Age-Dependent Decline in Fate Switch from NG2 Cells to Astrocytes After Olig2 Deletion

Total Page:16

File Type:pdf, Size:1020Kb

Age-Dependent Decline in Fate Switch from NG2 Cells to Astrocytes After Olig2 Deletion This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Development/Plasticity/Repair Age-dependent decline in fate switch from NG2 cells to astrocytes after Olig2 deletion Hao Zuo1, William M. Wood1, Amin Sherafat1, Robert A. Hill1, Q. Richard Lu2 and Akiko Nishiyama1,3 1University of Connecticut, Department of Physiology and Neurobiology, 75 North Eagleville Road, Storrs, CT 06269-3156, USA 2Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Cincinnati, OH 3University of Connecticut Institute of System Genomics and University of Connecticut Institute of Brain and Cognitive Sciences DOI: 10.1523/JNEUROSCI.0712-17.2018 Received: 14 March 2017 Revised: 31 December 2017 Accepted: 23 January 2018 Published: 30 January 2018 Author contributions: HZ, WMW, AS, and RAH performed experiments and contributed to figures, HZ, WMW, AS, and AN wrote the manuscript, QL contributed mouse line as well as design and discussion of the study. Conflict of Interest: The authors declare no competing financial interests. This study was funded by NIH R01NS049267, NIH R01 NS074870, and NIH R01 NS073425 to AN, NIH R01NS072427 and R01NS075243 (QRL), and Connecticut Stem Cell Program 06SCB03 (AN). The Leica SP8 confocal microscope was purchased using NIH Shared Instrumentation Grant S10OD016435 (PI, AN) and is maintained by Dr. Chris O'Connell, Director of Advanced Microscopy Facility. We thank Youfen Sun for maintaining the transgenic mouse colony. We thank Dr. Ben Deneen (Baylor College of Medicine) for the rabbit anti-NFIA antibody and Dr. Michael Wegner (Erlangen University) for the guinea pig anti-Sox10 antibody. The authors declare no competing financial interests. Correspondence should be addressed [email protected] Cite as: J. Neurosci ; 10.1523/JNEUROSCI.0712-17.2018 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published. Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process. Copyright © 2018 the authors 1 Age-dependent decline in fate switch from NG2 cells to astrocytes after Olig2 deletion 2 3 Hao Zuo1*, William M. Wood1*, Amin Sherafat1, Robert A. Hill1,4, Q. Richard Lu2, and Akiko Nishiyama1,3 4 5 1University of Connecticut 6 Department of Physiology and Neurobiology 7 75 North Eagleville Road 8 Storrs, CT 06269-3156 9 USA 10 [email protected] 11 *co-first authors 12 2Cincinnati Children’s Hospital Medical Center 13 Department of Pediatrics 14 Cincinnati, OH 15 3University of Connecticut Institute of System Genomics and University of Connecticut Institute of Brain 16 and Cognitive Sciences 17 4Present address: Yale University School of Medicine, Department of Neurology 18 19 Running title: Age-dependent decline of OPC fate plasticity 20 21 Author contributions: HZ, WMW, AS, and RAH performed experiments and contributed to figures, HZ, 22 WMW, AS, and AN wrote the manuscript, QL contributed mouse line as well as design and discussion of the 23 study. 24 25 Journal section: Development/Plasticity/Repair 26 27 Word count: 28 Abstract 236 29 Significance statement 118 30 Introduction 466 31 Materials and Methods 961 32 Results 3,046 33 Discussion 1,500 34 Figure legends 1,301 35 Bibliography 1,810 36 Total 9,438 37 38 Number of figures: 5 39 Number of tables: 1 40 1 41 ABSTRACT 42 NG2 cells are a resident glial progenitor cell population that is uniformly distributed throughout 43 the developing and mature mammalian central nervous system (CNS). Those in the postnatal CNS 44 generate exclusively myelinating and non-myelinating oligodendrocytes and are hence equated with 45 oligodendrocyte precursor cells (OPCs). Prenatally, NG2 cells in the ventral gray matter of the 46 forebrain generate protoplasmic astrocytes as well as oligodendrocytes. The fate conversion from 47 NG2 cells into protoplasmic astrocytes is dependent on downregulation of the key oligodendrocyte 48 transcription factor Olig2. We previously showed that constitutive deletion of Olig2 in NG2 cells 49 converts NG2 cells in the neocortex into protoplasmic astrocytes at the expense of oligodendrocytes. 50 In this study, we show that postnatal deletion of Olig2 in both male and female mice caused NG2 51 cells in the neocortex but not in other gray matter regions to become protoplasmic astrocytes. 52 However, NG2 cells in the neocortex became more resistant to astrocyte fate switch over the first 53 three postnatal weeks. Fewer NG2 cells differentiated into astrocytes and did so with longer latency 54 after Olig2 deletion at postnatal day 18 (P18) compared to deletion at P2. The high-mobility group 55 transcription factor Sox10 was not downregulated for at least one month after Olig2 deletion at P18 56 despite an early transient upregulation of the astrocyte transcription factor NFIA. Furthermore, 57 inhibiting cell proliferation in slice culture reduced astrocyte differentiation from Olig2-deleted 58 perinatal NG2 cells, suggesting that cell division might facilitate nuclear reorganization needed for 59 astrocyte transformation. 60 61 2 62 SIGNIFICANCE STATEMENT 63 NG2 cells are glial progenitor cells that retain a certain degree of lineage plasticity. In the 64 normal postnatal neocortex, they generate mostly oligodendrocyte lineage cells. When the 65 oligodendrocyte transcription factor Olig2 is deleted in NG2 cells in the neocortex, they switch their 66 fate to protoplasmic astrocytes. However, the efficiency of the fate switch decreases with age over 67 the first postnatal three weeks and is reduced when cell proliferation is inhibited. As the neocortex 68 matures, sustained expression of oligodendrocyte lineage-specific key transcription factor Sox10 69 becomes less dependent on Olig2. Taken together, our findings suggest a gradual stabilization of the 70 oligodendrocyte lineage genes and loss of lineage plasticity during the first three weeks after birth, 71 possibly due to nuclear reorganization. 72 73 74 3 75 INTRODUCTION 76 NG2 cells, also called NG2-glia or polydendrocytes, are widely distributed throughout the 77 developing and mature mammalian central nervous system (CNS) (Nishiyama et al., 2009, 2016). 78 Genetic fate mapping studies have confirmed that in the postnatal CNS, NG2 cells either self-renew 79 or differentiate into myelinating and non-myelinating oligodendrocytes, and thus they are 80 commonly equated with oligodendrocyte precursor cells (OPCs). They express two OPC signature 81 proteins NG2 (Cspg4 gene product) and platelet-derived growth factor receptor alpha (Pdgfra), 82 which are downregulated upon their terminal differentiation into postmitotic oligodendrocytes. NG2 83 cells remain proliferative throughout life, but the rate of their proliferation declines with age 84 (Dawson et al., 2003; Psachoulia et al., 2009; Young et al., 2013). 85 Olig2 is a basic helix-loop-helix (bHLH) transcription factor that is broadly expressed in the 86 germinal zones and is required for oligodendrocyte specification and maturation (Zhou and 87 Anderson, 2002; Lu et al., 2002; Takebayashi et al., 2002; Maire et al., 2010; Wegener et al., 2015). 88 During oligodendrocyte specification, Olig2 positively regulates transcription of Sox10, which 89 belongs to the SoxE family of high-mobility group (HMG)-domain transcription factors and is 90 expressed and functionally important throughout all stages of the oligodendrocyte lineage 91 (Kuhlbrodt et al., 1998; Stolt and Wegner, 2016; Küspert et al., 2011). The onset of NG2 and Pdgfra 92 expression immediately follows Sox10 induction in committed oligodendrocyte lineage cells as they 93 emigrate from the germinal zone (reviewed in Nishiyama et al., 2016). 94 A subpopulation of NG2 cells in the prenatal CNS also generate protoplasmic astrocytes in a 95 region-specific manner (Zhu et al., 2008a, b; Ge et al., 2012; Huang et al., 2014). NG2 cells emerge 96 in the telencephalon around embryonic day 14.5 (E14.5, Zhu et al., 2008a). Subsequently a 97 subpopulation of them in the ventral forebrain downregulate Olig2 and become protoplasmic 98 astrocytes, while other NG2 cells in the same region develop along the oligodendrocyte lineage. 99 When Olig2 is constitutively deleted in NG2 cells, those in the neocortex switch their fate to 100 become protoplasmic astrocytes at the expense of oligodendrocytes (Zhu et al., 2012), underscoring 101 the critical role for Olig2 in maintaining NG2 cells in the oligodendrocyte lineage. In the normal 102 adult CNS, NG2 cells do not produce astrocytes (Rivers et al., 2008; Dimou et al., 2008; Zhu et al., 4 103 2011; Kang et al., 2010), and deletion of Olig2 in the injured adult brain has yielded variable results 104 (Dimou et al., 2008; Tatsumi et al., 2008; Komitova et al., 2011). To investigate the temporal 105 changes in Olig2-dependent lineage plasticity of NG2 cells, we examined the fate of NG2 cells in 106 the neocortex after deleting Olig2 at different postnatal ages. We show that there was an 107 age-dependent delay and decline astrocyte differentiation from NG2 cells after Olig2 deletion, 108 which was correlated with delayed downregulation of Sox10. Furthermore, inhibiting cell division 109 in slice cultures attenuated astrocyte differentiation from NG2 cells. 110 111 5 112 MATERIALS AND METHODS 113 Generation of tamoxifen-inducible NG2 cell-specific Olig2 conditional knockout mice 114 Triple transgenic mouse line NG2creERTM:YFP:Olig2fl/fl
Recommended publications
  • The GATA2 Transcription Factor Negatively Regulates the Proliferation of Neuronal Progenitors
    RESEARCH ARTICLE 2155 Development 133, 2155-2165 (2006) doi:10.1242/dev.02377 The GATA2 transcription factor negatively regulates the proliferation of neuronal progenitors Abeer El Wakil*, Cédric Francius*,†, Annie Wolff, Jocelyne Pleau-Varet† and Jeannette Nardelli†,§ Postmitotic neurons are produced from a pool of cycling progenitors in an orderly fashion that requires proper spatial and temporal coordination of proliferation, fate determination, differentiation and morphogenesis. This probably relies on complex interplay between mechanisms that control cell cycle, specification and differentiation. In this respect, we have studied the possible implication of GATA2, a transcription factor that is involved in several neuronal specification pathways, in the control of the proliferation of neural progenitors in the embryonic spinal cord. Using gain- and loss-of-function manipulations, we have shown that Gata2 can drive neural progenitors out of the cycle and, to some extent, into differentiation. This correlates with the control of cyclin D1 transcription and of the expression of the p27/Kip1 protein. Interestingly, this functional aspect is not only associated with silencing of the Notch pathway but also appears to be independent of proneural function. Consistently, GATA2 also controls the proliferation capacity of mouse embryonic neuroepithelial cells in culture. Indeed, Gata2 inactivation enhances the proliferation rate in these cells. By contrast, GATA2 overexpression is sufficient to force such cells and neuroblastoma cells to stop dividing but not to drive either type of cell into differentiation. Furthermore, a non-cell autonomous effect of Gata2 expression was observed in vivo as well as in vitro. Hence, our data have provided evidence for the ability of Gata2 to inhibit the proliferation of neural progenitors, and they further suggest that, in this regard, Gata2 can operate independently of neuronal differentiation.
    [Show full text]
  • Olig1 and Sox10 Interact Synergistically to Drivemyelin Basic
    The Journal of Neuroscience, December 26, 2007 • 27(52):14375–14382 • 14375 Cellular/Molecular Olig1 and Sox10 Interact Synergistically to Drive Myelin Basic Protein Transcription in Oligodendrocytes Huiliang Li,1 Yan Lu,2 Hazel K. Smith,1 and William D. Richardson1 1Wolfson Institute for Biomedical Research and Department of Biology, University College London, London WC1E 6BT, United Kingdom, and 2Medical Research Council, Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom The oligodendrocyte lineage genes (Olig1/2), encoding basic helix-loop-helix transcription factors, were first identified in screens for master regulators of oligodendrocyte development. OLIG1 is important for differentiation of oligodendrocyte precursors into myelin- forming oligodendrocytes during development and is thought to play a crucial role in remyelination during multiple sclerosis. However, itisstillunclearhowOLIG1interactswithitstranscriptionalcofactorsandDNAtargets.OLIG1wasreportedlyrestrictedtomammals,but we demonstrate here that zebrafish and other teleosts also possess an OLIG1 homolog. In zebrafish, as in mammals, Olig1 is expressed in the oligodendrocyte lineage. Olig1 associates physically with another myelin-associated transcription factor, Sox10, and the Olig1/Sox10 complex activates mbp (myelin basic protein) transcription via conserved DNA sequence motifs in the mbp promoter region. In contrast, Olig2 does not bind to Sox10 in zebrafish, although both OLIG1 and OLIG2 bind SOX10 in mouse. Key words: Olig1; Olig2; Sox10; Mbp; oligodendrocyte; myelin; zebrafish; mouse; evolution; development Introduction directly regulates Mbp transcription (Stolt et al., 2002), and over- Myelin, the multilayered glial sheath around axons, is one of the expression of SOX10 alone is sufficient to induce myelin gene defining features of jawed vertebrates (gnathostomes). It is expression in embryonic chick spinal cord (Liu et al., 2007).
    [Show full text]
  • SUPPLEMENTARY MATERIAL Bone Morphogenetic Protein 4 Promotes
    www.intjdevbiol.com doi: 10.1387/ijdb.160040mk SUPPLEMENTARY MATERIAL corresponding to: Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells SUMIYO MIMURA, MIKA SUGA, KAORI OKADA, MASAKI KINEHARA, HIROKI NIKAWA and MIHO K. FURUE* *Address correspondence to: Miho Kusuda Furue. Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan. Tel: 81-72-641-9819. Fax: 81-72-641-9812. E-mail: [email protected] Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.160040mk TABLE S1 PRIMER LIST FOR QRT-PCR Gene forward reverse AP2α AATTTCTCAACCGACAACATT ATCTGTTTTGTAGCCAGGAGC CDX2 CTGGAGCTGGAGAAGGAGTTTC ATTTTAACCTGCCTCTCAGAGAGC DLX1 AGTTTGCAGTTGCAGGCTTT CCCTGCTTCATCAGCTTCTT FOXD3 CAGCGGTTCGGCGGGAGG TGAGTGAGAGGTTGTGGCGGATG GAPDH CAAAGTTGTCATGGATGACC CCATGGAGAAGGCTGGGG MSX1 GGATCAGACTTCGGAGAGTGAACT GCCTTCCCTTTAACCCTCACA NANOG TGAACCTCAGCTACAAACAG TGGTGGTAGGAAGAGTAAAG OCT4 GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAA PAX3 TTGCAATGGCCTCTCAC AGGGGAGAGCGCGTAATC PAX6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT p75 TCATCCCTGTCTATTGCTCCA TGTTCTGCTTGCAGCTGTTC SOX9 AATGGAGCAGCGAAATCAAC CAGAGAGATTTAGCACACTGATC SOX10 GACCAGTACCCGCACCTG CGCTTGTCACTTTCGTTCAG Suppl. Fig. S1. Comparison of the gene expression profiles of the ES cells and the cells induced by NC and NC-B condition. Scatter plots compares the normalized expression of every gene on the array (refer to Table S3). The central line
    [Show full text]
  • Hormonal Regulation of Oligodendrogenesis I: Effects Across the Lifespan
    biomolecules Review Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan Kimberly L. P. Long 1,*,†,‡ , Jocelyn M. Breton 1,‡,§ , Matthew K. Barraza 2 , Olga S. Perloff 3 and Daniela Kaufer 1,4,5 1 Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; [email protected] (J.M.B.); [email protected] (D.K.) 2 Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; [email protected] 3 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA; [email protected] 4 Department of Integrative Biology, University of California, Berkeley, CA 94720, USA 5 Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada * Correspondence: [email protected] † Current address: Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA. ‡ These authors contributed equally to this work. § Current address: Department of Psychiatry, Columbia University, New York, NY 10027, USA. Abstract: The brain’s capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, Citation: Long, K.L.P.; Breton, J.M.; the‘creation of new OLs, can be dramatically influenced during early development and in adulthood Barraza, M.K.; Perloff, O.S.; Kaufer, D.
    [Show full text]
  • Supplemental Data Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors Neuron, Volume 53 Supplemental Data Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma Keith L. Ligon, Emmanuelle Huillard, Shwetal Mehta, Santosh Kesari, Hongye Liu, John A. Alberta, Robert M. Bachoo, Michael Kane, David N. Louis, Ronald A. DePinho, David J. Anderson, Charles D. Stiles, and David H. Rowitch Figure S1. Olig1/2+/- Ink4a/Arf-/-EGFRvIII Gliomas Express Characteristic Morphologic and Immunophenotypic Features of Human Malignant Gliomas (A) Tumors exhibit dense cellularity and atypia. (B) Characteristic infiltration of host SVZ stem cell niche. (C) Although occasional tumors exhibited pseudopalisading necrosis (n, arrowhead) and hemorrhage (h, arrowhead) similar to human GBM (Astrocytoma WHO Grade IV), most tumors lacked these features. (D) IHC for hEGFR highlights hallmark feature of human gliomas, including perivascular (pv) and subpial (sp) accumulation of tumor cells, (E) striking white matter tropism of tumor cells in corpus callosum (cc), and (F) distant single cell infiltration of cerebellar white matter (wm, arrows). (G-J) Immunohistochemical markers characteristic of human tumors (Gfap, Olig2, Olig1, Nestin) are present. (K and L) Weak staining for the early neuronal marker TuJ1 and absence of the differentiated neuronal marker, NeuN similar to human glioma and consistent with heterogeneous lines of partial differentiation. Figure S2. Olig1/2+/- Ink4a/Arf-/-EGFRvIII Neurospheres Are Multipotent and Olig1/2-/- Ink4a/Arf-/-EGFRvIII Neurospheres Are Bipotent Olig1/2+/- or Olig1/2-/- Ink4a/Arf-/-EGFRvIII neurospheres were allowed to differentiate for 6 days in medium without EGF.
    [Show full text]
  • Characterization of Transcription Factor Networks Involved in Umbilical Cord Blood CD34+ Stem Cells-Derived Erythropoiesis
    Characterization of Transcription Factor Networks Involved in Umbilical Cord Blood CD34+ Stem Cells-Derived Erythropoiesis Biaoru Li1, Lianghao Ding2, Chinrang Yang2, Baolin Kang1, Li Liu3, Michael D. Story2, Betty S. Pace1* 1 Department of Pediatrics, Hematology/Oncology Division, Georgia Regents University, Augusta, Georgia, United States of America, 2 Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America, 3 Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America Abstract Fetal stem cells isolated from umbilical cord blood (UCB) possess a great capacity for proliferation and differentiation and serve as a valuable model system to study gene regulation. Expanded knowledge of the molecular control of hemoglobin synthesis will provide a basis for rational design of therapies for b-hemoglobinopathies. Transcriptome data are available for erythroid progenitors derived from adult stem cells, however studies to define molecular mechanisms controlling globin gene regulation during fetal erythropoiesis are limited. Here, we utilize UCB-CD34+ stem cells induced to undergo erythroid differentiation to characterize the transcriptome and transcription factor networks (TFNs) associated with the c/b-globin switch during fetal erythropoiesis. UCB-CD34+ stem cells grown in the one-phase liquid culture system displayed a higher proliferative capacity than adult CD34+ stem cells. The c/b-globin switch was observed after day 42 during fetal erythropoiesis in contrast to adult progenitors where the switch occurred around day 21. To gain insights into transcription factors involved in globin gene regulation, microarray analysis was performed on RNA isolated from UCB-CD34+ cell-derived erythroid progenitors harvested on day 21, 42, 49 and 56 using the HumanHT-12 Expression BeadChip.
    [Show full text]
  • Transcriptional and Epigenetic Characterization of Early Striosomes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.19.105171; this version posted May 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Transcriptional and epigenetic characterization of early striosomes identifies Foxf2 and Olig2 as factors required for development of striatal compartmentation and neuronal phenotypic differentiation Maria-Daniela Cirnaru1, Sicheng Song2, Kizito-Tshitoko Tshilenge3, Chuhyon Corwin1, Justyna Mleczko1, Carlos Galicia Aguirre3, Houda Benlhabib2, Jaroslav Bendl4,5,6, Jordi Creus Muncunill1, Pasha Apontes4,5,6, John F. Fullard4,5,6, Peter Carlsson7, Panos Roussos4,5,6,8, Sean D. Mooney2, Lisa M. Ellerby3, Michelle E. Ehrlich1* 1. Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. 2. Department of Epidemiology, University of Washington, Seattle, WA, USA. 3. Buck Institute for Research on Aging, Novato, CA, 94945, USA. 4. Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. 5. Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. 6. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. 7. Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden. 8. Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468, USA.
    [Show full text]
  • Combinatorial Profiles of Oligodendrocyte-Selective Classes of Transcriptional Regulators Differentially Modulate Myelin Basic Protein Gene Expression
    The Journal of Neuroscience, September 7, 2005 • 25(36):8311–8321 • 8311 Development/Plasticity/Repair Combinatorial Profiles of Oligodendrocyte-Selective Classes of Transcriptional Regulators Differentially Modulate Myelin Basic Protein Gene Expression Solen Gokhan,1,2,3,7* Mireya Marin-Husstege,8* Shau Yu Yung,4 Darah Fontanez,8,9 Patrizia Casaccia-Bonnefil,8,9 and Mark F. Mehler1,2,3,4,5,6,7 1Institute for Brain Disorders and Neural Regeneration, 2F. M. Kirby Program in Neural Protection and Repair, Departments of 3Neurology, 4Neuroscience, and 5Psychiatry and Behavioral Sciences, 6Einstein Cancer Center, and 7Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York 10461, and 8Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, and 9Undergraduate Research Program RISE at Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854 Recent studies suggest that specific neural basic helix-loop-helix (HLH; i.e., Olig1 and Olig2, Mash1), associated inhibitory HLH (i.e., Id2 andId4),high-mobilitygroupdomain(i.e.,Sox10),andhomeodomain(i.e.,Nkx2.2)transcriptionfactorsareinvolvedinoligodendrocyte (OL) lineage specification and progressive stages of maturation including myelination. However, the developmental interplay among theselineage-selectivedeterminants,inacell-andmaturationalstage-specificcontext,hasnotyetbeendefined.Weshowhereinvivoand in vitro developmental
    [Show full text]
  • Investigating the Gene Regulatory Network Underlying Caudal Hindbrain Specification in Embryonic Zebrafish
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2018-06-13 Investigating the Gene Regulatory Network Underlying Caudal Hindbrain Specification in Embryonic Zebrafish Priyanjali Ghosh University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Developmental Biology Commons Repository Citation Ghosh P. (2018). Investigating the Gene Regulatory Network Underlying Caudal Hindbrain Specification in Embryonic Zebrafish. GSBS Dissertations and Theses. https://doi.org/10.13028/M2S971. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/979 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. INVESTIGATING THE GENE REGULATORY NETWORK UNDERLYING CAUDAL HINDBRAIN SPECIFICATION IN EMBRYONIC ZEBRAFISH A Dissertation Presented By Priyanjali Ghosh Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY June 13, 2018 Department of Biochemistry and Molecular Pharmacology INVESTIGATING THE GENE REGULATORY NETWORK UNDERLYING CAUDAL HINDBRAIN SPECIFICATION IN EMBRYONIC ZEBRAFISH A Dissertation Presented By Priyanjali Ghosh This work was undertaken in the Graduate School of Biomedical Sciences Department of Biochemistry and Molecular Pharmacology Under the mentorship of Charles G. Sagerström, PhD, Thesis Advisor Michael M. Francis, PhD Member of Committee Lawrence J. Hayward, MD, PhD, Member of Committee Scot A. Wolfe, PhD, Member of Committee Sarah McMenamin, PhD, External Member of Committee Alonzo H.
    [Show full text]
  • Frequency and Clinical Characteristics of Intrachromosomal Amplification of Chromosome 21 in Korean Childhood B-Lineage Acute Lymphoblastic Leukemia
    Original Article Diagnostic Genetics Ann Lab Med 2016;36:475-480 http://dx.doi.org/10.3343/alm.2016.36.5.475 ISSN 2234-3806 • eISSN 2234-3814 Frequency and Clinical Characteristics of Intrachromosomal Amplification of Chromosome 21 in Korean Childhood B-lineage Acute Lymphoblastic Leukemia Jieun Kim, M.D.1, Chuhl Joo Lyu, M.D.2, Saeam Shin, M.D.3, Seung-Tae Lee, M.D.1, and Jong Rak Choi, M.D.1 Department of Laboratory Medicine1, Yonsei University College of Medicine, Seoul; Department of Pediatrics2, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul; Department of Laboratory Medicine3, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Korea Background: Intrachromosomal amplification of chromosome 21 (iAMP21) is known to Received: December 1, 2015 be associated with poor prognosis in B-cell ALL (B-ALL). To determine the frequency and Revision received: March 30, 2016 Accepted: May 11, 2016 clinical characteristics of iAMP21 in Korean B-ALL patients, we performed FISH and mul- tiplex ligation-dependent probe amplification (MLPA) analyses. Corresponding author: Seung-Tae Lee Department of Laboratory Medicine, Yonsei Methods: A total of 102 childhood B-ALL patients were screened with ETV6-RUNX1 FISH University College of Medicine, 50-1 probes (Abbott Molecular, USA). The presence of an iAMP21 was confirmed by using Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea MLPA P327 iAMP21-ERG probemix (MRC Holland, The Netherlands). Tel: +82-2-2228-2450 Results: iAMP21 was detected in one of the screened B-ALL patients (1/102 patients, Fax: +82-2-364-1583 E-mail: [email protected] 1.0%) who presented the ALL immunophenotype and complex karyotype at initial diagno- sis.
    [Show full text]
  • Genome-Wide Screen Reveals WNT11, a Non-Canonical WNT Gene, As a Direct Target of ETS Transcription Factor ERG
    Oncogene (2011) 30, 2044–2056 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Genome-wide screen reveals WNT11, a non-canonical WNT gene, as a direct target of ETS transcription factor ERG LH Mochmann1, J Bock1, J Ortiz-Ta´nchez1, C Schlee1, A Bohne1, K Neumann2, WK Hofmann3, E Thiel1 and CD Baldus1 1Department of Hematology and Oncology, Charite´, Campus Benjamin Franklin, Berlin, Germany; 2Institute for Biometrics and Clinical Epidemiology, Charite´, Campus Mitte, Berlin, Germany and 3Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany E26 transforming sequence-related gene (ERG) is a current therapies in acute leukemia patients with poor transcription factor involved in normal hematopoiesis prognosis characterized by high ERG mRNA expression. and is dysregulated in leukemia. ERG mRNA over- Oncogene (2011) 30, 2044–2056; doi:10.1038/onc.2010.582; expression was associated with poor prognosis in a subset published online 17 January 2011 of patients with T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Herein, a Keywords: ETS-related gene (ERG); WNT11; acute genome-wide screen of ERG target genes was conducted leukemia; ERG target genes; 6-bromoindirubin-3-oxime by chromatin immunoprecipitation-on-chip (ChIP-chip) in (BIO); morphological transformation Jurkat cells. In this screen, 342 significant annotated genes were derived from this global approach. Notably, ERG-enriched targets included WNT signaling genes: WNT11, WNT2, WNT9A, CCND1 and FZD7. Further- more, chromatin immunoprecipitation (ChIP) of normal Introduction and primary leukemia bone marrow material also confirmed WNT11 as a target of ERG in six of seven The erythroblastosis virus E26 transforming sequence patient samples.
    [Show full text]
  • Oxygen Impairs Oligodendroglial Development Via Oxidative Stress
    www.nature.com/scientificreports OPEN Oxygen impairs oligodendroglial development via oxidative stress and reduced expression of HIF-1α Received: 20 June 2016 Christina Brill1, Till Scheuer1,2, Christoph Bührer1, Stefanie Endesfelder1 & Thomas Schmitz1 Accepted: 18 January 2017 The premature increase of oxygen tension may contribute to oligodendroglial precursor cell (OPC) Published: 23 February 2017 damage in preterm infants. Fetal OPCs are exposed to low oxygen tissue tensions not matched when cells are cultured in room air. Maturation (A2B5, O4, O1, MBP, CNP, arborization), oxidative stress (nitrotyrosine Western blot, NRF2 and SOD2 expression), apoptosis (TUNEL), proliferation (Ki67), and expression of transcription factors regulated by Hypoxia-Inducible-Factor-1-alpha (Hif-1α) expressed in OPCs (Olig1, Olig2, Sox9, Sox10) were assessed in rat OPCs and OLN93 cells cultured at 5% O2 and 21% O2. Influences of Hif-1α were investigated by Hif-1α luciferase reporter assays and Hif-1α- knockdown experiments. At 21% O2, cell proliferation was decreased and process arborization of OPCs was reduced. Expression of MBP, CNP, Olig1, Sox9 and Sox10 was lower at 21% O2, while Nrf2, SOD2, nitrotyrosine were increased. Apoptosis was unchanged. Luciferease reporter assay in OLN93 cells indicated increased Hif-1α activity at 5% O2. In OLN93 cells at 5% O2, Hif-1α knockdown decreased the expression of MBP and CNP, similar to that observed at 21% O2. These data indicate that culturing OPCs at 21% O2 negatively affects development and maturation. Both enhanced oxidative stress and reduced expression of Hif-1α-regulated genes contribute to these hyperoxia-induced changes. In addition to its fundamental role in energy metabolism, oxygen serves as a regulator of cellular develop- ment.
    [Show full text]