Where Did Bone Come From? an Overview of Its Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Where Did Bone Come From? an Overview of Its Evolution Where did bone come from? An overview of its evolution Darja Obradovic Wagner and Per Aspenberg Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Darja Obradovic Wagner and Per Aspenberg, Where did bone come from? An overview of its evolution, 2011, Acta Orthopaedica, (82), 4, 393-398. http://dx.doi.org/10.3109/17453674.2011.588861 Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71096 Acta Orthopaedica 2011; 82 (4): 393–398 393 Where did bone come from? An overview of its evolution Darja Obradovic Wagner1 and Per Aspenberg2 1Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany, 2Orthopedics, AIR/IKE, Faculty of Health Science, Linköping University, Linköping, Sweden Correspondence: [email protected] Submitted 10-12-07. Accepted 11-03-08 Bone is specific to vertebrates, and originated as mineralization (enamel, bone, dentine, cartilage) was controversial. While around the basal membrane of the throat or skin, giving rise to one hypothesis suggested that the four tissues all emerged tooth-like structures and protective shields in animals with a early in vertebrate evolution, the other assumed a long time soft cartilage-like endoskeleton. A combination of fossil anatomy of tissue plasticity in early mineralized skeletons which pre- and genetic information from modern species has improved our ceded differentiation processes that came later on (Tarlo 1963, understanding of the evolution of bone. Thus, even in man, there Halstead 1969). In addition, for many decades, synthesis of are still similarities in the molecular regulation of skin append- paleontological data was influenced by Ernst Haeckel’s bioge- ages and bone. This article gives a brief overview of the major netic law—that ontogeny recapitulates phylogeny—meaning milestones in skeletal evolution. Some molecular machineries that skeletons of ancestral adult vertebrates were assumed to involving members of core genetic networks and their interac- be derived from cartilage, analogous to their embryonic skel- For personal use only. tions are described in the context of both old theories and modern etons (Hall 2003). genetic approaches. Nowadays, evidence of the mineralization of tissues is often related to the repertoire of specific secretory calcium-binding phosphoprotein (SCPP) genes present in various vertebrate lineages (Kawasaki and Weiss 2003). Expression analysis Skeletal evolution: different views revealed SCPP genes and combinations of genes that are If this article had been written a decade ago, it would have mainly used in the bone and dentine, while other SCPP vari- been considerably different. Given that most primitive exam- ants were found to be used to build up enamel structures. Cur- ples of mineralization belong to extinct lineages, for a long rent studies suggest a close relationship between bone, den- Acta Orthop Downloaded from informahealthcare.com by Linkoping University on 11/10/11 time our understanding of bone evolution was entirely based tine, and enamel in terms of a mineralized-tissue continuum on the available fossil evidence. Only paleontology studies in which contemporary dental tissues have evolved from an offered the possibility of gaining some insight into the ancient ancestral continuum through lineage-specific modifications processes that led to mineralized skeleton; from the evidence (Kawasaki 2009). available, it was surmised that the vertebrates were most likely Finally, many recent reports view skeletogenesis in light of descended from amphioxus-like forms with a notochord. the evolution of distinct core gene networks that have been These were followed by jawless creatures with a cartilage-like essential to vertebrate phylogeny (Erwin and Davidson 2009). endoskeleton, reminiscent of the modern hagfish or lamprey For example, a recent search for the molecular origins of skel- (Holland et al. 2001, Meulemans and Bronner-Fraser 2007). etal development has attracted attention to the Runt family The next big event was the appearance of mineralized skeletal of genes (RUNX 1, -2, and -3). RUNX proteins regulate the parts; this presented a major evolutionary leap and led directly key factors involved in skeletogenesis. They are crucial for to the rise of the vertebrate lineage (Denison 1963, Sansom et cartilage development, and RUNX2-deficient mice lack bone al. 1992). (Ito and Miyazone 2003, Fujita et al. 2004). Together with the Given that primitive fossilized vertebral skeletons are scarce RUNX family, several more newly discovered gene networks and that their remains often contain tissues that are difficult are currently seen as central to understanding the evolution of to classify, the emergence of the four skeletal tissue types skeleton. Open Access - This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the source is credited. DOI 10.3109/17453674.2011.588861 394 Acta Orthopaedica 2011; 82 (4): 393–398 From outer to inner protection: design combined have led early vertebrates to sequester marine phosphate could with fortuitous circumstances have been the fact that accessible phosphate stores were useful So, how did mineralized tissues develop in the first place? sources of energy for active animals, and may therefore have What factors forced the first organisms to develop protective improved their metabolism (Ruben and Bennett 1980). How- shields? ever, this view of the unique chemical attributes of vertebrates Following the violent moves of tectonic plates about 1.5 affords no advantage that would not have been equally advan- billion (1.5 × 109) years ago, huge amounts of minerals, tageous to the invertebrates. including CaCO3, were washed into the oceans. This created Another possible advantage of the novel chemical composi- the possibility for its inhabitants of developing hard body tion of vertebrate skeletons might be that calcium hydroxy- parts, such as shells or spines. At first, this helped unicellu- apatite building blocks provide greater chemical stability. lar organisms to cope with excessive amounts of minerals and This may have been important, especially in the acidic envi- to prevent over-crusting. It also led to the sharp increase in ronments created after bursts or periods of intense physical the diversity of multicellular organisms (and their fossils!) a activity—conditions that are typical of most vertebrate species little more than 0.5 billion years ago, known as the “Cambrian (Ruben and Battalia 1979, Ruben and Bennett 1981). Follow- explosion” (Schopf 1994, Kawasaki et al. 2004). Furthermore, ing intense activity, vertebrates experience a depression in the the appearance of a rigid outside skeleton extended the effec- pH values of extracellular fluids, dropping in humans from a tive length of limbs, thus permitting more rapid locomotion in resting value of 7.41 to a post-activity pH of 7.15. This path- many organisms. The appearance of mineralized body parts way relies on the production of lactic acid for generation of is seen by many scientists as one of the forces that generally ATP, and enables vertebrates to attain levels of energy produc- increased the pace of animal evolution (Kumar and Hedges tion that would not be possible with aerobic metabolism alone. 1998, Kutschera and Niklas 2004). However, the release of lactic acid and decrease in extracel- As much as exoskeleton added speed to the evolution of lular pH causes a certain degree of skeletal dissociation and animal life in general and created opportunities for animals hypercalcemia. As discussed by Ruben and Bennet (1980, to expand their activity radius by using calcified extremities 1981), the magnitude of these processes would be signifi- and protection shields, it also imposed limitations, associated cantly greater if the skeleton consisted of calcitic rather than mostly with limited body size and lack of surface sensory phosphate-based material, which would necessitate a lower organs. In addition, rigid shells and shields did not allow much overall metabolism and activity. This hypothesis was investi- movement and locomotion; therefore, the next major change gated in a series of in vivo experiments with fish, where calcite in the evolution of skeleton—dislocation of mineralized skel- or hydroxyapatite crystals were implanted into different body For personal use only. eton from the outside to the inside of animal bodies, proved to parts and the animals were kept on varying exercise regimes. be a major adaptive advantage. Especially in animal lineages Subsequent analysis of fish serum and implants showed that at that later gave rise to vertebrates, the appearance of endoskel- pH 7.1 (associated with high activity), calcium concentration eton enabled the expansion of activity radius and habitation of and implant dissolution rates were considerably higher in fish entirely new environments (Bennet 1991). In addition, those with calcite implants. In summary, other biomaterial proper- developments encouraged the development of a strong mus- ties being equal, hydroxyapatite builds a more stable mineral cular system and added further adaptive values such as greater component of the skeleton than can be achieved with a calcitic overall mobility and the appearance of a regenerative and material, which is particularly important at pH ranges that are environment-sensitive
Recommended publications
  • Endoskeleton
    THE EVOLUTION OF THE VERTEBRATE ENDOSKELETON AN ESSAY ON THE SIGNIFICANCE AND) MEANING OF' SEGMENTATION IN COELOMATE ANIMIALS By W1T. 13. PRIMIROSE, M.B.. Cii.B. Lately Seniior Deniionistrator of lAnatomtiy i? the (nWizversity (of Glasgozc THE EVOLUTION OF THE VERTEBRATE ENDOSKELETON WVHEN investigating the morphology of the vertebrate head, I found it necessary to discover the morphological principles on which the segmentation of the body is founded. This essay is one of the results of this investigations, and its object is to show what has determined the segmented form in vertebrate animals. It will be seen that the segmented form in vertebrates results from a condition which at no time occurs in vertebrate animals. This condition is a form of skeleton found only in animals lower in the scale of organisation than vertebrates, and has the characters of a space containing water. This space is the Coelomic Cavity. The coelomic cavity is the key to the formation of the segmented structure of the body, and is the structure that determines the vertebrate forni. The coclomic cavity is present in a well defined state from the Alnelida tuwards, so that in ainielides it is performing the functions for which a coelom was evolved. It is, however, necessary to observe the conditions prevailing anon)g still lower forms to see why a separate cavity was formed in animals, which became the means of raising them in the scale of organisation, and ultimately leading to the evolution of the vertebrate animal. I therefore propose to trace the steps in evolution by which, I presume, the coelomic cavity originated, and then show how it or its modifications have been the basis on which the whole vertebrate structure of animals is founded.
    [Show full text]
  • Biology of Echinoderms
    Echinoderms Branches on the Tree of Life Programs ECHINODERMS Written and photographed by David Denning and Bruce Russell Produced by BioMEDIA ASSOCIATES ©2005 - Running time 16 minutes. Order Toll Free (877) 661-5355 Order by FAX (843) 470-0237 The Phylum Echinodermata consists of about 6,000 living species, all of which are marine. This video program compares the five major classes of living echinoderms in terms of basic functional biology, evolution and ecology using living examples, animations and a few fossil species. Detailed micro- and macro- photography reveal special adaptations of echinoderms and their larval biology. (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE VIDEO PROGRAM) Summary of the Program: Introduction - Characteristics of the Class Echinoidea phylum. spine adaptations, pedicellaria, Aristotle‘s lantern, sand dollars, urchin development, Class Asteroidea gastrulation, settlement skeleton, water vascular system, tube feet function, feeding, digestion, Class Holuthuroidea spawning, larval development, diversity symmetry, water vascular system, ossicles, defensive mechanisms, diversity, ecology Class Ophiuroidea regeneration, feeding, diversity Class Crinoidea – Topics ecology, diversity, fossil echinoderms © BioMEDIA ASSOCIATES (1 of 7) Echinoderms ... ... The characteristics that distinguish Phylum Echinodermata are: radial symmetry, internal skeleton, and water-vascular system. Echinoderms appear to be quite different than other ‘advanced’ animal phyla, having radial (spokes of a wheel) symmetry as adults, rather than bilateral (worm-like) symmetry as in other triploblastic (three cell-layer) animals. Viewers of this program will observe that echinoderm radial symmetry is secondary; echinoderms begin as bilateral free-swimming larvae and become radial at the time of metamorphosis. Also, in one echinoderm group, the sea cucumbers, partial bilateral symmetry is retained in the adult stages -- sea cucumbers are somewhat worm–like.
    [Show full text]
  • Biomineralization and Global Biogeochemical Cycles Philippe Van Cappellen Faculty of Geosciences, Utrecht University P.O
    1122 Biomineralization and Global Biogeochemical Cycles Philippe Van Cappellen Faculty of Geosciences, Utrecht University P.O. Box 80021 3508 TA Utrecht, The Netherlands INTRODUCTION Biological activity is a dominant force shaping the chemical structure and evolution of the earth surface environment. The presence of an oxygenated atmosphere- hydrosphere surrounding an otherwise highly reducing solid earth is the most striking consequence of the rise of life on earth. Biological evolution and the functioning of ecosystems, in turn, are to a large degree conditioned by geophysical and geological processes. Understanding the interactions between organisms and their abiotic environment, and the resulting coupled evolution of the biosphere and geosphere is a central theme of research in biogeology. Biogeochemists contribute to this understanding by studying the transformations and transport of chemical substrates and products of biological activity in the environment. Biogeochemical cycles provide a general framework in which geochemists organize their knowledge and interpret their data. The cycle of a given element or substance maps out the rates of transformation in, and transport fluxes between, adjoining environmental reservoirs. The temporal and spatial scales of interest dictate the selection of reservoirs and processes included in the cycle. Typically, the need for a detailed representation of biological process rates and ecosystem structure decreases as the spatial and temporal time scales considered increase. Much progress has been made in the development of global-scale models of biogeochemical cycles. Although these models are based on fairly simple representations of the biosphere and hydrosphere, they account for the large-scale changes in the composition, redox state and biological productivity of the earth surface environment that have occurred over geological time.
    [Show full text]
  • A Perspective on Underlying Crystal Growth Mechanisms in Biomineralization: Solution Mediated Growth Versus Nanosphere Particle Accretion
    CrystEngComm A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion Journal: CrystEngComm Manuscript ID: CE-HIG-07-2014-001474.R1 Article Type: Highlight Date Submitted by the Author: 01-Dec-2014 Complete List of Authors: Gal, Assaf; Weizmann Institute of Science, Structural Biology Weiner, Steve; Weizmann Institute of Science, Structural Biology Addadi, Lia; Weizmann Institute of Science, Structural Biology Page 1 of 23 CrystEngComm A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion Assaf Gal, Steve Weiner, and Lia Addadi Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel 76100 Abstract Many organisms form crystals from transient amorphous precursor phases. In the cases where the precursor phases were imaged, they consist of nanosphere particles. Interestingly, some mature biogenic crystals also have nanosphere particle morphology, but some are characterized by crystallographic faces that are smooth at the nanometer level. There are also biogenic crystals that have both crystallographic faces and nanosphere particle morphology. This highlight presents a working hypothesis, stating that some biomineralization processes involve growth by nanosphere particle accretion, where amorphous nanoparticles are incorporated as such into growing crystals and preserve their morphology upon crystallization. This process produces biogenic crystals with a nanosphere particle morphology. Other biomineralization processes proceed by ion-by-ion growth, and some cases of biological crystal growth involve both processes. We also identify several biomineralization processes which do not seem to fit this working hypothesis. It is our hope that this highlight will inspire studies that will shed more light on the underlying crystallization mechanisms in biology.
    [Show full text]
  • ZOOLOGY Zoology 109 (2006) 164–168
    ARTICLE IN PRESS ZOOLOGY Zoology 109 (2006) 164–168 www.elsevier.de/zool Mineralized Cartilage in the skeleton of chondrichthyan fishes Mason N. Dean, Adam P. Summersà Ecology and Evolutionary Biology, University of California – Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA Received 10 February 2006; received in revised form 2 March 2006; accepted 3 March 2006 Abstract The cartilaginous endoskeleton of chondrichthyan fishes (sharks, rays, and chimaeras) exhibits complex arrangements and morphologies of calcified tissues that vary with age, species, feeding behavior, and location in the body. Understanding of the development, evolutionary history and function of these tissue types has been hampered by the lack of a unifying terminology. In order to facilitate reciprocal illumination between disparate fields with convergent interests, we present levels of organization in which crystal orientation/size delimits three calcification types (areolar, globular, and prismatic) that interact in two distinct skeletal types, vertebral and tessellated cartilage. The tessellated skeleton is composed of small blocks (tesserae) of calcified cartilage (both prismatic and globular) overlying a core of unmineralized cartilage, while vertebral cartilage usually contains all three types of calcification. r 2006 Elsevier GmbH. All rights reserved. Keywords: Elasmobranch skeleton; Mineralization; Calcified cartilage; Tesserae Introduction (Summers, 2000; Schaefer and Summers, 2005; Dean et al., 2006) interests in cartilaginous skeletons, we need The breadth of morphological variation of the a common language. Furthermore, the current termi- mineralized cartilage of the endoskeleton of chon- nology masks unappreciated complexity in morphology drichthyan fishes (sharks, rays, and chimaeras) has led that will fuel future research in several of these fields.
    [Show full text]
  • Chitosan-Based Biomimetically Mineralized Composite Materials in Human Hard Tissue Repair
    molecules Review Chitosan-Based Biomimetically Mineralized Composite Materials in Human Hard Tissue Repair Die Hu 1,2 , Qian Ren 1,2, Zhongcheng Li 1,2 and Linglin Zhang 1,2,* 1 State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610000, China; [email protected] (D.H.); [email protected] (Q.R.); [email protected] (Z.L.) 2 Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China * Correspondence: [email protected] or [email protected]; Tel.: +86-028-8550-3470 Academic Editors: Mohamed Samir Mohyeldin, Katarína Valachová and Tamer M Tamer Received: 16 September 2020; Accepted: 16 October 2020; Published: 19 October 2020 Abstract: Chitosan is a natural, biodegradable cationic polysaccharide, which has a similar chemical structure and similar biological behaviors to the components of the extracellular matrix in the biomineralization process of teeth or bone. Its excellent biocompatibility, biodegradability, and polyelectrolyte action make it a suitable organic template, which, combined with biomimetic mineralization technology, can be used to develop organic-inorganic composite materials for hard tissue repair. In recent years, various chitosan-based biomimetic organic-inorganic composite materials have been applied in the field of bone tissue engineering and enamel or dentin biomimetic repair in different forms (hydrogels, fibers, porous scaffolds, microspheres, etc.), and the inorganic components of the composites are usually biogenic minerals, such as hydroxyapatite, other calcium phosphate phases, or silica. These composites have good mechanical properties, biocompatibility, bioactivity, osteogenic potential, and other biological properties and are thus considered as promising novel materials for repairing the defects of hard tissue.
    [Show full text]
  • Role of Phosphate in Biomineralization
    Henry Ford Health System Henry Ford Health System Scholarly Commons Endocrinology Articles Endocrinology and Metabolism 7-25-2020 Role of Phosphate in Biomineralization Sanjay Kumar Bhadada Sudhaker D. Rao Henry Ford Health System, [email protected] Follow this and additional works at: https://scholarlycommons.henryford.com/endocrinology_articles Recommended Citation Bhadada SK, and Rao SD. Role of Phosphate in Biomineralization. Calcif Tissue Int 2020. This Article is brought to you for free and open access by the Endocrinology and Metabolism at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Endocrinology Articles by an authorized administrator of Henry Ford Health System Scholarly Commons. Calcifed Tissue International https://doi.org/10.1007/s00223-020-00729-9 REVIEW Role of Phosphate in Biomineralization Sanjay Kumar Bhadada1 · Sudhaker D. Rao2,3 Received: 31 March 2020 / Accepted: 14 July 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Inorganic phosphate is a vital constituent of cells and cell membranes, body fuids, and hard tissues. It is a major intracel- lular divalent anion, participates in many genetic, energy and intermediary metabolic pathways, and is important for bone health. Although we usually think of phosphate mostly in terms of its level in the serum, it is needed for many biological and structural functions of the body. Availability of adequate calcium and inorganic phosphate in the right proportions at the right place is essential for proper acquisition, biomineralization, and maintenance of mass and strength of the skeleton. The three specialized mineralized tissues, bones, teeth, and ossicles, difer from all other tissues in the human body because of their unique ability to mineralize, and the degree and process of mineralization in these tissues also difer to suit the specifc functions: locomotion, chewing, and hearing, respectively.
    [Show full text]
  • Springer Handbookoƒ Marine Biotechnology Kim Editor
    Springer Handbookoƒ Marine Biotechnology Kim Editor 123 1279 58.Biomineraliz Biomineralization in Marine Organisms a Ille C. Gebeshuber 58.2.5 Example of Strontium This chapter describes biominerals and the ma- Mineralization in Various rine organisms that produce them. The proteins Marine Organisms...................... 1290 involved in biomineralization, as well as func- 58.2.6 Example of Biomineralization tions of the biomineralized structures, are treated. of the Unstable Calcium Current and future applications of bioinspired Carbonate Polymorph Vaterite .... 1290 material synthesis in engineering and medicine highlight the enormous potential of biominer- 58.3 Materials – Proteins Controlling alization in marine organisms and the status, Biomineralization................................ 1290 challenges, and prospects regarding successful 58.4 Organisms and Structures marine biotechnology. That They Biomineralize....................... 1290 58.4.1 Example: Molluscan Shells ......... 1293 58.4.2 Example: Coccolithophores......... 1293 58.1 Overview ............................................. 1279 58.1.1 Marine Biomining ..................... 1280 58.5 Functions ............................................ 1294 58.2 Materials – Biominerals 1281 ....................... 58.6 Applications ........................................ 1294 58.2.1 Biominerals Produced 58.6.1 Current Applications by Simple Precipitation of Bioinspired and Oxidation Reactions 1285 ............ Material Synthesis 58.2.2 Biological Production in Engineering and
    [Show full text]
  • Fossil Microbial Shark Tooth Decay Documents in Situ Metabolism Of
    www.nature.com/scientificreports OPEN Fossil microbial shark tooth decay documents in situ metabolism of enameloid proteins as nutrition source in deep water environments Iris Feichtinger1*, Alexander Lukeneder1, Dan Topa2, Jürgen Kriwet3*, Eugen Libowitzky4 & Frances Westall5 Alteration of organic remains during the transition from the bio- to lithosphere is afected strongly by biotic processes of microbes infuencing the potential of dead matter to become fossilized or vanish ultimately. If fossilized, bones, cartilage, and tooth dentine often display traces of bioerosion caused by destructive microbes. The causal agents, however, usually remain ambiguous. Here we present a new type of tissue alteration in fossil deep-sea shark teeth with in situ preservation of the responsible organisms embedded in a delicate flmy substance identifed as extrapolymeric matter. The invading microorganisms are arranged in nest- or chain-like patterns between fuorapatite bundles of the superfcial enameloid. Chemical analysis of the bacteriomorph structures indicates replacement by a phyllosilicate, which enabled in situ preservation. Our results imply that bacteria invaded the hypermineralized tissue for harvesting intra-crystalline bound organic matter, which provided nutrient supply in a nutrient depleted deep-marine environment they inhabited. We document here for the frst time in situ bacteria preservation in tooth enameloid, one of the hardest mineralized tissues developed by animals. This unambiguously verifes that microbes also colonize highly mineralized dental capping tissues with only minor organic content when nutrients are scarce as in deep-marine environments. Teeth and bones are ofen the only evidence of ancient vertebrate life because of the mineralized nature of tissues. Tere are numerous possibilities for chemical alteration during the transition from the bio- to the lithosphere of which bacterial catabolysis of these tissues and organic matter within the carcass is an important example 1,2.
    [Show full text]
  • Iron Biominerals: an Overview
    IRON BIOMINERALS: AN OVERVIEW Richard B. Frankel Department of Physics California Polytechnic State University San Luis Obispo, CA 93407 INTRODUCfION Biomineralization processes, by which organisms form inorganic minerals, are broadly distributed and occur in almost every phylum of the biological world 1,2,3. There is a large diversity of minerals formed, with over 60 currently known1. The cations of the most widely occuring minerals are the divalent alkaline earths Mg, Ca, Sr and Ba. These are paired with the anions carbonate, hydroxide, oxalate, oxide, phosphate, sulfate and sulfide. Silica, hydrous silicon oxide, also occurs widely in algae (fable 1). These minerals function as exo- and endoskeletons, cation storage, lenses, gravity devices and in other roles in various organisms. IRON BIOMINERALS Minerals of iron are also known to occur in many organisms. This is due perhaps, to the important role of iron in many metabolic processes, and to the difficulty for organisms posed by the toxic products of ferrous iron oxidation by 02 together with the insolubility of ferric iron at neutral pH. Formation of iron minerals allows organisms to accumulate iron for future metabolic needs while avoiding high intracellular concentrations of ferrous iron. Other attributes of iron biominerals that are potentially useful to organisms include hardness, density and magnetism. An important class of iron biominerals are the ferric hydroxides or oxy­ hydroxides, which occur as amorphous, colloidal precipiates, as quasi­ crystalline minerals such as ferrihydrite, or as crystalline minerals such as lepidocrocite or goethite (fable 2). Amorphous iron oxy-hydroxides are found in the sheaths and stalks produced by the so-called iron bacteria, Leptothrix and Galljanella, which utilize the oxidation of ferrous ions by 02 as a source of Table 1.
    [Show full text]
  • Initial Stages of Calcium Uptake and Mineral Deposition in Sea Urchin Embryos
    Initial stages of calcium uptake and mineral deposition in sea urchin embryos Netta Vidavskya, Sefi Addadib, Julia Mahamidc, Eyal Shimonid, David Ben-Ezrae, Muki Shpigele, Steve Weinera, and Lia Addadia,1 aDepartment of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel; bB-nano Ltd., Rehovot 76326, Israel; cDepartment of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; dDepartment of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel; and eIsrael Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel Edited by Patricia M. Dove, Virginia Polytechnic Institute and State University, Blacksburg, VA, and approved October 31, 2013 (received for review July 10, 2013) Sea urchin larvae have an endoskeleton consisting of two calcitic fluorescent signal at the spicule tip (13). The dynamics of spicule spicules. We reconstructed various stages of the formation elongation also was studied in vivo by using calcein, which la- pathway of calcium carbonate from calcium ions in sea water to beled the surface of newly formed spicule areas (7, 14). Blocking mineral deposition and integration into the forming spicules. or interfering with calcium uptake by the cells, both in vivo and Monitoring calcium uptake with the fluorescent dye calcein shows in PMC cultures, shows that for the spicule to be formed, cal- that calcium ions first penetrate the embryo and later are de- cium first has to penetrate the cells (15–17). The manner in posited intracellularly. Surprisingly, calcium carbonate deposits are which calcium is transported to the PMCs is not known (7). It is distributed widely all over the embryo, including in the primary known that the ectoderm cells take part in spicule mineraliza- mesenchyme cells and in the surface epithelial cells.
    [Show full text]
  • Molecular Mechanisms of Biomineralization in Marine Invertebrates Melody S
    © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb206961. doi:10.1242/jeb.206961 REVIEW Molecular mechanisms of biomineralization in marine invertebrates Melody S. Clark* ABSTRACT biodiversity (Box 1). They are also important in global carbon Much recent marine research has been directed towards cycling. For example, our recent geological history has seen the ’ understanding the effects of anthropogenic-induced environmental world s oceans become a significant net sink of anthropogenic CO2, ’ change on marine biodiversity, particularly for those animals with with the estimation that the world s continental shelves (see −1 heavily calcified exoskeletons, such as corals, molluscs and urchins. Glossary) alone absorb 0.4 Pg carbon year (see Glossary) This is because life in our oceans is becoming more challenging for (known as blue carbon) (Bauer et al., 2013). The process whereby these animals with changes in temperature, pH and salinity. In the our oceans absorb CO2 is an important buffer for future increases in future, it will be more energetically expensive to make marine atmospheric CO2 and therefore an important weapon in global skeletons and the increasingly corrosive conditions in seawater are resilience to anthropogenic climate change. Previous estimates of expected to result in the dissolution of these external skeletons. blue carbon have concentrated on calculating the carbon assimilated However, initial predictions of wide-scale sensitivity are changing as by microscopic biomineralizers that live in the water column, such we understand more about the mechanisms underpinning skeletal as the coccolithophore Emiliania huxleyi (Balch et al., 2007). production (biomineralization). These studies demonstrate the However, there is increasing recognition that the invertebrate complexity of calcification pathways and the cellular responses of macrofauna, such as echinoderms and coralline algae, play animals to these altered conditions.
    [Show full text]