Process for the Production of Uranium Trifluoride

Total Page:16

File Type:pdf, Size:1020Kb

Process for the Production of Uranium Trifluoride United States Patent im [in 3,964,965 Tagawa [45] June 24, 1976 [54] PROCESS FOR THE PRODUCTION OF URANIUM TRIFLUORIDE [56] References Cited [75] Inventor: Hiroaki Tagawa, Tokaimura, Japan UNITED STATES PATENTS [73] Assignee: Japan Atomic Energy Research 3,034,855 5/1962 Jenkins et al 423/258 Institute, Tokyo, Japan [22] Filed: Dec. 20, 1973 Primary Examiner—Stephen J. Lechert, Jr. Attorney, Agent, or Firm—Stevens, Davis, Miller & [21] Appl. No.: 426,593 Mosher [30] Foreign Application Priority Data [57] ABSTRACT Dec. 26, 1972 Japan 47-129560 A novel method is disclosed for producing a pure ura- nium trifluoride efficiently. Said method is character- [52] U.S. CI 423/258; 423/259; ized by heating a mixture of uranium tetrafluoride and 252/301.1 R uranium nitride in an inert gas stream or under [51] Int. CI.2. C01G 43/06 vacuum. [58] Field of Search 423/258, 259; 252/301.1 R 2 Claims, No Drawings 3,976, 1 2 PROCESS FOR THE PRODUCTION OF URANIUM DETAILED DESCRIPTION OF INVENTION TRIFLUORIDE According to the present invention, uranium trifluo- ride is produced by heating a mixture of uranium tetra- BACKGROUND OF THE INVENTION 5 fluoride and uranium nitride in the form of powder or 1. Field of the Invention molding in a stream of inert gas or under vacuum. In The present invention relates to a method for pro- this invention, uranium sesquinitride (U2N3) or ura- duction of pure uranium trifluoride characterized by nium mononitride (UN) can be used for the starting heating a mixture of uranium tetrafluoride and uranium material. nitride in an inert gas stream or under vacuum. 1<f The reaction for the preparation of uranium trifluo- 2. Description of Prior Art ride from uranium tetrafluoride and uranium mononi- As means of producing uranium trifluoride, two tride is shown in Eq. 1: methods have been so far adopted. The present inven- tor comments below on these two prior art methods. 3UF4 + UN = 4UF;l + 'AN. F.q. I One is characterized by heating a UF , to a high tem- 15 perature in an atmosphere of hydrogen gas free from The reaction for the preparation of uranium trifluo- oxygen and moisture to reduce the UF4 to UF:l. And the ride from uranium tetrafluoride and uranium sesquini- other is characterized by heating a uranium metal in a tride is shown in Eq. 2: stream of hydrogen gas to convert the uranium metal to 20 uranium hydride, decomposing the uranium hydride to 3LTH + ViU,N.n = 4UF-, + %N, L-q. 2 finely divide uranium metal powder under additional elevation of temperature and then fusing the mixture of The nitrogen gas formed is released outside the sys- UF, and the finely divided uranium metal powder to tem. The invention of this application can be worked at form UF:, in a stream of argon gas at high ignition tem- peratures. Each of these two methods has its own de- 25 temperatures in the range of 700°- 1000°C; however, merit as noted below. it is preferably worked at temperatures ranging from In the former case, because the hydrogen fluoride 900°C to 950°C. Since uranium tetrafluoride evapo- rates at temperatures above 1000°C, the reaction tem- formed along with UF:) is highly corrosive, it is very difficult to find materials for a reactor which are resis- peratures should be selected from the range below tant to the corrosive effect of the hydrogen fluoride at 30 1000°C. high temperatures. The same results can be obtained if the reaction is In the latter case, the finely divided uranium metal worked either under vacuum or in a stream of inert gas, powder is very hard to handle and is apt to be contami- e.g. He, Ar, etc. nated with impurities, e.g. oxygen. In addition, the In accordance with this invention, uranium trifluo- uranium metal powder itself is easily sintered, and 35 ride can be produced at a commercially practicable therefore the reaction is rarely completed satisfacto- reaction rate. rily. Since both the starting materials (uranium tetrafluo- Those skilled in the art have so far believed that ride and uranium nitride) used in this invention can be uranium tetrafluoride does not react with uranium produced in a state of high purity, a minimum amount nitride. 40 of impurities is left in the uranium trifluoride produced. However, I, the inventor of this invention have found The impurity content of the finished product does not that uranium trifluoride can be easily produced by exceed that of the starting materials. heating a mixture of uranium tetrafluoride and uranium And furthermore, since no corrosive gases are pro- nitride in a stream of inert gas (rare gas) or under duced by this invention, this invention can be worked vacuum. 45 easily at high temperatures. This invention will be further described by reference BRIEF SUMMARY OF INVENTION to the following specific examples, It should be under- Therefore, the main object of the present invention is stood, however, that although these examples may to provide uranium trifluoride in a state of high purity. describe in detail certain preferred operating condi- Another object of this invention is to provide a sim- 30 tions and/or materials and/or proportions, they are pie, efficient and economical process for production of provided primarily for the purpose of illustration and uranium trifluoride. the invention, in its broader aspects, is not limited An additional object of this invention is to provide an thereto. uranium trifluoride prepared by heating a mixture of EXAMPLE 1 uranium tetrafluoride and uranium nitride in a stream 55 of inert gas. Both uranium tetrafluoride (UF4) and uranium A further object of this invention is to provide a mononitride (UN) containing 5.53 percent nitrogen by uranium trifluoride prepared by heating a mixture of weight were finely powdered and passed through a uranium tetrafluoride and uranium nitride under vac- sieve of 200 mesh. 60 uum. And then, the powdered uranium tetrafluoride (UF4) A still further object of this invention is to provide a and uranium mononitride (UN) were mixed together, process for the production of uranium trifluoride char- the proportions of UF4 to UN being 3.74:1 by weight, acterized by heating a mixture of uranium tetrafluoride and molded into pellets. The pellets were then placed and uranium nitride in a stream of inert gas or under in a quartz crucible lined with a nickel plate, and there- vacuum. after, the quartz crucible was placed in a quartz reac- These and other objects and advantages of this inven- tion tube, which was then evacuated to 1()~5 mmHg and tion will become apparent from the specification and sealed to make a vacuum system. The system was main- claims. tained at 950°C for 30 min.; then the nitrogen gas 3,976,750 formed in the system was removed and the system was Since the scope of the present invention has been cooled. stated broadly in the foregoing description that is by no Single-phase uranium trifluoride was obtained in a means restrictive but merely illustrative, it should be 98.5% yeild. liberally interpreted so as to obtain the benefit of all its equivalents to which I believe this invention is justly EXAMPLE 2 entitled. Uranium tetrafluoride (UF.,) and uranium sesquini- What is claimed is: 1. A process for the production of uranium trifluo- tride (U2N:1) containing 8.61 percent nitrogen by weight were mixed together, the proportions of UF., to ride, comprising heating a mixture of uranium tetraflu- 10 oride and uranium nitride selected from the group U N being 3.61:1 by weight, and molded into pellets. 2 :! consisting of uranium mononitride and uranium ses- The thus formed pellets were then placed in a quartz quinitride, at a temperature in the range of 700°C to boat lined with a nickel plate, which was subsequently 1000°C, in a stream of inert gas or under vacuum. heated to 900°C and held then for 60 min. in a quartz 2. A process according to claim 1 wherein the mix- reaction tube in a stream of argon gas of high purity. 15 ture is heated at temperature in the range of 900°C to A single-phase uranium trifluoride was obtained in a 950°C. 97.0% yield. 20 25 30 35 40 45 50 55 60 65 .
Recommended publications
  • Transition-Metal-Bridged Bimetallic Clusters with Multiple Uranium–Metal Bonds
    ARTICLES https://doi.org/10.1038/s41557-018-0195-4 Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds Genfeng Feng1, Mingxing Zhang1, Dong Shao 1, Xinyi Wang1, Shuao Wang2, Laurent Maron 3* and Congqing Zhu 1* Heterometallic clusters are important in catalysis and small-molecule activation because of the multimetallic synergistic effects from different metals. However, multimetallic species that contain uranium–metal bonds remain very scarce due to the difficulties in their synthesis. Here we present a straightforward strategy to construct a series of heterometallic clusters with multiple uranium–metal bonds. These complexes were created by facile reactions of a uranium precursor with Ni(COD)2 (COD, cyclooctadiene). The multimetallic clusters’ cores are supported by a heptadentate N4P3 scaffold. Theoretical investigations indicate the formation of uranium–nickel bonds in a U2Ni2 and a U2Ni3 species, but also show that they exhibit a uranium–ura- nium interaction; thus, the electronic configuration of uranium in these species is U(III)-5f26d1. This study provides further understanding of the bonding between f-block elements and transition metals, which may allow the construction of d–f hetero- metallic clusters and the investigation of their potential applications. ultimetallic molecules are of great interest because of This study offers a new opportunity to investigate d− f heteromul- their fascinating structures and multimetallic synergistic timetallic clusters with multiple uranium–metal bonds for small- Meffects for catalysis and small molecule activation1–7. Both molecule activation and catalysis. biological nitrogen fixation and industrial Haber–Bosch ammonia syntheses, for example, are thought to utilize multimetallic cata- Results and discussion lytic sites8,9.
    [Show full text]
  • THE KINETICS OP the REDUCTION of URANIUM TETRAFLUORIDE by MAGNESIUM in the Jose T. I. Domingues London, May, 1964
    THE KINETICS OP THE REDUCTION OF URANIUM TETRAFLUORIDE BY MAGNESIUM A thesis presented for the degree of Doctor of Philosophy in the University of London by Jose T. I. Domingues London, May, 1964 ABSTRACT The kinetics of the reduction of sintered UF4 pellets by Mg vapour was investigated at 620° and 69000, using a transportation technique and highly purified argon as the carrier gas. The products of the reaction were identified by microscopic observation of cross sections and by X-ray powder diffraction, electron probe and chemical analyses. Two coherent product layers (UF and MgF2) are formed on the UF the uranium metal 3 4' being interspersed in the outer layer (MgF2) as fine globules or thin lamellae. Marker experiments showed 2+ that the MgF2 layer grows by inward migration of Mg ions and the UF layer grows inwards probably by outward 3 migration of fluorine ions. The rate of both reactions follows a parabolic rate law, after an initial period for which a different law applies, probably a direct logarithmic relationship. A discussion is given of the possible mechanisms in the two cases. From reduction experiments with UF3 pellets it was demonstrated that migration through the MgF2 layer is the rate determining step of the overall reaction. The parabolic rate constants for the overall reaction are 1.8 x 10-11 and 4.75 x 10-10 g2cm-4min-1 at 620° and 690°C respectively. The parabolic rate constants for the partial reaction yielding UF3 are 6.7 x 10-13 and 1.1 x 10-1° g2cni4min-1.- The industrial process of bomb production of uranium was reviewed and discussed, and suggestions are made for the interpretation of the mechanism of ignition of the reaction by a simple theory of self heating.
    [Show full text]
  • A44 24 -2/ 124-Ea L-E
    March 6, 1951 A. S. NEWTON ETAL 2,544,277 PREPARATION OF URANIUM NITRIDE Filed June 12, 1945 %22%2 SC22222222222222222SSaccaccounccc. 5 V. N 2&383i;3. &4 SSSSSSSSSSSSS Awar areakawazaarawawaramaranaergamawaramarasaaaaaaaaara SSSSSS sys SSSSSSSS & S is SSS S S. S. S. wavvavusavus Avavas Awar. us 2/22ZZzesses. s -aas/2za/2Zzao 2.1222/a2zz Yrs: %24427 6222227? 72/2Zasto Zz A44 24 -2/ 124-ea-222//zesz. l-e- Patented Mar. 6, 1951 2,544,277 UNITED STATES PATENT OFFICE 2,544,277 PREPARATION OF URANIUMNITRIDE Amos S. Newton and Oliver Johnson, Annes, Iowa, assignors to the United States of Arinerica, as represented by the United States Atomic En ergy Commission Application June 12, 1945, Seria No. 599,067 2 Claims. (CI. 23-14.5) 2 The invention relates to the preparation of a tion 8 and casing 9. Inlet tubes 9 and uranium nitride. are attached to a Source of ammonia, hydrogen, It is an object of the invention to provide a or other gaseous reactant to be used in the proc uranium nitride by the reaction of uranium either ess. Exhaust tube 8 leads to any suitable means in compound form or as a metal with ammonia. for disposing of waste products exhausted dur or nitrogen. ing the process. The apparatus is formed of a It is a more specific object of the invention material which is resistant to the high tempera to provide a process for obtaining a pure product tures and corrosion resulting from the process. in which the uranium is prepared in reactable Heat resistant glass is suitable for this purpose.
    [Show full text]
  • Sop Pyrophoric 2 12/16/2019
    Owner DOC. NO. REV. DATE C.H.O SOP PYROPHORIC 2 12/16/2019 DOC. TITLE SOP FOR PYROPHORIC CHEMICALS Environmental Health & Safety STANDARD OPERATING PROCEDURES (SOP) FOR WORKING WITH PYROPHORIC CHEMICALS AT AMHERST COLLEGE ___________________________________________________________________ General Information Pyrophoric Chemicals are solid, liquid, or gas compounds that, when exposed to air or moisture at or below 54°C (130°F), can spontaneously ignite. Examples of Pyrophoric chemicals used at Amherst College Laboratories include: sodium hydride, zinc powder, and Grignard reagents. See the “Appendix” page below for a full list of Pyrophoric Chemicals. Pyrophoric chemicals are often used as catalysts in chemical reactions or as reducing and deprotonating agents in organic chemistry. Note that Pyrophoric chemicals may also be characterized by other hazards, hence, users of these chemicals may also need to refer to other SOPs that cover other hazards. In addition, each individual chemical’s Safety Data Sheet (SDS) should be consulted before they are used. _____________________________________________________________________________________ Personal Protective Equipment When working with Pyrophoric Chemicals, the following personal protective equipment (PPE) must be worn, at a minimum. Depending on the specific chemical, other forms of protection might be required. Consult the SDS for each chemical before use: Splash goggles Lab coat (Fire resistant lab coat highly recommended) Long pants Close toed shoes Gloves – Nitrile gloves adequate for accidental contact with small quantities. However, the use of fire resistant Nomex/ Leather Pilot’s gloves is highly recommended _____________________________________________________________________________________ Safety Devices All work with Pyrophoric chemicals must be done in a glove box, vacuum manifold, or any enclosed inert environment. If work must be done in a fume hood, ensure that the hood sash is in the lowest feasible position.
    [Show full text]
  • Primer on Spontaneous Heating and Pyrophoricity
    NOT MEASUREMENT SENSITIVE DOE‐HDBK‐1081‐2014 Supersedes DOE‐HDBK‐1081‐94 DOE HANDBOOK PRIMER ON SPONTANEOUS HEATING AND PYROPHORICITY U.S. Department of Energy FSC‐6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT: Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web page at: http://www.hss.doe.gov/nuclearsafety/ns/techstds/ Key words: Alkali Metals , Aluminum, Arsine, Calcium, Class D Extinguishing Agents, Coal Storage, Combustible Metals, Diborane, Fire, Hafnium, Heating, Hydrazine, Hydrocarbons, Hypergolic, Hypergolic Reaction, Iron, Lithium, Magnesium, Metals, Microbial Heating, NaK, Organic, Oxidizer, Phosphine, Phosphorus, Plutonium, Potassium, Pyrophoric, Pyrophoricity, Pyrophoric Gases, Pyrophoric Reagents, Silane Specific Area, Sodium, Sodium‐Potassium, Specific Surface Area, Spontaneous, Spontaneous Combustion, Steel, Super Oxides, Thorium, Titanium, Uranium, Water Reactive Metals, Zinc, Zirconium FOREWORD The Primer on Spontaneous Heating and Pyrophoricity is approved for use by all DOE Components. It was developed to help Department of Energy (DOE) facility contractors prevent fires caused by spontaneous ignition. Spontaneously ignitable materials include those that ignite because of a slow buildup of heat (spontaneous heating) and those that ignite in air (pyrophoricity). The scientific principles of combustion and how they affect materials known to be spontaneously combustible are explained. The fire hazards of specific spontaneously heating and pyrophoric materials are discussed as well as techniques to prevent their ignition. Suitable fire extinguishing agents are included for most materials as well as safety precautions for storage and handling. The DOE Primers are fundamental handbooks on safety‐related topics of interest in the DOE Complex and are intended as an educational aid for operations and maintenance personnel and others who may have an interest in this topic.
    [Show full text]
  • Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates
    Fuels Campaign (TRP) Transmutation Research Program Projects 2007 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates Kenneth Czerwinski University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_fuels Part of the Nuclear Commons, Nuclear Engineering Commons, and the Oil, Gas, and Energy Commons Repository Citation Czerwinski, K. (2007). Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates. 60-61. Available at: https://digitalscholarship.unlv.edu/hrc_trp_fuels/72 This Annual Report is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Annual Report in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Annual Report has been accepted for inclusion in Fuels Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. Task 28 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates K. Czerwinski BACKGROUND actinide nitrides. x To characterize actinide nitrides structurally and thermally. Synthesis of actinium mononitrides using carbothermic reduction x To use high resolution TEM techniques to explore the micro- of the corresponding oxides has a few outstanding issues, includ- structure of the radioactive samples. ing the formation of secondary phases such as oxides and carbides and low densities of the final product.
    [Show full text]
  • Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates
    Fuels Campaign (TRP) Transmutation Research Program Projects 2008 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates Kenneth Czerwinski University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_fuels Part of the Nuclear Commons, Nuclear Engineering Commons, Oil, Gas, and Energy Commons, and the Radiochemistry Commons Repository Citation Czerwinski, K. (2008). Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates. 60-61. Available at: https://digitalscholarship.unlv.edu/hrc_trp_fuels/73 This Annual Report is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Annual Report in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Annual Report has been accepted for inclusion in Fuels Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. Task 28 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates K. Czerwinski BACKGROUND • To use high resolution TEM techniques to explore the micro- structure of the radioactive samples. Synthesis of actinium mononitrides using carbothermic reduction of the corresponding oxides has a few outstanding issues, includ- RESEARCH ACCOMPLISHMENTS ing the formation of secondary phases such as oxides and carbides and low densities of the final product.
    [Show full text]
  • DOE-ID NEPA CX DETERMINATION Idaho National Laboratory Page 1 of 3 CX Posting No.: DOE-ID-INL-21-012
    DOE-ID NEPA CX DETERMINATION Idaho National Laboratory Page 1 of 3 CX Posting No.: DOE-ID-INL-21-012 SECTION A. Project Title: A Novel Head-End Process for Used ATR Fuels SECTION B. Project Description and Purpose: The objective of the proposed project is to expose surrogate materials (aluminides of zirconium, molybdenum and gadolinium) to pure hydrogen, both under ambient conditions and at elevated temperatures to study their hydriding behavior. Hydriding and dehydriding are the means to separate the bulk aluminum from the metallic uranium fuel. The novelty of the proposed process lies in replacing highly reactive (and corrosive) process gas with a clean (and highly selective) chemical agent. The efficiency of the new process will be tested under a variety of experimental conditions. If successful, the developed process will prove to be an elegant reprocessing method with many superior features, such as less number of unit operations, absence of structural material’s corrosion, potential applicability for reprocessing of other used alloy fuels and comparatively less expensive. Research Plan: Overview: In the conventional aqueous processing, the ATR fuel assembly is dissolved in caustic soda or an acid to remove the aluminum cladding. For some spent fuels, such a process runs the risk of causing explosion, during the dissolution step. Another problem arises because of the corrosion of the aluminum cladding by way of formation of a surface oxide/hydroxide (of aluminum) layer. Presence of these surface layers will impede the cladding dissolution kinetics. This situation will persist even when a dry chlorine gas is used (because chlorine will not effectively react with oxides/hydroxide of aluminum) to volatilize out aluminum in the form of aluminum trichloride (AlCl3) prior to uranium electrorefining.
    [Show full text]
  • Y/DZ-2253, Analysis of Hazards Associated with a Process Involving
    Y/DZ-2253 ANALYSIS OF HAZARDS ASSOCIATED WITH A PROCESS INVOLVING URANIUM METAL AND URANIUM HYDRIDE POWDERS J. S. Bullock Chemistry and Chemical Engineering Department Development Division Issue Date: May 2000 Prepared by the Oak Ridge Y-12 Plant Oak Ridge, Tennessee 37831 operated by Lockheed Martin Energy Systems, Inc. for the U. S. Department of Energy under contract DE-AC05-84OR21400 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manu- facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Y/DZ-2253 Analysis of Hazards Associated with a Process Involving Uranium Metal and Uranium Hydride Powders J. S. Bullock Chemistry and Chemical Engineering Department Development Division Issue Date: May 2000 Prepared by the Oak Ridge Y-12 Plant Oak Ridge, Tennessee 37831 operated
    [Show full text]
  • GARNETTI-THESIS.Pdf
    URANIUM POWDER PRODUCTION VIA HYDRIDE FORMATION AND ALPHA PHASE SINTERING OF URANIUM AND URANIUM-ZIRCONIUM ALLOYS FOR ADVANCED NUCLEAR FUEL APPLICATIONS A Thesis by DAVID JOSEPH GARNETTI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2009 Major Subject: Nuclear Engineering URANIUM POWDER PRODUCTION VIA HYDRIDE FORMATION AND ALPHA PHASE SINTERING OF URANIUM AND URANIUM-ZIRCONIUM ALLOYS FOR ADVANCED NUCLEAR FUEL APPLICATIONS A Thesis by DAVID JOSEPH GARNETTI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Sean M. McDeavitt Committee Members, Ibrahim Karaman Lin Shao Head of Department, Raymond Juzaitis December 2009 Major Subject: Nuclear Engineering iii ABSTRACT Uranium Powder Production via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications. (December 2009) David Joseph Garnetti, B.S. Physics, Florida State University Chair of Advisory Committee: Dr. Sean M. McDeavitt The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy alpha phase sintering experiment where the Mg is a surrogate for Pu and Am. The powder production system utilized the uranium hydrogen interaction in order to break down larger pieces of uranium into fine powder. After several iterations, a successful reusable system was built. The nominal size of the powder product was on the order of 1 to 3 µm.
    [Show full text]
  • Hydrogen Extraction from a Gas Mixture
    p ft Î^OOl^ COMMISSARIAT A L'ENERGIE ATOMIQUE CENTRE D'ETUDES NUCLEAIRES DE SACLAY CEA-CONF — 8694 Service de Documentation F9I19I GIF SUR YVETTE CEDEX HI HYDROGEN EXTRACTION FROM A GAS MIXTURt CARON-CHARLES, M. CEA CEN Soclqy, 91-Gif-sur-Yvette IFranceJ. IRDI Communication présentée à : u# 5Kmpo,xom on fusion technoioay ^SOFT-H; Avignon ^France; 8-12 S«p 1986 HYDROGEN EXTRACTION FROM A GAS MIXTURE M. CAROM - CHARLES IRDI/DESICP/CEN-SACLAY 91191 6IF/YVETTE CEDEX (FRANCE) ABSTRACT Hydrogen extraction from the gaseous mixture CH4, H2, N2, HHy 02, HgO.CO-, occuring as Impurities has been performed by chemical reaction with uranium metal - Thermodynamlcal and kinetical investigations have confirmed hydrogen could be purified by this process, but experiments performed at 973 K point ou the importance of the interferences that can occur in the system uranium - gases mixture. 1.- INTRODUCTION. Burned gases exhausted from the plasma chamber of a fusion device contain impurities linked with hydrogen atoms - After being separated from the main hydrogen stream, these impurities must be decomposed to recover their tritium content. The aim of this work is to study the hydrogen extraction from the gaseous mixture, N-, H-, CH^, NH3, 02» using chemical reactions with an appropriate metal. This consists in cracking hydrogenated molecules and 1n absorbing the Impurities without holding back hydrogen. A bibliographic study as well as a thermodynamic one lead us to predict that uranium could satisfy these conditions. 2.- THERMODYNAMIC STUDY OF THE CHEMICAL REACTIONS. For T > 423 K, the hybride formed is UH3 ( 0 ) and respectively UD3 ( 3 ) and UT- ( 0 ), with deuterium and tritium I 1 I.
    [Show full text]
  • Nitride Fuel for Gen IV Nuclear Power Systems
    Journal of Radioanalytical and Nuclear Chemistry (2018) 318:1713–1725 https://doi.org/10.1007/s10967-018-6316-0 Nitride fuel for Gen IV nuclear power systems Christian Ekberg1 · Diogo Ribeiro Costa2,3 · Marcus Hedberg1 · Mikael Jolkkonen2 Received: 20 October 2018 / Published online: 10 November 2018 © The Author(s) 2018 Abstract Nuclear energy has been a part of the energy mix in many countries for decades. Today in principle all power producing reactors use the same techniqe. Either PWR or BWR fuelled with oxide fuels. This choice of fuel is not self evident and today there are suggestions to change to fuels which may be safer and more economical and also used in e.g. Gen IV nuclear power systems. One such fuel type is the nitrides. The nitrides have a better thermal conductivity than the oxides and a similar melting point and are thus have larger safety margins to melting during operation. In addition they are between 30 and 40% more dense with respect to fssile material. Drawbacks include instability with respect to water and a sometimes complicated fabrication route. The former is not really an issue with Gen IV systems but for use in the present feet. In this paper we discuss both production and recycling potential of nitride fuels. Keywords Nuclear fuel · Nitride nuclear fuels · Gen IV · Production of nitrides · Nuclear fuel recycling · Dissolution of nitrides Introduction sustainability, safety and reliability, economic competitive- ness, and proliferation resistance and physical protection. Nuclear power is today a disputed technique although it is in Such a system comprise fast reactors, separation facilities for principle ­CO2 free and highly energetic.
    [Show full text]