Stoichiometric Relations in an Ant-Treehopper Mutualism

Total Page:16

File Type:pdf, Size:1020Kb

Stoichiometric Relations in an Ant-Treehopper Mutualism Ecology Letters, (2004) 7: 1024–1028 doi: 10.1111/j.1461-0248.2004.00667.x IDEAS AND PERSPECTIVES Stoichiometric relations in an ant-treehopper mutualism Abstract Adam D. Kay,1* Sara E. Scott,2 Carbon : nitrogen : phosphorus (C : N : P) stoichiometry can underlie physiological John D. Schade3,4 and and life history characteristics that shape ecological interactions. Despite its potential Sarah E. Hobbie1 importance, there is much to learn about the causes and consequences of stoichiometric 1 Department of Ecology, variation in terrestrial consumers. Here we show that treehoppers (Publilia modesta) Evolution and Behavior, tended by ants (Formica obscuripes) contained lower N concentrations than treehoppers on University of Minnesota, 100 plants from which ants were excluded. Ant presence also affected nutrient concentra- Ecology Building, 1987 Upper tions in host plants: on plants with ants, leaves contained uniformly low concentrations Buford Circle, St Paul, MN of N; on plants without ants, N concentrations were low only in the few leaves fed upon 55108, USA 2Department of Biology, by treehoppers at the time of collection. We suggest treehopper feeding reduces leaf College of St Benedict, St nutrient levels and ants positively affect treehopper abundance, producing a top–down Joseph, MN, USA effect on plant quality. Determining the causes of these stoichiometric changes should 3School of Life Sciences, Arizona help elucidate factors guiding the dynamics of conditional mutualisms between ants and State University, Tempe, AZ, homopterans. USA 4Department of Integrative Keywords Biology, University of California, Ants, conditional, membracid, mutualism, nitrogen, phosphorus, Publilia, Solidago, Berkeley, CA, USA stoichiometry, treehoppers. *Correspondence: E-mail: [email protected] Ecology Letters (2004) 7: 1024–1028 Here, we investigate how ant attendance affects the size INTRODUCTION of aggregations of the treehopper, Publilia modesta, and the Outcomes of conditional mutualisms often depend on carbon : nitrogen : phosphorus (C : N : P) stoichiometry varying ecological factors (Bronstein 1994, 2001; Herre et al. of P. modesta individuals. Stoichiometry can underlie traits 1999). Such conditionality is thought to be widespread in that affect how organisms interact with their environment ant-homopteran mutualisms (Cushman & Addicott 1991), in (Sterner & Elser 2002): one example is the causal which homopterans produce excretions (ÔhoneydewÕ) col- relationship between P concentration and growth rate. lected by ants, and ants provide protection or other services. Although this relationship is taxonomically widespread Ant attendance can positively affect the size of a homop- (Elser et al. 2003), little is known about patterns, causes, teran aggregation (number of individuals on a host plant) or consequences of stoichiometric variation in most depending on several factors including ant abundance terrestrial consumers. (Cushman & Whitham 1991; Morales 2000) and natural Ant attendance could affect treehopper stoichiometry by at enemy levels (Bristow 1984). Ant attendance can also least two mechanisms. First, ant presence could lead to an influence characteristics of individual homopterans such as increase in P in treehoppers if ant protection creates growth rate (Bristow 1984; Stadler & Dixon 1998) by conditions for rapid growth, and growth rate in treehoppers inducing changes in feeding behaviour (Banks & Nixon is tied to body P concentration. When tended by ants, some 1958) and the quantity or quality of honeydew that homopterans increase feeding rates (Banks & Nixon 1958) homopterans produce (Yao & Akimoto 2001). Discovering and may grow faster (El-Ziady 1960; Bristow 1984; Flatt & these individual-level effects, and determining their causes Weisser 2000); however, nothing is known about how such and consequences, may elucidate mechanisms underlying changes are related to homopteran stoichiometry. Second, ant the distribution and strength of ant-homopteran associa- attendance could decrease N and P concentrations in tions. treehoppers if treehoppers produce more nutrient-rich Ó2004 Blackwell Publishing Ltd/CNRS Ants affect treehopper stoichiometry 1025 honeydew when ants are present. Ants can induce changes in We used repeated-measures ANOVA to determine whether the production rate or sugar composition of honeydew ant presence affected treehopper aggregation size. To (Fischer & Shingleton 2001), but little is known about how control for initial differences in aggregation sizes, the ants affect honeydew N and P concentrations. However, repeated measure was treehoppers on a plant divided by N-rich honeydew may help treehoppers attract ants because the maximum number of treehoppers on that plant during many ants are particularly responsive to amino acid levels in the experiment. These proportions were arcsine trans- honeydew-like substances (Kay 2002). In this study, we show formed for analysis. We used nested ANOVAs to compare that ant presence decreases the concentration of N, but not of leaf and treehopper chemistry (with plants nested within ant C or P, in treehoppers. We also show that ant presence is treatment). associated with an overall reduction in leaf N concentrations, which we argue results from treehopper feeding. RESULTS Treehopper aggregation sizes were largest in the initial METHODS survey (mean ± SE for all plants ¼ 178.5 ± 31.9) and We conducted field work at Cedar Creek (Anoka County), declined thereafter. Over the course of the experiment, MN, USA. Publilia modesta feeds on a variety of plants, but aggregation size decreased more on plants without ants than was found only on Solidago gigantea at our study site. Eggs are on control plants (Fig. 1; time · treatment interaction: laid on host plants early in the growing season and emerging F6,36 ¼ 3.26, P ¼ 0.012; final means: plants without nymphs apparently rarely leave their natal plant before ants ¼ 36.8 ± 15.8, control plants ¼ 150.3 ± 16.1). In the becoming adults (Morales 2000). Throughout the western final survey, the percentage of leaves with treehoppers was United States, P. modesta has only a single generation per year significantly lower on plants without ants than on control (Kopp & Yonke 1973). Nymphs in our study fed primarily plants (28 ± 10% vs. 89 ± 2%; v2 ¼ 5.33, d.f. ¼ 1, P ¼ by piercing leaves (rarely through stems). 0.021), but the number of treehoppers on those leaves did On 23 July 2003, we chose eight S. gigantea ramets not differ between groups (9.1 ± 4.0 vs. 6.8 ± 0.4; t-test (hereafter ¼ plants) that had large numbers of P. modesta with unequal variances: t ¼ 0.55, d.f. ¼ 3, P ¼ 0.61). We tended by ants. We haphazardly divided plants into an never observed adult treehoppers on our plants during the experimental and a control group (n ¼ 4). We removed all experiment. ants from experimental plants, and applied sticky trap Treehoppers had significantly higher N concentrations on (Tanglefoot) to the base of stems to prevent ants from plants without ants than on control plants; treehopper C and P returning. We clipped a small amount of mostly senesced concentrations did not differ between groups (Fig. 2). vegetation that provided ants with access to experimental Differences in N concentration between groups were not plants; similar amounts of vegetation were removed around explained by body mass differences. Although dry mass was control plants. We counted treehoppers on each plant after weakly (negatively) correlated with N concentration (log–log initiating the experiment and every 3–4 days thereafter for relationship; r2 ¼ 0.34, d.f. ¼ 31, P ¼ 0.056), treehopper 24 days. After 24 days, we separately collected each leaf (and any treehoppers on the leaf) from each plant. 140 With ants We conducted tissue analyses on samples dried at 60 °C 120 No ants for 48 h. We analysed subsamples of ground leaves and 100 whole treehoppers for carbon and nitrogen concentrations 80 using a Perkin–Elmer 2400 CHN analyser (Perkin–Elmer, Wellesley, MA, USA), and phosphorus concentration using 60 Treehoppers persulfate digestion and ascorbate–molybdate colorimetry. 40 We estimated soluble protein concentration in treehoppers 20 using the direct Lowry procedure (Sigma, St Louis, MO, (% of highest number counted) 0 USA), which involves colorimetry on a sample combined 0 3 6 9 1215182124 with an alkaline cupric tartrate reagent. In the phosphorus Day and soluble protein assays, treehoppers were gently crushed Figure 1 Abundance of Publilia modesta treehoppers over a 24-day with a Teflon-coated rod to expose tissues to reagents. In period as a function of the presence or absence of ants. To each assay, we analysed 3–5 haphazardly selected treehop- facilitate visual assessment of treatment differences, numbers of pers from each plant. We also analysed from each plant treehoppers for each plant were transformed to the percentage of three leaves with and three leaves without treehoppers on the highest number of treehoppers counted on that plant: data them at the time of our final census; we used all leaves in a points are the mean (± 1 SE) of those percentages for all plants in category when fewer than three existed. a treatment. Ó2004 Blackwell Publishing Ltd/CNRS 1026 A. D. Kay et al. 10 Leaves with treehoppers F = 17.22, P = 0.009 1,6 Leaves without treehoppers 9 3 b 8 2 a a a 7 1 Treehopper N (% dry mass) Leaf N (% dry mass) 6 0 60 F1,6 = 0.89, P = 0.389 0.4 a 55 a 0.3 a a 50 0.2 45 0.1 Treehopper C (% dry mass) Leaf P (% dry mass) 40 0.0 1.2 F = 0.08, P = 0.783 1,6 20 a 1.1 a a 15 b 1.0 10 0.9 5 Leaf N : P (molar ratio) Treehopper P (% dry mass) 0 0.8 With ants No ants With ants No ants Treatment Treatment Figure 2 Mean (± 1 SE) N, C and P concentrations in the tissue of Figure 3 Mean (± 1 SE) N concentration (% of dry mass), treehopper nymphs after a 24-day period in the presence or P concentration (% of dry mass), and N : P molar ratio in leaves of absence of ants.
Recommended publications
  • Bulletin No. 206-Treehopper Injury in Utah Orchards
    Utah State University DigitalCommons@USU UAES Bulletins Agricultural Experiment Station 6-1928 Bulletin No. 206 - Treehopper Injury in Utah Orchards Charles J. Sorenson Follow this and additional works at: https://digitalcommons.usu.edu/uaes_bulletins Part of the Agricultural Science Commons Recommended Citation Sorenson, Charles J., "Bulletin No. 206 - Treehopper Injury in Utah Orchards" (1928). UAES Bulletins. Paper 178. https://digitalcommons.usu.edu/uaes_bulletins/178 This Full Issue is brought to you for free and open access by the Agricultural Experiment Station at DigitalCommons@USU. It has been accepted for inclusion in UAES Bulletins by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Bulletin 2 06 June, 1928 Treehopper Injury in Utah Orchards By CHARLES J. SORENSON 3 Dorsal and side views of the following species of treehoppers: 1. Ceresa bubalus (Fabr.) ( Buffalo treehopper) 2. Stictocephala inermis (Fabr.) 3. Stictocephala gillettei Godg. (x 10 ) UTAH AGRICULTURAL EXPERIMENT STATION LOGAN. UTAH UTAH AGRICULTURAL EXPERIMENT STATION , BOARD OF TRUSTEES . ANTHONY W. IVINS, President __ _____ ____________________ __ ___________________ Salt Lake City C. G. ADNEY, Vice-President ____ ___ ________________________________ ________________________ Corinne ROY B ULLEN ________ __________________________ _______ _____ _____ ________ ___ ____ ______ ____ Salt Lake City LORENZO N . STOHL ______ ___ ____ ___ ______________________ __ ___ ______ _____ __________ Salt Lake City MRS. LEE CHARLES MILLER ___ ______ ___ _________ ___ _____ ______ ___ ____ ________ Salt Lake City WE S TON V ERN ON, Sr. ________________________ ___ ____ ____ _____ ___ ____ ______ __ __ _______ ________ Loga n FRANK B. STEPHENS _____ ___ __ ____ ____________ ____ ______________ __ ___________ __.___ Salt Lake City MRS.
    [Show full text]
  • Integrated Pest Management for Home Gardens: Insect Identification and Control
    Insect Pests July 2003 IP-13 Integrated Pest Management for Home Gardens: Insect Identification and Control Richard Ebesu Department of Plant and Environmental Protection Sciences ntensive, high-production agricultural systems have IPM components and practices Itraditionally used synthetic pesticides as the primary Integrated pest management strategies consist of site tool to eliminate pests and sustain the least amount of preparation, monitoring the crop and pest population, economic damage to the crop. Dependence on these pes­ problem analysis, and selection of appropriate control ticides has led to development of pest resistance to pes­ methods. Home gardeners can themselves participate in ticides and increased risk to humans, other living or­ IPM strategies and insect control methods with a little ganisms, and the environment. knowledge and practice. Integrated pest management (IPM) is a sustainable approach to managing pests that combines biological, Preparation cultural, physical, and chemical tools in a way that mini­ What control strategies can you use before you plant? mizes economic, health, and environmental risks. You need to be aware of potential problems and give The objective of IPM is to eliminate or reduce po­ your plants the best chance to grow in a healthy envi­ tentially harmful pesticide use by using a combination ronment. of control methods that will reduce the pest to an ac­ ceptable level. The control methods should be socially Soil preparation acceptable, environmentally safe, and economically Improve the physical properties of the soil including practical. Many commercial agricultural systems use texture and drainage to reduce waterlogging. Improve IPM methods to manage pest problems, and home gar­ soil fertility and soil organic matter by working well deners can use similar methods to control pest problems rotted compost into the soil.
    [Show full text]
  • Zootaxa,Phylogeny and Higher Classification of the Scale Insects
    Zootaxa 1668: 413–425 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* P.J. GULLAN1 AND L.G. COOK2 1Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 2School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072, Australia. Email: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . .413 Introduction . .413 A review of archaeococcoid classification and relationships . 416 A review of neococcoid classification and relationships . .420 Future directions . .421 Acknowledgements . .422 References . .422 Abstract The superfamily Coccoidea contains nearly 8000 species of plant-feeding hemipterans comprising up to 32 families divided traditionally into two informal groups, the archaeococcoids and the neococcoids. The neococcoids form a mono- phyletic group supported by both morphological and genetic data. In contrast, the monophyly of the archaeococcoids is uncertain and the higher level ranks within it have been controversial, particularly since the late Professor Jan Koteja introduced his multi-family classification for scale insects in 1974. Recent phylogenetic studies using molecular and morphological data support the recognition of up to 15 extant families of archaeococcoids, including 11 families for the former Margarodidae sensu lato, vindicating Koteja’s views. Archaeococcoids are represented better in the fossil record than neococcoids, and have an adequate record through the Tertiary and Cretaceous but almost no putative coccoid fos- sils are known from earlier.
    [Show full text]
  • Correlation of Stylet Activities by the Glassy-Winged Sharpshooter, Homalodisca Coagulata (Say), with Electrical Penetration Graph (EPG) Waveforms
    ARTICLE IN PRESS Journal of Insect Physiology 52 (2006) 327–337 www.elsevier.com/locate/jinsphys Correlation of stylet activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), with electrical penetration graph (EPG) waveforms P. Houston Joosta, Elaine A. Backusb,Ã, David Morganc, Fengming Yand aDepartment of Entomology, University of Riverside, Riverside, CA 92521, USA bUSDA-ARS Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648, USA cCalifornia Department of Food and Agriculture, Mt. Rubidoux Field Station, 4500 Glenwood Dr., Bldg. E, Riverside, CA 92501, USA dCollege of Life Sciences, Peking Univerisity, Beijing, China Received 5 May 2005; received in revised form 29 November 2005; accepted 29 November 2005 Abstract Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce’s disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips.
    [Show full text]
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • Melon Aphid Or Cotton Aphid, Aphis Gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L
    EENY-173 Melon Aphid or Cotton Aphid, Aphis gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L. Capinera2 Distribution generation can be completed parthenogenetically in about seven days. Melon aphid occurs in tropical and temperate regions throughout the world except northernmost areas. In the In the south, and at least as far north as Arkansas, sexual United States, it is regularly a pest in the southeast and forms are not important. Females continue to produce southwest, but is occasionally damaging everywhere. Be- offspring without mating so long as weather allows feeding cause melon aphid sometimes overwinters in greenhouses, and growth. Unlike many aphid species, melon aphid is and may be introduced into the field with transplants in the not adversely affected by hot weather. Melon aphid can spring, it has potential to be damaging almost anywhere. complete its development and reproduce in as little as a week, so numerous generations are possible under suitable Life Cycle and Description environmental conditions. The life cycle differs greatly between north and south. In the north, female nymphs hatch from eggs in the spring on Egg the primary hosts. They may feed, mature, and reproduce When first deposited, the eggs are yellow, but they soon parthenogenetically (viviparously) on this host all summer, become shiny black in color. As noted previously, the eggs or they may produce winged females that disperse to normally are deposited on catalpa and rose of sharon. secondary hosts and form new colonies. The dispersants typically select new growth to feed upon, and may produce Nymph both winged (alate) and wingless (apterous) female The nymphs vary in color from tan to gray or green, and offspring.
    [Show full text]
  • The Oak Treehopper.Pdf
    ENTOMOLOGY CIRCULAR No.57 FLORIDA DEPARTMENT OF AGRICULTURE FEBRUARY 1967 DIVISION OF PLANT INDUSTRY THE OAK TREEHOPPER, PLATYCOTISVITTATA (FABRICIUS) 1 (HOMOPTERA: MEMBRACIDAE) F. w. MEAD I NTROOUCTlON: THE OAK TREEHOPPER IS FAIRLY COMMON ON DECIDUOUS AND EVERGREEN OAKS, QUERCUS SPP., WHERE IT IS SOMETIMES SUFFICIENTLY ABUNDANT TO CAUSE CONCERN TO OWNERS OF VALUABLE SHADE TREES. IN FLORIDA WE HAVE REPORTS OF PROFESSIONAL SPRAYMEN BEING HIRED TO CONTROL THIS PEST. HOWEVER, DAMAGE BY A COLONY OF THIS SPECIES OF TREEHOPPER IS MINOR AND ESSENTIALLY CONFINED TO SMALL OVIPOSITION SCARS IN TWIGS. THiS CONTRASTS WITH THE CLOSELY RELATED THORN BUG, !JMBONIA CRASSICORNIS (A. &: S.) , WHICH CAN, WHEN ABUNDANT, CAUSE CONSIDERABLE DIEBACK OR EVE~ DEATH OF SMALL TREES. ""- ~ """""0' 0. ~ """, '."" ~ 6-},. , FIG. FiG. 2. NYMPH. 7X LEFT. f1.rnIDA ~ DISTRIBUTION OF 7 PLATYCOTJS VITTATA. ... -A'" FIG. 3. ADULT .E. VITTATA VAR. fSAGITTAn'. 7x DISTRIBUTION: FUNKHOUSER (1951) GIVES THE DISTRIBUTION AS BRAZIL, MEXICO, AND UN!TED STATES. THiS SPECIES ALSO HAS BEEN REPORTED FROM VANCOUVER ISLAND, CANADA. THE RECORDED DISTRIBUTION IN THE UNITED STATES IS PRIMARILY IN THE STATES THAT FORM A BROAD U-SHAPED CURVE FROM PENNSYLVANIA AND NEW JERSEY SOUTH THROUGH THE CAROLINAS AND GEORGIA TO FLORIDA, THEN WEST TO MISSISSIPPi. TEXAS, ARIZONA, CALIFORNIA, AND NORTH TO OREGON (AND VANCOUVER) WHERE THE COASTAL CLIMATE IS MODERATE. INTERIOR RECORDS INCLUDE OHIO, ILLiNOiS. TENNESSEE, AND WESTERN NORTH CAROLINA, BUT IN GENERAL, THERE IS A SCARCITY OF RECORDS FROM THE GREAT HEARTLAND AREAS OF THE UNITED STATES. THE 40TH PARALLEL SERVES AS AN APPROXiMATE NORTHERN RANGE LIMIT WITH FEW EXCEPTiONS. THE FLORIDA DISTRIBUTION IS INDICATED IN FiG.
    [Show full text]
  • Bushhopper Stalk-Eyed Fly Coconut Crab Periodical Cicada
    PIOTR NASKRECKI PHOTO BANNERS HANGING IN CHANGING EXHIBIT GALLERY Bushhopper Stalk-Eyed Fly Phymateus viridipes Diasemopsis fasciata Gorongosa National Park, Mozambique Gorongosa National Park, Mozambique A nymph of the bushhopper from Mozambique Like antlers on a deer’s head, the long can afford to be slow and conspicuous thanks eyestalks on this fly’s head are used in maleto- to the toxins in its body. These insects feed male combat, allowing the individual with on plants rich in poisonous metabolites, the largest stalks to win access to females including some that can cause heart failure, so most predators avoid them. Coconut Crab Periodical Cicada Birgus latro Magicicada septendecim Guadalcanal, Solomon Islands Annandale, Virginia The coconut crab is not just another land Periodical cicadas spend seventeen years crab; it is the largest living terrestrial underground, feeding on the roots of plants. invertebrate, reaching a weight of nine After that time they all emerge at the same pounds and a leg span of over three feet. time, causing consternation in people and Their lifespan is equally impressive, and the a feeding frenzy in birds. A newly emerged largest individuals are believed to be forty to (eclosed) periodical cicada is almost snow sixty years old. white, but within a couple of hours its body darkens and the exoskeleton becomes hard. BIG BUGS • Dec. 31, 2015 - April 17, 2016 Virginia Living Museum • 524 J. Clyde Morris Blvd. • Newport News, VA 23601 • 757-595-1900 • thevlm.org PIOTR NASKRECKI PHOTO BANNERS HANGING IN CHANGING EXHIBIT GALLERY Dung Beetles Lappet Moth Kheper aegyptiorum Chrysopsyche lutulenta Gorongosa National Park, Mozambique Gorongosa National Park, Mozambique Dung beetles are very important members of At the beginning of the dry season in Savanna communities.
    [Show full text]
  • Ant–Treehopper Associations Deter Pollinators and Reduce Reproduction in a Tropical Shrub
    Indirect effects of mutualism: ant– treehopper associations deter pollinators and reduce reproduction in a tropical shrub Javier Ibarra-Isassi & Paulo S. Oliveira Oecologia ISSN 0029-8549 Volume 186 Number 3 Oecologia (2018) 186:691-701 DOI 10.1007/s00442-017-4045-7 1 23 Oecologia (2018) 186:691–701 https://doi.org/10.1007/s00442-017-4045-7 PLANT-MICROBE-ANIMAL INTERACTIONS - ORIGINAL RESEARCH Indirect efects of mutualism: ant–treehopper associations deter pollinators and reduce reproduction in a tropical shrub Javier Ibarra‑Isassi1,2 · Paulo S. Oliveira1 Received: 22 September 2017 / Accepted: 10 December 2017 / Published online: 15 December 2017 © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract Animal-pollinated plants can be susceptible to changes in pollinator availability. Honeydew-producing treehoppers fre- quently occur on inforescences, potentially enhancing ant-mediated negative efects on pollination services. However, the efect of ant-attended, honeydew-producing insects on plant reproduction remains uncertain. We recorded the abundance of treehoppers and ants on Byrsonima intermedia (Malpighiaceae), and monitored foral visitors in a Brazilian cerrado savanna. We manipulated the presence of ants and ant–treehopper associations on inforescences to assess their efect on pollination and fruit formation. We used dried ants pinned to inforescences to evaluate the efect of ant presence and ant identity on potential pollinators. Results show that the presence of treehoppers increases ant abundance on fowers and disrupts pollination by oil-collecting bees, decreasing the frequency and duration of foral visits and reducing fruit and seed set. Treehopper herbivory has no direct efect on fruit or seed production, which are independent of treehopper density.
    [Show full text]
  • Treehoppers Several Species Order Hemiptera, Family Membracidae; Treehoppers Native Pests
    Pests of Trees and Shrubs Treehoppers Several species Order Hemiptera, Family Membracidae; treehoppers Native pests Host plants: Treehoppers are found on many tree species and are most commonly on young trees and perennial weeds. Oviposition damage caused by treehopper adult females. (241) Description: Treehoppers are small insects, usually less Photo: John Davidson than one-half inch long. They are called “treehoppers” because upon being approached they jump or hop away with a loud snap. They have a pronotum that is enlarged and developed into horns, knobs and other strange shapes. Males and females of the same species, however, can sometimes have very different pronotal shapes or colors. Life history: Adult females deposit eggs singly or in masses, either inserted directly into living tissue or on the surface of the plant. Females of some species cover their eggs with a frothy substance that hardens when dry. The eggs of most species remain in the plant through the winter and hatch in spring. Some adult females guard their eggs and remain with their young throughout their Treehopper adult. (242) development. Nymphs molt five times prior to reaching Photo: John Davidson the adult stage. Treehoppers usually have one or more generations per year. Overwintering: Eggs on host plants. Damage symptoms: Primary injury is caused by the females cutting into the bark to lay their eggs. Nymphs and adults also feed on plant tissue and suck cell fluids with their sharp, needle-like mouth parts. Monitoring: Monitor by hand sweeping young trees and shrubs with a net. Monitor for adults from early July to the end of October, or until the first frost.
    [Show full text]
  • Establishment of the Brown Citrus Aphid Leadership of David Gumpf, UC University of Wisconsin, Madison; E.E
    mation on ELB, the goals of the pro- Invisible invaders . gram and specifics on the treatments in their area. STEP also made presen- tations to neighborhood associations and displayed an information table at Insect-t ransmitted viruses a popular outdoor market throughout the summer. Through community education and outreach, the coopera- threaten agriculture tion of city agencies, good monitoring and the development of new strategies Robert L. Gilbertson a Diane E. Ullman, first authors to control elm leaf beetles in ”hot Raquel Salati 3 Douglas P. Maxwell spots,” the IPM program for Sacra- mento is being developed and should Elizabeth E. Grafton-Cardwell o MaryLou Polek be fully implemented within several years. The vast movement of people and Despite technological advances lead- D.L. Dahlsten is Professor and Associate agricultural products between dis- ing to tremendous yield increases for Dean, D.L. Rowney is Biostatistician and tant geographical regions has cre- many crops, modern agricultural pro- A.B. Lazuson is Graduate Student Re- ated unprecedented opportunities duction continues to face pest threats, searcher, Center for Biological Control, for introducing plant viruses and among them insects, plant pathogens, Division of Insect Biology, College of the insects that carry them (vec- and weeds. Often growers are faced Natural Resources, UC Berkeley. tors) to new areas. Outbreaks of with multiple pests, which exacerbates The authors thank the many individu- new viruses may be favored in crop damage and complicates manage- als and agencies that have assisted in the these agroecosystems by crop ment strategies. A dramatic example development of this program over the of how two types of pests “team up” susceptibility, the presence of par- years, and particularly Steve Dreistadt, to cause major problems for California UC Davis, UC/IPM Project; Beverly ticular weeds and certain agricul- agricultural production is the case of Gingg, San Luis Obispo; Anne Fenkner tural practices.
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]