G Iant Snakes

Total Page:16

File Type:pdf, Size:1020Kb

G Iant Snakes Copyrighted Material Some pages are omitted from this book preview. Giant Snakes Giant Giant Snakes A Natural History John C. Murphy & Tom Crutchfield Snakes, particularly venomous snakes and exceptionally large constricting snakes, have haunted the human brain for a millennium. They appear to be responsible for our excellent vision, as well as the John C. Murphy & Tom Crutchfield & Tom C. Murphy John anxiety we feel. Despite the dangers we faced in prehistory, snakes now hold clues to solving some of humankind’s most debilitating diseases. Pythons and boas are capable of eating prey that is equal to more than their body weight, and their adaptations for this are providing insight into diabetes. Fascination with snakes has also drawn many to keep them as pets, including the largest species. Their popularity in the pet trade has led to these large constrictors inhabiting southern Florida. This book explores what we know about the largest snakes, how they are kept in captivity, and how they have managed to traverse ocean barriers with our help. Copyrighted Material Some pages are omitted from this book preview. Copyrighted Material Some pages are omitted from this book preview. Giant Snakes A Natural History John C. Murphy & Tom Crutchfield Copyrighted Material Some pages are omitted from this book preview. Giant Snakes Copyright © 2019 by John C. Murphy & Tom Cructhfield All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means including information storage and retrieval systems, without permission in writing from the publisher. Printed in the United States of America First Printing March 2019 ISBN 978-1-64516-232-2 Paperback ISBN 978-1-64516-233-9 Hardcover Published by: Book Services www.BookServices.us ii Copyrighted Material Some pages are omitted from this book preview. This book is dedicated to the survival of Giant Snakes around the world. iii Copyrighted Material Some pages are omitted from this book preview. Giant Snakes Front Cover: Nathalie Aall Back Cover: Reticulated Python (Michael J. Jowers), Yellow Anaconda (JCM), Reticulated Python (JCM), Green Anaconda (Bill Lamar) Inside Front Cover: Reticulated Python (JCM) Inside Back Cover: Reticulated Python, Tiger Morph (JCM) Inside Dedication page: Ceylonese Python, Python molurus pimbrura. JCM iv Copyrighted Material Some pages are omitted from this book preview. Acknowledgments The authors offer their sincerest thanks to the following individuals for their photographs, stories, and helpful comments. For comments on the manuscript and personal stories we thank: Steve Barten, Harry Green, Tom Lorenz, Paul Moler, Gordon Schuett, Russ Gurley, Ron St. Pierre, Nick Leszai, Ken McCloud, Sara Murphy, Joe Sambono, Vic Morgan, Janet Weems, and Andrew Wyatt. Heinz Wilhelm helped us with translations; Ricky Duffield provided info on the warehouse of pythons that was supposedly blown away. Monique Crutchfield and Penny Crutchfield helped TC (Tom Crutchfield) in recalling events. The authors greatly appreciate the use of photos from the following: Gavin Bedford, Myke Clarkson, Maheta Jaydeep, Arno Naude, Bill Lamar- Green Tracks, Bill and Kathy Love, Bill Stiffler, Breck Bartholomew, Chris Gillette, Clarence Aber- crombie, Cor Viljoen, Joe Fauci, Joe Sambono, Joe Wasilewski, Jose Luis Ulgade Trejo, Kevin McCurley- New England Reptile, Max Jackson, Michael Powell, Ron Ramsey, Mike Rochford, Ray Van Nostrand Sr., Rhett Stranberry, Renato Yabiku - Huachipa Zoo, Michelle Sutton, Sebastian Holch, Tal Feinberg and Tom Lorenz -Georgia Southwestern State University. The cover art was done by Nathalie Aall at aallformsoflife.com. The images that start each chapter are as follows: “Anxiety, Vision and Snakes” is a painting titled “The Boa Constrictor” (1867) by Aloys Zötl, an Austrian artist known for his paintings of natural history subjects. “Size and Shape” is a North African Python (JCM). “Snake Origins & Biology” illustrates a Burmese Python pelvic girdle in a cleared and stained specimen (JCM.) “Pythonids, an Overview” is a juvenile Green Tree Python (JCM). “Giant Constrictors of Australasia” is a large Scrub Python (Joe Sambono). “Giant Pythons of the Afro-Asian Clade” is a North African Python (Michelle Sutton). “The Reticulated Python Clade” is a Reticu- lated Python (JCM). “Booid Snakes, an Overview” is a Ruschenberger’s Treeboa (JCM). “The Anaconda Clade, Giant Aquatic Boas” illustrates a Green Anaconda (Bill Lamar). The Boa Constrictor Clade is a Boa imperator (JCM). “Giant Snakes in Captivity” shows two exceptionally large Burmese Pythons, one a color morph, the other a wild morph (Jose Luis Ulgade Trejo). “Giant Snakes in Florida” is a Burmese Python in a cypress swamp in southern Florida (Chris Gillette). “Extinct Giant Snakes” is a highly modified Green Anaconda (Bill Lamar). � v Copyrighted Material Some pages are omitted from this book preview. Preface Since the publication of Tales of Giant Snakes (Murphy and Henderson, 1997), much of what we know about the largest snakes in the world has changed. The fossil record has revealed remains of a truly colossal snake, Titanoboa, that was living in northeastern Colombia 58 to 60 Ma. Evidence and hypotheses about how snakes evolved their giant size have become more detailed, and ecological field studies of giant snakes have become much more common. Giant and near-giant snakes are more popular than ever in the pet trade; these “designer snakes” are bred in captivity for their unique colors and patterns. The novelty skin industry is consuming giant snakes in higher numbers than ever before. Giant snakes have become invasive in southern Florida. Of lesser importance, the record Murphy and Henderson (1997) considered as representing the largest known extant snake has proved to be false. This has happened to many previous records believed to be valid. Extant giant snakes do not get as long or as massive as most people think based on the liberal acceptance of old and unreliable records that have been published and republished for many years. Murphy and Henderson (1997) defined giant snakes as those species that exceed 20 feet (6.1 m). In this book, we will continue with that definition for giant species and describe the near-giant species as those that approach 6.1 m, but may not reach it. At this point, the extant giant snakes appear to be the Green Anaconda (Eunectes murinus) of South America, the Reticulated Python (Malayopython reticulatus) and Burmese Python (Python bivittatus) of Southeast Asia, the South African Python (Python natalensis), North African Python (Python sebae) from sub-Saharan Africa, and Kinghorn’s Scrub Python (Morelia kinghorni) of northern Australia. Near-giants are the Indian Python (Python molurus), and the Western Olive Python (Liasis olivaceus barroni) from northern Australia. Other species that obtain significant size are discussed: the Oenpelli Python Simalia( oenpelliensis) from Australia, the Papuan Python (Apodora papuana) from New Guinea, and the Cuban Boa, (Chilabothrus angulifer). A discussion of the Boa Constrictor (Boa constrictor) is included, not because it’s a giant snake—but because so many people think it is! On March 6, 2015, the U.S. Fish and Wildlife Service (USFW) finalized the Constrictor Rule, a controversial policy designed to reduce the probability that more invasive constricting snakes will find their way into ecosystems in the U.S. The Constrictor Rule declared the Reticulated Python, DeSchauensee’s Anaconda, Green Anaconda and Beni Anaconda as “injurious” under the Lacey Act. A fifth species, the Boa Constrictor, was removed from consideration for listing as an inju- rious wildlife species after an outcry from keepers of pet snakes and their lobbying vii Copyrighted Material Some pages are omitted from this book preview. Giant Snakes organization, the United States Association of Reptile Keepers (USARK), applied political pressure for the Boa Constrictor removal from the listing. The rule sparked considerable controversy because these species are in the pet trade and the designer snake industry, and some are already established as invasive species in southern Florida. This book is not intended to be a platform for political activism. It is about science, natural history, and how humans and exceptionally large serpents relate to each other. Both authors have kept giant and near-giant snakes in captivity for decades, and we can sympathize with those who want to maintain and breed giant snakes in captivity. They are amazing animals, and there is much to be learned from their lives in captivity as well as in the wild. Keeping them in captivity is challenging because of their size and food requirements, and we discuss this at length in one of the chapters. However, in a foreign landscape, they are capable of devastating the local fauna. The argument for keeping giant snakes in captivity can be reduced to individual rights versus the common environmental good. This book is not a reworked Tales of Giant Snakes. It is an updated look at the scientific and popular literature, as well as personal experiences and those of people the authors know. It is intended to provide a context for giant snakes and their many relationships with humans. If you are a reader unfamiliar with the term clade, it refers to an ancestor and all of its descendants. Clades by definition are monophyletic; that is, they have one ancestor. Thus, a group of species that shared a common ancestor forms a clade. In traditional classification, a genus is a clade. In traditional classification, all the members of a family, in theory, should share a single ancestor, making it also a clade. Although this book was written for the general public, we have included a section targeted to people who keep giant snakes as pets but may not be as familiar with them as we are. Generating an appreciation of giant snakes, their evolution, and the science that builds knowledge of the natural world are also on our list of goals for this book.
Recommended publications
  • 500 Natural Sciences and Mathematics
    500 500 Natural sciences and mathematics Natural sciences: sciences that deal with matter and energy, or with objects and processes observable in nature Class here interdisciplinary works on natural and applied sciences Class natural history in 508. Class scientific principles of a subject with the subject, plus notation 01 from Table 1, e.g., scientific principles of photography 770.1 For government policy on science, see 338.9; for applied sciences, see 600 See Manual at 231.7 vs. 213, 500, 576.8; also at 338.9 vs. 352.7, 500; also at 500 vs. 001 SUMMARY 500.2–.8 [Physical sciences, space sciences, groups of people] 501–509 Standard subdivisions and natural history 510 Mathematics 520 Astronomy and allied sciences 530 Physics 540 Chemistry and allied sciences 550 Earth sciences 560 Paleontology 570 Biology 580 Plants 590 Animals .2 Physical sciences For astronomy and allied sciences, see 520; for physics, see 530; for chemistry and allied sciences, see 540; for earth sciences, see 550 .5 Space sciences For astronomy, see 520; for earth sciences in other worlds, see 550. For space sciences aspects of a specific subject, see the subject, plus notation 091 from Table 1, e.g., chemical reactions in space 541.390919 See Manual at 520 vs. 500.5, 523.1, 530.1, 919.9 .8 Groups of people Add to base number 500.8 the numbers following —08 in notation 081–089 from Table 1, e.g., women in science 500.82 501 Philosophy and theory Class scientific method as a general research technique in 001.4; class scientific method applied in the natural sciences in 507.2 502 Miscellany 577 502 Dewey Decimal Classification 502 .8 Auxiliary techniques and procedures; apparatus, equipment, materials Including microscopy; microscopes; interdisciplinary works on microscopy Class stereology with compound microscopes, stereology with electron microscopes in 502; class interdisciplinary works on photomicrography in 778.3 For manufacture of microscopes, see 681.
    [Show full text]
  • Level 1 Fauna Survey of the Gruyere Gold Project Borefields (Harewood 2016)
    GOLD ROAD RESOURCES LIMITED GRUYERE PROJECT EPA REFERRAL SUPPORTING DOCUMENT APPENDIX 5: LEVEL 1 FAUNA SURVEY OF THE GRUYERE GOLD PROJECT BOREFIELDS (HAREWOOD 2016) Gruyere EPA Ref Support Doc Final Rev 1.docx Fauna Assessment (Level 1) Gruyere Borefield Project Gold Road Resources Limited January 2016 Version 3 On behalf of: Gold Road Resources Limited C/- Botanica Consulting PO Box 2027 BOULDER WA 6432 T: 08 9093 0024 F: 08 9093 1381 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 T/F: (08) 9725 0982 E: [email protected] GRUYERE BOREFIELD PROJECT –– GOLD ROAD RESOURCES LTD – FAUNA ASSESSMENT (L1) – JAN 2016 – V3 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION .....................................................................................................1 2. SCOPE OF WORKS ...............................................................................................1 3. RELEVANT LEGISTALATION ................................................................................2 4. METHODS...............................................................................................................3 4.1 POTENTIAL VETEBRATE FAUNA INVENTORY - DESKTOP SURVEY ............. 3 4.1.1 Database Searches.......................................................................................3 4.1.2 Previous Fauna Surveys in the Area ............................................................3 4.1.3 Existing Publications .....................................................................................5 4.1.4 Fauna
    [Show full text]
  • Quick Reference Guide: Introduced Constrictors in Florida1 Steve A
    WEC302 Quick Reference Guide: Introduced Constrictors in Florida1 Steve A. Johnson and Monica E. McGarrity2 Three non-native species of large constrictor snakes are that these were escaped or released pets. View maps of loca- now breeding in Florida, and several others have been tions where each species has been encountered in Florida encountered but have not yet established wild populations. by visiting the EDDMapS Florida invasive species reporting This fact sheet, best viewed as a pdf (http://edis.ifas.ufl.edu/ portal online at http://www.IveGot1.org. Learn more about pdffiles/UW/UW34700.pdf), is a quick reference guide how to scan for, recognize, and report introduced constric- to identification of the constrictors you are most likely to tors by completing the Introduced Reptile Early Detection encounter in Florida. Although many of these snakes are and Documentation training course. Visit http://ufwildlife. not established in the wild, they are common in the pet ifas.ufl.edu/reddy.shtml to learn more and get REDDy! trade, and each has been spotted in the wild—it is likely Pythons Burmese Python (Python bivittatus) Status: established, breeding populations; range expanding Head: dark arrowhead, light center line, dark and light in Florida wedges under eyes Size: up to 12 feet or longer Body: Giraffe-like spots, dark blotches not connected Figure 1. Burmese python. Credits: Head illustration by USGS; body illustration by Monica E. McGarrity, UF 1. This document is WEC302, one of a series of the Department of Wildlife Ecology and Conservation, UF/IFAS Extension. Original publication date November 2010. Revised February 2014 and June 2017.
    [Show full text]
  • A New Species of Hepatozoon (Apicomplexa: Adeleorina) from Python Regius (Serpentes: Pythonidae) and Its Experimental Transmission by a Mosquito Vector
    J. Parasitol., 93(?), 2007, pp. 1189–1198 ᭧ American Society of Parasitologists 2007 A NEW SPECIES OF HEPATOZOON (APICOMPLEXA: ADELEORINA) FROM PYTHON REGIUS (SERPENTES: PYTHONIDAE) AND ITS EXPERIMENTAL TRANSMISSION BY A MOSQUITO VECTOR Michal Sloboda, Martin Kamler, Jana Bulantova´*, Jan Voty´pka*†, and David Modry´† Department of Parasitology, University of Veterinary and Pharmaceutical Sciences, Palacke´ho 1-3, 612 42 Brno, Czech Republic. e-mail: [email protected] ABSTRACT: Hepatozoon ayorgbor n. sp. is described from specimens of Python regius imported from Ghana. Gametocytes were found in the peripheral blood of 43 of 55 snakes examined. Localization of gametocytes was mainly inside the erythrocytes; free gametocytes were found in 15 (34.9%) positive specimens. Infections of laboratory-reared Culex quinquefasciatus feeding on infected snakes, as well as experimental infection of juvenile Python regius by ingestion of infected mosquitoes, were performed to complete the life cycle. Similarly, transmission to different snake species (Boa constrictor and Lamprophis fuliginosus) and lizards (Lepidodactylus lugubris) was performed to assess the host specificity. Isolates were compared with Hepatozoon species from sub-Saharan reptiles and described as a new species based on the morphology, phylogenetic analysis, and a complete life cycle. Hemogregarines are the most common intracellular hemo- 3 genera (Telford et al., 2004). Low host specificity of Hepa- parasites found in reptiles. The Hemogregarinidae, Karyolysi- tozoon spp. is supported by experimental transmissions between dae, and Hepatozoidae are distinguished based on the different snakes from different families. Ball (1967) observed experi- developmental patterns in definitive (invertebrate) hosts oper- mental parasitemia with Hepatozoon rarefaciens in the Boa ating as vectors; all 3 families have heteroxenous life cycles constrictor (Boidae); the vector was Culex tarsalis, which had (Telford, 1984).
    [Show full text]
  • Prevent Problems with Large Boas & Pythons
    Client Education—Snake Safety Tips Prevent Problems with Large Boas & Pythons ! According to the Humane Society of the United States,17 deaths and many more injuries have been related to large constrictors since 1978. Given the tens of thousands of large constrictors sold, the incidence of fatalities and injuries is relatively low, however every incident—including the death of four babies in their cribs and three additional children— is particularly tragic since such cases are completely preventable. So called “giant snakes” regularly exceed 8 feet (2.4 m) in length, potentially making them difficult or even unsafe to handle. Large constrictor species include the green anaconda (Eunectes murinus), Indian python (Python molurus), African rock python (Python sebae), amethystine python (Morelia amethistina), reticulated python (Python reticulatus), and Burmese python (Python molurus bivittatus). Only the latter two species, reticulated and Burmese pythons, are regularly found in the pet trade, however these species can exceed 20 feet (6.1 m) and are not recommended for casual hobbyists. One real life tragedy: In 2011, a Florida mother and her boyfriend were found guilty of the murder of her 2-year old daughter, strangled by her 8-foot 6- “The baby’s dead. inch pet Burmese python. The child was found in her crib, with the Our stupid snake snake coiled tightly around her neck and numerous bite marks on got out in the middle her face. of the night and strangled the Evaluation of the albino python named “Gypsy” found her to be baby”.—Florida man underweight, and the snake's enclosure had only a quilt for a lid.
    [Show full text]
  • Final Rule to List Reticulated Python And
    Vol. 80 Tuesday, No. 46 March 10, 2015 Part II Department of the Interior Fish and Wildlife 50 CFR Part 16 Injurious Wildlife Species; Listing Three Anaconda Species and One Python Species as Injurious Reptiles; Final Rule VerDate Sep<11>2014 18:14 Mar 09, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\10MRR2.SGM 10MRR2 mstockstill on DSK4VPTVN1PROD with RULES2 12702 Federal Register / Vol. 80, No. 46 / Tuesday, March 10, 2015 / Rules and Regulations DEPARTMENT OF THE INTERIOR Services Office, U.S. Fish and Wildlife 3330) to list Burmese (and Indian) Service, 1339 20th Street, Vero Beach, pythons, Northern African pythons, Fish and Wildlife Service FL 32960–3559; telephone 772–562– Southern African pythons, and yellow 3909 ext. 256; facsimile 772–562–4288. anacondas as injurious wildlife under 50 CFR Part 16 FOR FURTHER INFORMATION CONTACT: Bob the Lacey Act. The remaining five RIN 1018–AV68 Progulske, Everglades Program species (reticulated python, boa Supervisor, South Florida Ecological constrictor, green anaconda, [Docket No. FWS–R9–FHC–2008–0015; Services Office, U.S. Fish and Wildlife DeSchauensee’s anaconda, and Beni FXFR13360900000–145–FF09F14000] Service, 1339 20th Street, Vero Beach, anaconda) were not listed at that time and remained under consideration for Injurious Wildlife Species; Listing FL 32960–3559; telephone 772–469– 4299. If you use a telecommunications listing. With this final rule, we are Three Anaconda Species and One listing four of those species (reticulated Python Species as Injurious Reptiles device for the deaf (TDD), please call the Federal Information Relay Service python, green anaconda, AGENCY: Fish and Wildlife Service, (FIRS) at 800–877–8339.
    [Show full text]
  • Dispelling Python Regius Myths "Gorzula, Stefan, William Owusu Nsiah, and William Oduro
    Dispelling Python regius Myths "Gorzula, Stefan, William Owusu Nsiah, and William Oduro. Survey of the status and ​ By Francis Cosquieri management of the Royal Python (Python regius) in Ghana. Secrétariat CITES, 1997." ​ This paper lists several pythons being found in Before we get deep into the “nitty gritty” of the trees, although points out that the species is subject I want to take a moment to say that the very adaptable to the point of being AHH Royal Python sub-group "Not Just a Pet semi-invasive and responds well to Rock" is the best place to start for getting rid of anthropogenic disturbance. the preconceptions surrounding the poor old Royal Python. Zack Tippie and the other admins have done an incredible job of "Luiselli, Luca, and Francesco Maria Angelici. dispelling the myths surrounding Royal Python "Sexual size dimorphism and natural history ​ behaviour and husbandry, and Zack’s care traits are correlated with intersexual dietary guide for this oft-maligned snake (to be found divergence in royal pythons (Python regius) in the third Advancing Herpetological ​ from the rainforests of southeastern Nigeria." Husbandry Quarterly Newsletter) is one of the ​ ​ Italian Journal of Zoology 65.2 (1998): best I have read. 183-185." - In the meantime, here is a post I made some Half of the male pythons encountered over a time ago on AHH itself bringing together some two year period were found on trees, there is a information on the wild habits of this python. large discrepancy between habitat use by All the papers mentioned here can be found in male and female pythons, and by larger and the AHH Files section.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
    Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted.
    [Show full text]
  • Investigations Into the Presence of Nidoviruses in Pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2*
    Blahak et al. Virology Journal (2020) 17:6 https://doi.org/10.1186/s12985-020-1279-5 RESEARCH Open Access Investigations into the presence of nidoviruses in pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2* Abstract Background: Pneumonia and stomatitis represent severe and often fatal diseases in different captive snakes. Apart from bacterial infections, paramyxo-, adeno-, reo- and arenaviruses cause these diseases. In 2014, new viruses emerged as the cause of pneumonia in pythons. In a few publications, nidoviruses have been reported in association with pneumonia in ball pythons and a tiger python. The viruses were found using new sequencing methods from the organ tissue of dead animals. Methods: Severe pneumonia and stomatitis resulted in a high mortality rate in a captive breeding collection of green tree pythons. Unbiased deep sequencing lead to the detection of nidoviral sequences. A developed RT-qPCR was used to confirm the metagenome results and to determine the importance of this virus. A total of 1554 different boid snakes, including animals suffering from respiratory diseases as well as healthy controls, were screened for nidoviruses. Furthermore, in addition to two full-length sequences, partial sequences were generated from different snake species. Results: The assembled full-length snake nidovirus genomes share only an overall genome sequence identity of less than 66.9% to other published snake nidoviruses and new partial sequences vary between 99.89 and 79.4%. Highest viral loads were detected in lung samples. The snake nidovirus was not only present in diseased animals, but also in snakes showing no typical clinical signs.
    [Show full text]
  • Aspidites Melanocephalus) in the Wild
    Northern Territory Naturalist (2019) 29: 37-39 Short Note An observation of excavating behaviour by a Black-headed Python (Aspidites melanocephalus) in the wild Gerry Swan1 and Christy Harvey2 12 Acron Road, St Ives, NSW 2075, Australia Email: [email protected] 216 Fleetwood Cres, Frankston South, VIC 3199, Australia Abstract The Black-headed Python (Aspidites melanocephalus) and the Woma (Aspidites ramsayi) have both been reported as carrying out burrowing or excavating behaviour. These reports have been based mainly on observations of captive individuals, with the only observations of specimens in the wild being those of Bruton (2013) on Womas. Here we report on a Black-headed Python scooping out sand with its head and fore-body to create a depression in the wild. The pythonid genus Aspidites has been reported as exhibiting burrowing behaviour (Ross & Marzec 1990; Ehmann 1993; Barker & Barker 1994), based mainly on the report by Murphy, Lamoreaux & Barker (1981) that four captive Black-headed Pythons (A. melanocephalus) excavated gravel by using their head and neck to scoop loose material and create a cavity. O’Brien & Naylor (1987) reported that a young specimen that had been recently removed from the wild and was being held pending release, was observed digging beneath rocks and logs, ultimately creating a cavity in which it concealed itself. Fyfe & Harvey (1981) recorded similar behaviour by six captive Womas (Aspidites ramsayi). The floor of the vivaria in which they were housed was covered with 5–15 cm of sand and the pythons scooped this out in large quantities until they reached the base of the vivarium.
    [Show full text]
  • Updated 3 February 2020 1
    Updated 3 February 2020 Orange County Animal Services Advisory Board (ASAB) “Dangerous Animals Task Force” Participants: Chair Bryan Stuart; Current Members Amanda Schwoerke, Edmund Tiryakian, Beth Grooms, Irene Phipps, Bob Marotto, Rachel Plast; Past Members Susan Elmore, Evelyn Daniel --- Animal Control Ordinance DIVISION 5. – KEEPING OF WILD ANIMALS POTENTIALLY DANGEROUS TO PERSONS AND PROPERTY Sec. 4-181. Definitions. As used hereinafter, the following term shall mean: Wild Animals Potentially Dangerous to Persons and Property, hereinafter referred to as “Wild and Dangerous Animals”: The term applies to the following types of animals that are deemed dangerous and injurious to the public and/or domesticated animals and/or other property based on elevated risk of causing physical, zoonotic or epidemiological harm: Venomous reptiles, defined as lizard and snake species or subspecies that are capable of injecting toxins that may cause severe pain, injury, and/or death to humans; Crocodilians; Large constricting snakes, meaning any heavy-bodied snake that feeds by constriction and which species, subspecies or hybrid may attain a total adult body length reaching or exceeding 10 feet, including, but not restricted to, Green Anaconda (Eunectes murinus), Yellow Anaconda (Eunectes notaeus), Reticulated Python [Python (=Malayopython) reticulatus), Burmese Python (Python bivittatus), Indian Python (Python molurus), African Rock Python (Python sebae), and Amethystine Python [Morelia (=Simalia) amethistina]i; Felines other than the domestic house cat. Any hybrid of such felines with the domestic house cat (hereafter as “hybrid felines”) is permissible only if the hybrid is a filial 5 (F5) hybrid or later (defined as being five or more generations since the cross included a pure wild feline) as documented by a breeder pedigree from a generally accepted registry, or genetic testing methods that are generally accepted by the scientific community; maintained at all times in an enclosed environment; and documented to be vaccinated against rabies by a licensed veterinarian.
    [Show full text]