Molecular Precursors to Actinide Oxide and Nitride Nanomaterials By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nonproliferation and Nuclear Forensics: Detailed, Multi- Analytical Investigation of Trinitite Post-Detonation Materials
SIMONETTI ET AL. CHAPTER 14: NONPROLIFERATION AND NUCLEAR FORENSICS: DETAILED, MULTI- ANALYTICAL INVESTIGATION OF TRINITITE POST-DETONATION MATERIALS Antonio Simonetti, Jeremy J. Bellucci, Christine Wallace, Elizabeth Koeman, and Peter C. Burns, Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, 46544, USA e-mail: [email protected] INTRODUCTION (and ≤7% 240Pu), whereas it is termed “reactor fuel In 2010, the Joint Working Group of the grade” if the material consists >8% 240Pu. American Physical Society and the American Production of enriched U is costly and an energy- Association for the Advancement of Science defined intensive process, and the most widely used Nuclear Forensics as “the technical means by which processes are gaseous diffusion of UF6 (employed nuclear materials, whether intercepted intact or by the United States and France) and high- retrieved from post-explosion debris, are performance centrifugation of UF6 (e.g., Russia, characterized (as to composition, physical condition, Europe, and South Africa). The uranium processed age, provenance, history) and interpreted (as to under the “Manhattan Project” and used within the provenance, industrial history, and implications for device detonated over Hiroshima was produced by nuclear device design).” Detailed investigation of electromagnetic separation; the latter process was post-detonation material (PDM) is critical in ultimately abandoned in the late 1940s because of preventing and/or responding to nuclear-based its significant energy demands. The minimum terrorist activities/threats. However, accurate amount of fissionable material required for a nuclear identification of nuclear device components within reaction is termed its “critical mass”, and the value PDM typically requires a variety of instrumental depends on the isotope employed, properties of approaches and sample characterization strategies; materials, local environment, and weapon design the latter may include radiochemical separations, (Moody et al. -
Transition-Metal-Bridged Bimetallic Clusters with Multiple Uranium–Metal Bonds
ARTICLES https://doi.org/10.1038/s41557-018-0195-4 Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds Genfeng Feng1, Mingxing Zhang1, Dong Shao 1, Xinyi Wang1, Shuao Wang2, Laurent Maron 3* and Congqing Zhu 1* Heterometallic clusters are important in catalysis and small-molecule activation because of the multimetallic synergistic effects from different metals. However, multimetallic species that contain uranium–metal bonds remain very scarce due to the difficulties in their synthesis. Here we present a straightforward strategy to construct a series of heterometallic clusters with multiple uranium–metal bonds. These complexes were created by facile reactions of a uranium precursor with Ni(COD)2 (COD, cyclooctadiene). The multimetallic clusters’ cores are supported by a heptadentate N4P3 scaffold. Theoretical investigations indicate the formation of uranium–nickel bonds in a U2Ni2 and a U2Ni3 species, but also show that they exhibit a uranium–ura- nium interaction; thus, the electronic configuration of uranium in these species is U(III)-5f26d1. This study provides further understanding of the bonding between f-block elements and transition metals, which may allow the construction of d–f hetero- metallic clusters and the investigation of their potential applications. ultimetallic molecules are of great interest because of This study offers a new opportunity to investigate d− f heteromul- their fascinating structures and multimetallic synergistic timetallic clusters with multiple uranium–metal bonds for small- Meffects for catalysis and small molecule activation1–7. Both molecule activation and catalysis. biological nitrogen fixation and industrial Haber–Bosch ammonia syntheses, for example, are thought to utilize multimetallic cata- Results and discussion lytic sites8,9. -
Radiological Significance of Thorium Processing in Manufacturing
Attention Microfiche User, . The original document from which this microfiche was made was found to contain some imperfection or imperfections that redtice full comprehension of some of the text despite the gcod technical quality of the microfiche itself. The imperfections may be: - missing or illegible pages/figures - wrong pagination - poor overall printing quality, etc. We normally refuse to microfiche such a document and request a replacement document (or pages) from the National INIS Centre concerned. However, our experience shows that many months pass before such documents are replaced. Sometimes the Centre is not able to supply a better copy or, in some cases, the pages that were supposed to be missing correspond to a wrong pagination only. Me feel that it is better to proceed with distributing the microfiche made of these documents than to withhold them till the imperfections are removed. If the removals are subsequestly made then replacement microfiche can be issued. In line with this approach then, our specific practice for microfiching documents with imperfections is as follows: 1. A microfiche of an imperfect document will be marked with a special symbol (black circle) on the left of the title. This symbol will appear on all masters and copies of the document (1st fiche and trailer fiches) even if the imperfection is on one fiche of the report only. 2. If imperfection is not too general the reason will be specified on a sheet such as this, in the space below. 3. The microfiche will be considered as temporary, but sold at the normal price. Replacements, if they can be issued, will be available for purchase at the regular price. -
Thermodynamic Properties of Thorium Dioxide from 298 to 1200 Ok
JO URNAL OF RESEARCH of the National Bureau of Standards-A. Physics and Chemistry Vol. 65, No.2, March- April 1961 Thermodynamic Properties of Thorium Dioxide From 298 to 1,200 oK Andrew C. Victor and Thomas B. Douglas (November 26, 1960) As a step in developing new standards of he.at ca l ~ac i ty applicable up to very h~gh temperatures, t he heat content (enthalpy) of thol'lum dlOxldoe, I h02 , relatn:,e to 2~3 K , was accurately measured at ten temperatures from 323 to 1,173 K . A Bunsen 1.ce ca l ol'l~neter and a drop method were used to make t he mea ~ urements on two samples of ":ldely d Iff erent bulk densities. The corresponding heat-capacity values for the hIgher denSIty sample ~re represented within t heir uncertain ty (estimated to be ± 0.3 to 0.5 %) by the followlI1g empirical equation 1 (cal mole- I deg- I at T OK) : C ~ = 17 . 057 + 1 8. 06 ( 10 -4) T - 2.5166 (1 05)/1'2 At 298 oK t his equation agrees with previously reported low-temperatu.re measurements made with an adiabatic calorimeter. Values of heat content, heat capaelty, entropy, and Gibb's free energy function are tabulated from 298.15 t o 1,200 oK. 1. Introduction measll remen ts arc soon to be extended up to ap proximately 1,800 OK. Current practical and theoretical developm~l!ts However, at higher temperatures aluminum oxide have increased the need for accurate heat capaCltlOs is impractical as a heat standard, for it becomes and related thermal properties at high temp ~rature s, increasingly volatile, and melts at approximately yet the values reported for the same mat~nal from 2,300 OK. -
Nuclear Scholars Initiative a Collection of Papers from the 2013 Nuclear Scholars Initiative
Nuclear Scholars Initiative A Collection of Papers from the 2013 Nuclear Scholars Initiative EDITOR Sarah Weiner JANUARY 2014 Nuclear Scholars Initiative A Collection of Papers from the 2013 Nuclear Scholars Initiative EDITOR Sarah Weiner AUTHORS Isabelle Anstey David K. Lartonoix Lee Aversano Adam Mount Jessica Bufford Mira Rapp-Hooper Nilsu Goren Alicia L. Swift Jana Honkova David Thomas Graham W. Jenkins Timothy J. Westmyer Phyllis Ko Craig J. Wiener Rizwan Ladha Lauren Wilson Jarret M. Lafl eur January 2014 ROWMAN & LITTLEFIELD Lanham • Boulder • New York • Toronto • Plymouth, UK About CSIS For over 50 years, the Center for Strategic and International Studies (CSIS) has developed solutions to the world’s greatest policy challenges. As we celebrate this milestone, CSIS scholars are developing strategic insights and bipartisan policy solutions to help decisionmakers chart a course toward a better world. CSIS is a nonprofi t or ga ni za tion headquartered in Washington, D.C. The Center’s 220 full-time staff and large network of affi liated scholars conduct research and analysis and develop policy initiatives that look into the future and anticipate change. Founded at the height of the Cold War by David M. Abshire and Admiral Arleigh Burke, CSIS was dedicated to fi nding ways to sustain American prominence and prosperity as a force for good in the world. Since 1962, CSIS has become one of the world’s preeminent international institutions focused on defense and security; regional stability; and transnational challenges ranging from energy and climate to global health and economic integration. Former U.S. senator Sam Nunn has chaired the CSIS Board of Trustees since 1999. -
Extraction of Thorium Oxide from Monazite Ore
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work 5-2019 Extraction of Thorium Oxide from Monazite Ore Makalee Ruch University of Tennessee, Knoxville, [email protected] Chloe Frame University of Tennessee, Knoxville Molly Landon University of Tennessee, Knoxville Ralph Laurel University of Tennessee, Knoxville Annabelle Large University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Part of the Environmental Chemistry Commons, Geological Engineering Commons, and the Other Chemical Engineering Commons Recommended Citation Ruch, Makalee; Frame, Chloe; Landon, Molly; Laurel, Ralph; and Large, Annabelle, "Extraction of Thorium Oxide from Monazite Ore" (2019). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/2294 This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Extraction of Thorium Oxide from Monazite Ore Dr. Robert Counce Department of Chemical and Biomolecular Engineering University of Tennessee Chloe Frame Molly Landon Annabel Large Ralph Laurel Makalee Ruch CBE 488: Honors -
Fabrication of Thorium and Thorium Dioxide
Natural Science, 2015, 7, 10-17 Published Online January 2015 in SciRes. http://www.scirp.org/journal/ns http://dx.doi.org/10.4236/ns.2015.71002 Fabrication of Thorium and Thorium Dioxide Balakrishna Palanki (Retired) Nuclear Fuel Complex, Hyderabad, India Email: [email protected] Received 10 November 2014; revised 9 December 2014; accepted 28 December 2014 Copyright © 2015 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Thorium based nuclear fuel is of immense interest to India by virtue of the abundance of Thorium and relative shortage of Uranium. Thorium metal tubes were being cold drawn using copper as cladding to prevent die seizure. After cold drawing, the copper was removed by dissolution in ni- tric acid. Thorium does not dissolve being passivated by nitric acid. Initially the copper cladding was carried out by inserting copper tubes inside and outside the thorium metal tube. In an inno- vative development, the mechanical cladding with copper was replaced by electroplated copper with a remarkable improvement in thorium tube acceptance rates. Oxalate derived thoria powder was found to require lower compaction pressures compared to ammonium diuranate derived urania powders to attain the same green compact density. However, the green pellets of thoria were fragile and chipped during handling. The strength improved after introducing a ball milling step before compaction and maintaining the green density above the specified value. Alternatively, binders were used later for greater handling strength. Magnesia was conventionally being used as dopant to enhance the sinterability of thoria. -
The New Nuclear Forensics: Analysis of Nuclear Material for Security
THE NEW NUCLEAR FORENSICS Analysis of Nuclear Materials for Security Purposes edited by vitaly fedchenko The New Nuclear Forensics Analysis of Nuclear Materials for Security Purposes STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Sven-Olof Petersson, Chairman (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Jayantha Dhanapala (Sri Lanka) Ambassador Wolfgang Ischinger (Germany) Professor Mary Kaldor (United Kingdom) The Director DIRECTOR Dr Ian Anthony (United Kingdom) Signalistgatan 9 SE-169 70 Solna, Sweden Telephone: +46 8 655 97 00 Fax: +46 8 655 97 33 Email: [email protected] Internet: www.sipri.org The New Nuclear Forensics Analysis of Nuclear Materials for Security Purposes EDITED BY VITALY FEDCHENKO OXFORD UNIVERSITY PRESS 2015 1 Great Clarendon Street, Oxford OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © SIPRI 2015 The moral rights of the authors have been asserted All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of SIPRI, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organizations. -
Nonproliferation Nuclear Forensics
LLNL-CONF-679869 Nonproliferation Nuclear Forensics I. Hutcheon, M. Kristo, K. Knight December 3, 2015 Mineralogical Assocaition of Canada Short Course Series #43 Winnipeg, Canada May 20, 2013 through May 21, 2013 Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. HUTCHEON ET AL. CHAPTER 13: NONPROLIFERATION NUCLEAR FORENSICS Ian D. Hutcheon, Michael J. Kristo and Kim B. Knight Glenn Seaborg Institute Lawrence Livermore National Laboratory P.O. Box 808, Livermore, California, 94551-0808, USA e-mail: [email protected] INTRODUCTION and age; these data are then interpreted to evaluate Beginning with the breakup of the Soviet Union provenance, production history and trafficking in the early 1990s, unprecedented amounts of route. The goal of these analyses is to identify illicitly obtained radiological and nuclear materials forensic indicators in the interdicted nuclear and began to be seized at border crossings and radiological samples or the surrounding international points of entry. -
Process for the Production of Uranium Trifluoride
United States Patent im [in 3,964,965 Tagawa [45] June 24, 1976 [54] PROCESS FOR THE PRODUCTION OF URANIUM TRIFLUORIDE [56] References Cited [75] Inventor: Hiroaki Tagawa, Tokaimura, Japan UNITED STATES PATENTS [73] Assignee: Japan Atomic Energy Research 3,034,855 5/1962 Jenkins et al 423/258 Institute, Tokyo, Japan [22] Filed: Dec. 20, 1973 Primary Examiner—Stephen J. Lechert, Jr. Attorney, Agent, or Firm—Stevens, Davis, Miller & [21] Appl. No.: 426,593 Mosher [30] Foreign Application Priority Data [57] ABSTRACT Dec. 26, 1972 Japan 47-129560 A novel method is disclosed for producing a pure ura- nium trifluoride efficiently. Said method is character- [52] U.S. CI 423/258; 423/259; ized by heating a mixture of uranium tetrafluoride and 252/301.1 R uranium nitride in an inert gas stream or under [51] Int. CI.2. C01G 43/06 vacuum. [58] Field of Search 423/258, 259; 252/301.1 R 2 Claims, No Drawings 3,976, 1 2 PROCESS FOR THE PRODUCTION OF URANIUM DETAILED DESCRIPTION OF INVENTION TRIFLUORIDE According to the present invention, uranium trifluo- ride is produced by heating a mixture of uranium tetra- BACKGROUND OF THE INVENTION 5 fluoride and uranium nitride in the form of powder or 1. Field of the Invention molding in a stream of inert gas or under vacuum. In The present invention relates to a method for pro- this invention, uranium sesquinitride (U2N3) or ura- duction of pure uranium trifluoride characterized by nium mononitride (UN) can be used for the starting heating a mixture of uranium tetrafluoride and uranium material. -
Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates
Fuels Campaign (TRP) Transmutation Research Program Projects 2007 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates Kenneth Czerwinski University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_fuels Part of the Nuclear Commons, Nuclear Engineering Commons, and the Oil, Gas, and Energy Commons Repository Citation Czerwinski, K. (2007). Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates. 60-61. Available at: https://digitalscholarship.unlv.edu/hrc_trp_fuels/72 This Annual Report is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Annual Report in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Annual Report has been accepted for inclusion in Fuels Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. Task 28 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates K. Czerwinski BACKGROUND actinide nitrides. x To characterize actinide nitrides structurally and thermally. Synthesis of actinium mononitrides using carbothermic reduction x To use high resolution TEM techniques to explore the micro- of the corresponding oxides has a few outstanding issues, includ- structure of the radioactive samples. ing the formation of secondary phases such as oxides and carbides and low densities of the final product. -
Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates
Fuels Campaign (TRP) Transmutation Research Program Projects 2008 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates Kenneth Czerwinski University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_fuels Part of the Nuclear Commons, Nuclear Engineering Commons, Oil, Gas, and Energy Commons, and the Radiochemistry Commons Repository Citation Czerwinski, K. (2008). Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates. 60-61. Available at: https://digitalscholarship.unlv.edu/hrc_trp_fuels/73 This Annual Report is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Annual Report in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Annual Report has been accepted for inclusion in Fuels Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. Task 28 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates K. Czerwinski BACKGROUND • To use high resolution TEM techniques to explore the micro- structure of the radioactive samples. Synthesis of actinium mononitrides using carbothermic reduction of the corresponding oxides has a few outstanding issues, includ- RESEARCH ACCOMPLISHMENTS ing the formation of secondary phases such as oxides and carbides and low densities of the final product.