1 Identification of BBX proteins as rate-limiting co-factors of HY5. 2 Katharina Bursch1, Gabriela Toledo-Ortiz2, Marie Pireyre3, Miriam Lohr1, Cordula Braatz1, Henrik 3 Johansson1* 4 1. Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität 5 Berlin, Albrecht-Thaer-Weg 6. D-14195 Berlin, Germany. 6 2. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 7 3. Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of 8 Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland 9 *E-mail
[email protected] 10 Abstract 11 As a source of both energy and environmental information, monitoring the incoming light is crucial for 12 plants to optimize growth throughout development1. Concordantly, the light signalling pathways in 13 plants are highly integrated with numerous other regulatory pathways2,3. One of these signal 14 integrators is the bZIP transcription factor HY5 which holds a key role as a positive regulator of light 15 signalling in plants4,5. Although HY5 is thought to act as a DNA-binding transcriptional regulator6,7, the 16 lack of any apparent transactivation domain8 makes it unclear how HY5 is able to accomplish its many 17 functions. Here, we describe the identification of three B-box containing proteins (BBX20, 21 and 22) 18 as essential partners for HY5 dependent modulation of hypocotyl elongation, anthocyanin 19 accumulation and transcriptional regulation. The bbx202122 triple mutant mimics the phenotypes of 20 hy5 in the light and its ability to suppress the cop1 mutant phenotype in darkness. Furthermore, 84% 21 of genes that exhibit differential expression in bbx202122 are also HY5 regulated, and we provide 22 evidence that HY5 requires the B-box proteins for transcriptional regulation.