distributional patterns of the Neotropical and Andean species of the genus Bombus (Hymenoptera: Apidae). Acta Zoológica Mexicana (nueva serie), 20(1): 99–117. Acosta, L. E. 1989. La fauna de escorpiones y opiliones (Arachnida) de la provincia de Córdoba. Tesis doctoral, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. Acosta, L. E. 1993. Escorpiones y opiliones de la provincia de Córdoba (Argentina): Diversidad y zoogeografía. Bulletin de la Société Neuchâteloise des Sciences Naturelles, 116(1): 11–17. Acosta, L.E. 2002. Patrones zoogeográficos de los opiliones argentinos (Arachnida: Opiliones). Revista Ibérica de Aracnología, 6: 69–84.
    [Show full text]
  • Biogeografía Histórica Y Diversidad De Arañas Mygalomorphae De Argentina, Uruguay Y Brasil: Énfasis En El Arco Peripampásico
    i UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO Biogeografía histórica y diversidad de arañas Mygalomorphae de Argentina, Uruguay y Brasil: énfasis en el arco peripampásico Trabajo de tesis doctoral TOMO I Lic. Nelson E. Ferretti Centro de Estudios Parasitológicos y de Vectores CEPAVE (CCT- CONICET- La Plata) (UNLP) Directora: Dra. Alda González Codirector: Dr. Fernando Pérez-Miles Argentina Año 2012 “La tierra y la vida evolucionan juntas”… León Croizat (Botánico y Biogeógrafo italiano) “Hora tras hora… otra de forma de vida desaparecerá para siempre de la faz del planeta… y la tasa se está acelerando” Dave Mustaine (Músico Estadounidense) A la memoria de mi padre, Edgardo Ferretti ÍNDICE DE CONTENIDOS TOMO I Agradecimientos v Resumen vii Abstract xi Capítulo I: Introducción general. I. Biogeografía. 2 II. Biogeografía histórica. 5 III. Áreas de endemismo. 11 IV. Marco geológico. 14 IV.1- Evolución geológica de América del Sur. 15 IV.2- Arco peripampásico. 23 V. Arañas Mygalomorphae. 30 VI. Objetivos generales. 34 Capítulo II: Diversidad, abundancia, distribución espacial y fenología de la comunidad de Mygalomorphae de Isla Martín García, Ventania y Tandilia. I. INTRODUCCIÓN. 36 I.1- Isla Martín García. 36 I.2- El sistema serrano de Ventania. 37 I.3- El sistema serrano de Tandilia. 38 I.4- Las comunidades de arañas en áreas naturales. 39 I.5- ¿Porqué estudiar las comunidades de arañas migalomorfas? 40 II. OBJETIVOS. 42 II.1- Objetivos específicos. 42 III. MATERIALES Y MÉTODOS. 43 III.1- Áreas de estudio. 43 III.1.1- Isla Martín García. 43 III.1.2- Sistema de Ventania.
    [Show full text]