Predation by Corallus Annulatus (Boidae) on Rhynchonycteris Naso

Total Page:16

File Type:pdf, Size:1020Kb

Predation by Corallus Annulatus (Boidae) on Rhynchonycteris Naso Cuad. herpetol., 2323 (2):(2): 9393–96,–96, 20092009 93 N OTA loured juvenile female C. annulatus (270 mm TL / 180 mm SVL) was dis- PREDATION BY CORALLUS covered in the roofing rafters at Caño ANNULATUS (BOIDAE) ON Palma’s boat dock (Fig. 1.0). Rhyncho- RHYNCHONYCTERIS NASO nycteris naso were regularly observed (EMBALLONURIDAE) IN A roosting beneath the dock in groups of LOWLAND TROPICAL WET between three and eight individuals (Fig FOREST, COSTA RICA 1.1) several nights before we found the snake. We discovered, without the need for regurgitation by palpation, typical TODD R. LEWIS shapes of bat morphology and deduced Westfield, 4 Worgret Road, Wareham, Dorset, that it was possible that the snake had BH20 4PJ, United Kingdom. eaten a R. naso. On the second occa- [email protected] sion we observed an orange / taupe co- loured adult male C. annulatus (584 DARRYN J. NASH mm TL / 512 mm SVL) swallowing a 60 West Road, Spondon, Derby DE21 7AB. Unit- R. naso in the crown of a Manicaria ed Kingdom. saccifera palm, approximately 200 m [email protected] along a riparian section of the Biologi- cal Station’s forest. Rhynchonycteris PAUL B. C. GRANT naso are an abundant insectivorous bat 4901 Cherry Tree Bend, Victoria, British Colom- found throughout most tropical lowlands bia, V8Y 1S1, Canada. from southern Mexico through to the northern half of South America (Sorin, Corallus annulatus (Northern Annu- 1999). They are a small bat ranging lated Tree-boa) is a little-studied tropical from 35 to 41 mm in forearm length Boid occurring disjunctively throughout and typically weigh around 4 g. Both C. Central America and tropical South annulatus and R. naso are closely asso- America in mostly lowland tropical ciated with trees near rivers and moist and wet forests (Holdridge, 1967; streams and single species roost sites Stafford & Henderson, 1996; Smith & for R. naso are almost exclusively found Acevedo, 1997; Henderson et al., 2001). close to water (Goodwin, 1946; Goodwin Prior to this report and to the best of & Greenhall, 1961; Carter et al., 1966; our knowledge, small rodents were the Plumpton & Jones, 1992; Stafford & only documented prey for wild speci- Henderson, 1996). mens of C. annulatus (Henderson et To the best of our knowledge these al., 1995). are the first recorded instances of C. an- Caño Palma Biological Station is sit- nulatus predating on R. naso. Previous uated on the northeast coast of Costa studies have identified hawks (Buteo Rica approximately 8 km north of Tor- spp.), falcons (Falco spp.) and egrets tuguero. C. annulatus has previously (Leucophoyx spp.) as significant preda- been recorded from Manicaria forest at tors of R. naso (Husson, 1962; Sander- Caño Palma (Myers, 1990; Burger, son, 1941). The Orb spider Argiope savig- 2001). nyi (Araneidae) has also been recorded On 12th January 2002 and 15th July as a predator (Timm & Losilla, 2007). 2003 we found two separate C. annula- Predation on bats by Boids is well re- tus specimens with Rhynchonycteris corded in the tropics, most of which are naso (Proboscis bat) in their stomachs. recorded at the bats’ roosting site; Epi- In the first instance an anerythristic co- crates cenchris cenchris (Boidae) (Rain- Recibido: 01/03/2009 — Aceptado: 12/11/09 Ed. asoc.: F. Cruz 94 T. R. LEWIS et al.: Predation by Corallus annulatus on Rhynchonycteris naso Fig. 1.0. Anerythristic Corallus annulatus with (possible) Rhynchonycteris naso meal (Photo: Paul B. C. Grant). Fig. 1.1. Rhynchonycteris naso roosting under Caño Palma Biological Station boat dock (Photo: Paul B. C. Grant). Cuad. herpetol., 23 (2): 93–96, 2009 95 bow Boa) fed on Carollia perspicillata Trinidad and Tobago. Bulletin of (Phyllostomidae) (Lemke, 1978), Epi- the American Museum of Natural crates anguilifer (Boidae) (Cuban Boa) History 122: 187-302. predated Phyllonycteris poeyi (Phyllosto- HARDY, J. D. 1957. Bat predation by midae) (Hardy, 1957) and Epicrates inor- the Cuban Boa, Epicrates anguili- natus (Boidae) (Puerta Rican Boa) ate fer Bibron. Copeia 1957: 151-152. Monophyllus redmani (Phyllostomidae) HENDERSON, R. W.; T. W. P. MICUCCI; and Brachyphylla cavernarum (Phyllosto- G. PUORTO & R. W. BOURGEOIS. midae) (Rodriguez, 1984). The more thor- 1995. Ecological correlates and oughly studied Corallus hortulanus patterns in the distribution of neo- (Boidae) (Amazon Tree Boa) is known to tropical boines (Serpentes: adopt a sit-and-wait strategy as well as Boidae): a preliminary assess- actively snatching bats from the air ment. Herpetological Natural His- (Henderson, 2002; Barnett et al., 2007). tory 3: 15-27. Given that both the C. annulatus and HENDERSON, R. W.; M. HÖGGREN; W. the R. naso are primarily nocturnal it is W. LAMAR & L. W. PORRAS. suggested that, on both occasions, the 2001. Distribution and variation tree-boas adopted a snatching strategy. in the treeboa Corallus annulatus We thank The Canadian Organiza- (Serpentes: Boidae). Studies on tion for Tropical Education and Rainfor- Neotropical Fauna and Environ- est Conservation (COTERC) for permis- ment 36: 39-47. sion to study at Caño Palma Biological HENDERSON, R. W. 2002. Neotropical Station and Xavier Guevara of The Min- Tree-boas: natural history of the isterio de Recursos Naturales Energia y Corallus hortulanus complex. Minas (MINAE) for permits to study the Krieger Publishing Company, Mal- forest. abar. HOLDRIDGE, L. R. 1967. Life zone ecol- ogy (2nd Edition). Tropical Science REFERENCES Center, San José, Costa Rica. HUSSON, A. M. 1962. The bats of Suri- BARNETT, A. A.; V. SCHIEL & A. DE- name. Zoologische Verhandelin- VENY. 2007. Predation of a bat by gen, Rijksmuseum van Natuurlijke a juvenile Amazon Tree Boa (Cor- Historie Leiden 58: 1-282. allus hortulanus: Boidae), in Jaú LEMKE, T. O. 1978. Predation upon bats National Park, Brazil. The Herpe- by Epicrates cenchria cenchris in tological Bulletin 100: 35-37. Colombia. Herpetological Review 9: BURGER, R. M. 2001. The herpetofauna 47. of Caño Palma Biological Station, MYERS, R. L. 1990. Palm swamps. Eco- Tortuguero, Costa Rica. Bulletin systems of the World 15: Forested of the Chicago Herpetological So- Wetlands. (Ed by A E Lugo, M ciety 36 (12): 243-253. Brinson & S Brown), pp. 267-278, CARTER, D. C.; R. H. PINE & W. B. Elsevier, Oxford. DAVIS. 1966. Notes on the Middle PLUMPTON, D. L. & J. K. JONES. 1992. American bats. The Southwestern Rhynchonycteris naso. Mammalian Naturalist 11: 488-499. Species 413: 1-5. GOODWIN, G. G. 1946. Mammals of RODRIGUEZ, G. A. 1984. Bat predation Honduras. Bulletin of the Ameri- by the Puerto Rican boa, Epi- can Museum of Natural History crates inornatus. Copeia 1984: 79: 107-195. 219-220. GOODWIN, G. G. & A. M. GREENHALL. SANDERSON, I. T. 1941. Living treasure. 1961. A review of the bats of Viking Press, New York. 96 T. R. LEWIS et al.: Predation by Corallus annulatus on Rhynchonycteris naso SMITH, E. N. & M. E. ACEVEDO. 1997. STAFFORD, P. J. & R. W. HENDERSON. The northernmost distribution of 1996. Kaleidoscopic tree-boas: the Corallus annulatus (Boidae), with genus Corallus of tropical Ameri- comments on its natural history. ca. Krieger Publishing Company, Southwestern Naturalist 42: 347- Malabar. 349. TIMM, R. M. & M. LOSILLA. 2007. Orb- SORIN, A. 1999. Rhynchonycteris naso weaving spider, Argiope savignyi (On-line), Animal Diversity Web. (Araneidae), predation on the Pro- Accessed February 23, 2009 at boscis bat Rhynchonycteris naso http://animaldiversity.ummz. (Emballonuridae). Caribbean Jour- umich.edu/site/accounts/informa- nal of Science, 43 (2), 282-284. tion/Rhynchonycteris_naso.html..
Recommended publications
  • Epicrates Maurus (Rainbow Boa Or Velvet Mapepire)
    UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Epicrates maurus (Rainbow Boa or Velvet Mapepire) Family: Boidae (Boas and Pythons) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Rainbow boa, Epicrates maurus. [http://squamates.blogspot.com/2010/10/declines-in-snake-and-lizard.html, Downloaded 10 November, 2011] . TRAITS. The rainbow boa, also known as the velvet mapepire, is a snake that grows to a maximum length of 4 feet in males and 4.5 to 5 feet in females. The life span of this species of snake is an average of 20 years if held in captivity and 10 years in the wild. Their name, rainbow boa, originated from their appearance because of an iridescent shine emanating from microscopic ridges on their scales that refract light to produce all the colours of the rainbow. These boas are generally brownish red in colour associated with dark marking during their juvenile life, however this coloration becomes subdued as they get older (Underwood 2009). These snakes are mainly nocturnal and also terrestrial, they have a small head with a narrow neck and a thick body (Boos 2001). Boas are considered primitive snakes and this is supported by the presence of two vestigal, hind limbs which appers as spurs on either side of the cloaca (Conrad 2009). ECOLOGY. Rainbow boas occupy a variety of habitats in Trinidad and Tobago, they can be found in dry tropical forest, rainforest clearings or even close to human settlements such as agricultural communities. Like all boas, they are excellent swimmers, however they restrain from being in contact with water as much as possible.
    [Show full text]
  • Epicrates Inornatus)Ina Hurricane Impacted Forest1
    BIOTROPICA 36(4): 555±571 2004 Spatial Ecology of Puerto Rican Boas (Epicrates inornatus)ina Hurricane Impacted Forest1 Joseph M. Wunderle Jr. 2, Javier E. Mercado International Institute of Tropical Forestry, USDA Forest Service, P.O. Box 490, Palmer, Puerto Rico 00721, U.S.A. Bernard Parresol Southern Research Station, USDA Forest Service, 200 Weaver Blvd., P.O. Box 2680, Asheville, North Carolina 28802, U.S.A. and Esteban Terranova International Institute of Tropical Forestry, USDA Forest Service, P.O. Box 490, Palmer, Puerto Rico 00721, U.S.A. ABSTRACT Spatial ecology of Puerto Rican boas (Epicrates inornatus, Boidae) was studied with radiotelemetry in a subtropical wet forest recovering from a major hurricane (7±9 yr previous) when Hurricane Georges struck. Different boas were studied during three periods relative to Hurricane Georges: before only; before and after; and after only. Mean daily movement per month increased throughout the three periods, indicating that the boas moved more after the storm than before. Radio-tagged boas also became more visible to observers after the hurricane. Throughout the three periods, the sexes differed in movements, with males moving greater distances per move and moving more frequently than females. Males showed a bimodal peak of movement during April and June in contrast to the females' July peak. Sexes did not differ in annual home range size, which had a median value of 8.5 ha (range 5 2.0±105.5 ha, N 5 18) for 95 percent adaptive kernal. Females spent more time on or below ground than did males, which were mostly arboreal.
    [Show full text]
  • Mixed-Species Bird Flocks Mob an Amazon Treeboa (Corallus Hortulanus) (Linnaeus, 1758) (Serpentes: Boidae) in the Southwest Brazilian Amazon
    Herpetology Notes, volume 12: 1011-1014 (2019) (published online on 17 October 2019) Mixed-species bird flocks mob an Amazon treeboa (Corallus hortulanus) (Linnaeus, 1758) (Serpentes: Boidae) in the Southwest Brazilian Amazon Odair Diogo da Silva1, Thatiane Martins da Costa2, Eder Correa Fermiano1, Almério Câmara Gusmão3, Dionei José da Silva1, and Paulo Sérgio Bernarde4,* Snakes in Brazilian Amazon communities prey on Ecuador, Peru, Bolivia and Brazil, in the Amazon, several groups of animals (amphibians, lizards, rodents, Cerrado, Caatinga and Atlantic Rainforest biomes, birds, other snakes, fish, mollusks, earthworms, with its southern limit located in the state of São Paulo centipedes, among others), and birds may represent the (Hernderson, 1997; Bérnils et al., 2007). This species fourth most consumed item in some areas (Martins and exhibits nocturnal and arboreal habits, preying on small Oliveira, 1998; Bernarde and Abe, 2006). Colubridae mammals (rodents, marsupials and bats), birds, lizards, (such as Oxybelis fulgidus, Phrynonax polylepis and anuran amphibians and monkeys (Martins and Oliveira, Spilotes pullatus) and Boidae (such as Boa constrictor, 1998; Crasto-Astor et al., 1998; Pizzatto et al., 2009; Corallus hortulanus and Epicrates cenchria) are among Bernarde and Abe, 2010; Gonzalez et al., 2016; Ribeiro- the main families that include birds in their diets (Martins Júnior et al., 2016). During hunting, it use the hunting and Oliveira, 1998; Pizzatto et al., 2009; Scartozzoni et tactics of waiting or actively seeking prey on vegetation al., 2009; Bernarde and Abe, 2010). up to 25 m in height (Martins and Oliveira, 1998; Costa- The Amazon tree boa or garden tree boa, Corallus Silva and Henderson, 2012, 2013, 2014; Costa-Silva et hortulanus (Linnaeus, 1758), is the most widespread al., 2012).
    [Show full text]
  • Predation by the Centipede Scolopendra Viridicornis (Scolopendromorpha, Scolopendridae) on Roof-Roosting Bats in the Atlantic Forest of Southeastern Brazil
    Chiroptera Neotropical 18(2): 1128-1131, December 2012 Predation by the centipede Scolopendra viridicornis (Scolopendromorpha, Scolopendridae) on roof-roosting bats in the Atlantic Forest of southeastern Brazil Ana Carolina Srbek-Araujo1,2, Marcelo Rodrigues Nogueira3, Isaac Passos de Lima3, Adriano Lúcio Peracchi3 1 Programa de Pós-graduação em Ecologia, Conservação e Manejo de Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil. 2 Vale S.A. / Reserva Natural Vale, Caixa Postal n° 91, Centro, 29900-970, Linhares, ES, Brazil. 3 Laboratório de Mastozoologia – IB, Universidade Federal Rural do Rio de Janeiro, 23890-000, Seropédica, RJ, Brazil. * Corresponding author: [email protected] SHORT COMMUNICATION Abstract. Few invertebrates are currently known to feed upon bats, Manuscript history: particularly on adult individuals, fully capable of flying. Herein we Submmited in 01/Sep/2012 present new records of bat predation by centipedes, an interaction Accept in 22/Dec/2012 only previously known from observations on a Venezuelan cave. Available on line in 31/Dec/2012 Two predation events were recorded, both relating Scolopendra Section editor: Ludmilla M.S. Aguiar viridicornis (Chilopoda, Scolopendromorpha, Scolopendridae) to bats roosted in the roof of houses in the Reserva Natural Vale, an Atlantic Forest remain located in northern Espírito Santo state, southeastern Brazil. Information available from the second event includes the identification of the predated bat (adult female Eptesicus furinalis - Vespertilionidae) and the body parts (viscera and muscles of the skull, neck, shoulder, upper arm, and chest) ingested by the Scolopendra. Key words: Chiroptera, Eptesicus furinalis, Espírito Santo, feeding behavior, Vespertilionidae.
    [Show full text]
  • Boidae, Boinae): a Rare Snake from the Vale Do Ribeira, State of São Paulo, Brazil
    SALAMANDRA 47(2) 112–115 20 May 2011 ISSNCorrespondence 0036–3375 Correspondence New record of Corallus cropanii (Boidae, Boinae): a rare snake from the Vale do Ribeira, State of São Paulo, Brazil Paulo R. Machado-Filho 1, Marcelo R. Duarte 1, Leandro F. do Carmo 2 & Francisco L. Franco 1 1) Laboratório de Herpetologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, CEP: 05503-900, Brazil 2) Departamento de Agroindústria, Alimentos e Nutrição. Escola Superior de Agronomia “Luiz de Queiroz” – ESALQ/USP, Av. Pádua Dias, 11 C.P.: 9, Piracicaba, SP, CEP: 13418-900, Brazil Correspondig author: Francisco L. Franco, e-mail: [email protected] Manuscript received: 9 December 2010 The boid genusCorallus Daudin, 1803 is comprised of nine Until recently, only four specimens (including the above Neotropical species (Henderson et al. 2009): Corallus an­ mentioned holotype) of C. cropanii were deposited in her- nulatus (Cope, 1876), Corallus batesii (Gray, 1860), Co­ petological collections: three in the Coleção Herpetológica rallus blombergi (Rendahl & Vestergren, 1941), Coral­ “Alphonse Richard Hoge”, Instituto Butantan, São Paulo, lus caninus (Linnaeus, 1758), Corallus cookii Gray, 1842, Corallus cropanii (Hoge, 1954), Corallus grenadensis (Bar- bour, 1914), Corallus hortulanus (Linnaeus, 1758), and Corallus ruschenbergerii (Cope, 1876). The most conspic- uous morphological attributes of representatives of these species are the laterally compressed body, robust head, slim neck, and the presence of deep pits in some of the la- bial scales (Henderson 1993a, 1997). Species of Corallus are distributed from northern Central American to south- ern Brazil, including Trinidad and Tobago and islands of the south Caribbean. Four species occur in Brazil: Corallus batesii, C.
    [Show full text]
  • BATS of the Golfo Dulce Region, Costa Rica
    MURCIÉLAGOS de la región del Golfo Dulce, Puntarenas, Costa Rica BATS of the Golfo Dulce Region, Costa Rica 1 Elène Haave-Audet1,2, Gloriana Chaverri3,4, Doris Audet2, Manuel Sánchez1, Andrew Whitworth1 1Osa Conservation, 2University of Alberta, 3Universidad de Costa Rica, 4Smithsonian Tropical Research Institute Photos: Doris Audet (DA), Joxerra Aihartza (JA), Gloriana Chaverri (GC), Sébastien Puechmaille (SP), Manuel Sánchez (MS). Map: Hellen Solís, Universidad de Costa Rica © Elène Haave-Audet [[email protected]] and other authors. Thanks to: Osa Conservation and the Bobolink Foundation. [fieldguides.fieldmuseum.org] [1209] version 1 11/2019 The Golfo Dulce region is comprised of old and secondary growth seasonally wet tropical forest. This guide includes representative species from all families encountered in the lowlands (< 400 masl), where ca. 75 species possibly occur. Species checklist for the region was compiled based on bat captures by the authors and from: Lista y distribución de murciélagos de Costa Rica. Rodríguez & Wilson (1999); The mammals of Central America and Southeast Mexico. Reid (2012). Taxonomy according to Simmons (2005). La región del Golfo Dulce está compuesta de bosque estacionalmente húmedo primario y secundario. Esta guía incluye especies representativas de las familias presentes en las tierras bajas de la región (< de 400 m.s.n.m), donde se puede encontrar c. 75 especies. La lista de especies fue preparada con base en capturas de los autores y desde: Lista y distribución de murciélagos de Costa Rica. Rodríguez
    [Show full text]
  • Orb-Weaving Spider, Argiope Savignyi (Araneidae), Predation on the Proboscis Bat Rhynchonycteris Naso (Emballonuridae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KU ScholarWorks 282 NOTES Caribbean Journal of Science, Vol. 43, No. 2, 282-284, 2007 Copyright 2007 College of Arts and Sciences University of Puerto Rico, Mayagu¨ ez Orb-weaving Spider, Argiope savignyi (Araneidae), Predation on the Proboscis Bat Rhynchonycteris naso (Emballonuridae) ROBERT M. TIMM1 AND MAURICIO LOSILLA2 1Natural History Museum and Biodiversity Re- search Center & Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7561, USA; 2Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica. Corresponding au- thor: [email protected] ABSTRACT.—We report an observation of an orb- weaving spider (Argiope savignyi; Araneidae) cap- turing and feeding on a proboscis bat (Rhynchonyc- teris naso; Emballonuridae) at the La Selva Biological Station in the Caribbean lowlands of Costa Rica. This observation and others suggest that spiders prey upon small bats more frequently than has been noted previously, and that invertebrates should now be considered as regular predators on small bats. KEYWORDS.—Argiope, Chiroptera, Costa Rica, preda- tion, Rhynchonycteris, sac-winged bat Bats are preyed upon by a wide range of vertebrate predators but there are few re- cords of invertebrate predators. Gillette and Kimbrough (1970) listed five inverte- brate groups as potential predators— American cockroaches (Pariplaneta america- nus), Australian cockroaches (Pariplaneta australis), driver ants, scorpions, and large spiders. Molinari et al. (2005) documented predation on three species of bats by giant centipedes (Scolopendra gigantea) in a Ven- ms. received Aug. 29, 2006; accepted April 23, 2007 NOTES 283 ezuelan cave; the centipedes killed and consumed adult bats that were captured while they roosted on the ceiling of the cave.
    [Show full text]
  • Unexpected Shallow Genetic Divergence in Turks Island Boas (Epicrates C. Chrysogaster) Reveals Single Evolutionarily Significant Unit for Conservation Author(S) :R
    Unexpected Shallow Genetic Divergence in Turks Island Boas (Epicrates c. chrysogaster) Reveals Single Evolutionarily Significant Unit for Conservation Author(s) :R. Graham Reynolds, Glenn P. Gerber, and Benjamin M. Fitzpatrick Source: Herpetologica, 67(4):477-486. 2011. Published By: The Herpetologists' League DOI: URL: http://www.bioone.org/doi/full/10.1655/HERPETOLOGICA- D-11-00014.1 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Herpetologica, 67(4), 2011, 477–486 E 2011 by The Herpetologists’ League, Inc. UNEXPECTED SHALLOW GENETIC DIVERGENCE IN TURKS ISLAND BOAS (EPICRATES C. CHRYSOGASTER) REVEALS SINGLE EVOLUTIONARILY SIGNIFICANT UNIT FOR CONSERVATION 1,3 2 1 R. GRAHAM REYNOLDS ,GLENN P. GERBER , AND BENJAMIN M. FITZPATRICK 1Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA 2Institute for Conservation Research, San Diego Zoo Global, Escondido, CA 92027, USA ABSTRACT: The Turks Island Boa (Epicrates c.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Wilde Et Al. 2018
    ORIGINAL RESEARCH published: 27 November 2018 doi: 10.3389/fevo.2018.00199 Thermoregulatory Requirements Shape Mating Opportunities of Male Proboscis Bats Luke R. Wilde 1, Linus Günther 2, Frieder Mayer 2, Mirjam Knörnschild 2,3,4 and Martina Nagy 3* 1 Biology Department, Gonzaga University, Spokane, WA, United States, 2 Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany, 3 Animal Behavior Lab, Free University Berlin, Berlin, Germany, 4 Smithsonian Tropical Research Institute, Barro Colorado Island, Ancón, Panama The spatiotemporal distribution of females is a major factor affecting animal social systems. Predation risk and the distribution of feeding resources often determine where females are found, but abiotic factors (e.g., temperature) can also shape the distribution of females and therefore variation in social organization and mating systems. Given the predicted future changes in climatic variation, it is vital to understand how animal mating systems and the sexual selection process may be altered by temperature. In bats, female distribution is tightly linked to roosting ecology and particularly to the microclimatic conditions at the roost. Proboscis bats (Rhynchonycteris naso) form cohesive and stable Edited by: multi-male-multi-female groups and inhabit exposed day roosts (e.g., tree trunks, vines, Geoffrey M. While, University of Tasmania, Australia buildings). Strong selection to remain inconspicuous to visually oriented predators in the Reviewed by: exposed day roosts has been suggested to promote a rather rare male mating strategy M. Teague O’Mara, termed site-specific dominance where males defend females directly but are successful Max-Planck-Institut für Ornithologie, Germany in doing so only in their own territory.
    [Show full text]
  • By the Centipede Scolopendra Viridicornis (Scolopendridae) in Southern Amazonia
    ACTA AMAZONICA http://dx.doi.org/10.1590/1809-4392201404083 Predation of bat (Molossus molossus: Molossidae) by the centipede Scolopendra viridicornis (Scolopendridae) in Southern Amazonia Janaina da Costa de NORONHA1,2*, Leandro Dênis BATTIROLA1,3, Amazonas CHAGAS JÚNIOR4, Robson Moreira de MIRANDA1, Rainiellen de Sá CARPANEDO1, Domingos de Jesus RODRIGUES1,2,3 1 Universidade Federal de Mato Grosso Campus Sinop, Acervo Biológico da Amazônia Meridional, Av. Alexandre Ferronato, nº 1200, Setor Industrial, CEP: 78557-267, Sinop, Mato Grosso, Brasil. 2 Universidade Federal de Mato Grosso Campus Cuiabá, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Av. Fernando Corrêa da Costa, nº 2367, Bairro Boa Esperança, CEP: 78060-900, Cuiabá, Mato Grosso, Brasil. 3 Universidade Federal de Mato Grosso Campus Sinop, Programa de Pós-Graduação em Ciências Ambientais, Av. Alexandre Ferronato, nº 1200, Setor Industrial, CEP: 78557-267, Sinop, Mato Grosso, Brasil. 4 Universidade Federal de Mato Grosso Campus Cuiabá, Av. Fernando Corrêa da Costa, nº 2367, Bairro Boa Esperança, CEP: 78060-900, Cuiabá, Mato Grosso, Brasil. * Corresponding author: [email protected] ABSTRACT Centipedes are opportunistic carnivore predators, and large species can feed on a wide variety of vertebrates, including bats. The aim of this study was to report the third record of bat predation by centipedes worldwide, the first record in the Amazon region, while covering aspects of foraging, capture and handling of prey. We observed the occurence in a fortuitous encounter at Cristalino State Park, located in the Amazon region of the state of Mato Grosso, Brazil. The attack took place in a small wooden structure, at about three meters from the floor, and was observed for 20 minutes.
    [Show full text]
  • Boa, Epicrates Subflavus
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2010 MOVEMENTS, ACTIVITY RANGE, HABITAT USE, AND CONSERVATION OF THE JAMAICAN (YELLOW) BOA, EPICRATES SUBFLAVUS Erika Elise Miersma The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Miersma, Erika Elise, "MOVEMENTS, ACTIVITY RANGE, HABITAT USE, AND CONSERVATION OF THE JAMAICAN (YELLOW) BOA, EPICRATES SUBFLAVUS" (2010). Graduate Student Theses, Dissertations, & Professional Papers. 684. https://scholarworks.umt.edu/etd/684 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. MOVEMENTS, ACTIVITY RANGE, HABITAT USE, AND CONSERVATION OF THE JAMAICAN (YELLOW) BOA, EPICRATES SUBFLAVUS by Erika Elise Miersma Bachelor of Science, Calvin College, Grand Rapids, MI, 2006 Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Resource Conservation, International Conservation and Development The University of Montana Missoula, MT Summer 2010 Miersma, Erika, M.S., Summer 2010 Resource Conservation Movements, Activity Ranges, Habitat Use, and Conservation of the Jamaican (Yellow) Boa, Epicrates subflavus Chair: Dr. Christopher Servheen The endemic Jamaican boa, Epicrates subflavus, was once common throughout Jamaica. This vulnerable species is now fragmented into small populations throughout the island due to habitat loss, introduced species, human persecution and poaching.
    [Show full text]