Precision Photometry at the University of Hertfordshire’S Bayfordbury Observatory
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF HERTFORDSHIRE MSc BY RESEARCH DEGREE THESIS PRECISION PHOTOMETRY AT THE UNIVERSITY OF HERTFORDSHIRE’S BAYFORDBURY OBSERVATORY Author: Supervised by: Peter John BECK Dr Mark GALLAWAY Dr Phillip LUCAS Centre for Astrophysics Research 2017 20 April Thursday, School of Physics, Astronomy and Mathematics University of Hertfordshire Submitted to the University of Hertfordshire in partial fulfilment of the requirements of the degree of Master of Science November 2017 THIS PAGE INTENTIONALLY LEFT BLANK Abstract This thesis presents work conducted at the University of Hertfordshire’s Observatory at Bayfordbury Hertfordshire to develop a model to predict the photometric precision of their 40cm aperture telescopes whilst observing a wide range of targets. A model was formulated with suitable equations to predict the expected precision with a specified target by using only their catalogue magnitude, the selected exposure time and anticipated value of air mass. Significant effort was made to quantify the parameters for a particular telescope working in V band with 2x2 binning. The model’s equations were predicted to be valid from magnitude 5 to magnitude 16.5 and for an air mass of up to 3.0. The predicted results have typically been within 2 mmag of the measured values obtained from light curves, albeit there are a number of mismatches that may in part be due to poor observing conditions. As part of the validation exercise, the technique was used to identify which predicted exoplanet transits would be satisfactorily captured by a telescope at the Bayfordbury Observatory, and to optimise the exposure time. Of the achieved observations with images correctly taken during a predicted transit (apart from one very faint target in adverse weather conditions), 12 satisfactory transits were captured and are presented in this thesis. Thursday, 20 April 2017 20 April Thursday, i Declaration I declare that no part of this work is being submitted concurrently for another award of the University or any other awarding body or institution. This thesis contains a substantial body of work that has not previously been submitted successfully for an award of the University or any other awarding body or institution. Except where indicated otherwise in the submission, the submission is my own work and has not been submitted successfully for any award. Peter J Beck November 2017 ii CONTENTS 1 INTRODUCTION ................................................................................................. 1 1.1 Basic Concepts .................................................................................................... 1 1.2 Technical Background ......................................................................................... 5 1.3 Study Aims ........................................................................................................ 22 2 METHOD ........................................................................................................... 23 2.1 Definition of Generic Model of Equations for Any Telescope and Camera ......... 23 2.2 Method of Deriving Parameters for Equations for a Specific Telescope and Camera .............................................................................................................. 24 2.3 Method of Calculating Achieved Photometric Precision ..................................... 29 2.4 Method of Assessing Photometric Precision ...................................................... 34 3 RESULTS .......................................................................................................... 36 3.1 ‘Union Jack’ Analysis ......................................................................................... 36 3.2 Derived Data for a Site Specific Telescope and Camera Configuration .............. 38 3.3 Equations to Calculate Standard Deviation For a Specific Telescope and Camera Configuration ........................................................................................ 43 3.4 Observational Data ............................................................................................ 48 3.5 Comparison of Achieved Versus Predicted Precision ........................................ 64 4 DISCUSSION .................................................................................................... 72 4.1 General .............................................................................................................. 72 4.2 Comparison of Achieved Results Compared to Predictions ............................... 72 4.3 Revision of Equations to Better Match Results .................................................. 74 4.4 Assessment of Achievements Compared to Objectives ..................................... 74 2017 20 April Thursday, 4.5 Assessment of the Applicability of Methodology to Other Equipment ................. 76 5 CONCLUSIONS ................................................................................................ 77 5.1 Overview ........................................................................................................... 77 5.2 Applicability of Formulation to Future Observing Studies at the Bayfordbury Observatory ....................................................................................................... 78 5.3 Identification Of Further Work ............................................................................ 78 6 REFERENCES .................................................................................................. 80 7 ACKNOWLEDGEMENTS ................................................................................. 85 Appendix A Telescopes and Cameras Available at Bayfordbury ..................................... 87 Appendix B Submitting Robotically Controlled Observations at Bayfordbury Observatory ..................................................................................................... 88 Appendix C Location of Digital Copies of Image Data ....................................................... 88 Appendix D Proprietary and Free Issue Software Packages Used ................................... 88 Appendix E ‘Union Jack’ Flat Field Results ....................................................................... 89 Appendix F Derivation of Relationship Between Instrument and Catalogue Magnitudes ....................................................................................................... 92 Appendix G Recommended Formulation to be Used at Bayfordbury for Calculating a Maximum Exposure Time for any Given Target ....................................... 106 Appendix H Light Curves of Non-Transiting Targets ....................................................... 107 iii Appendix I Light Curves with Transits of Exo-Planets .................................................. 124 Appendix J Equation Fitted Exo-Planet Light Curves ..................................................... 129 Appendix K Eclipsing Binary Transit Light Curves ......................................................... 141 FIGURES Figure 1 Illustration of Band Passes with Different Types of Filter ........................................... 2 Figure 2 Horizontal and Vertical Aperture Slices of WASP-52 in Image 27090 ......................... 4 Figure 3 Predicted Scintillation Noise Levels With Different Exposure Times and Aperture Sizes ........................................................................................................... 13 Figure 4 Example of the Sky Conditions Whilst Observing HAT-P-20 on 24/25.11.2016 ....... 48 Figure 5 Example of Increasing Sky Temperature Due to Cloud Conditions Terminating Observations (27/28-3-2017) ............................................................... 49 Figure 6 CCD Temperature Variation on 13/14-9-2016 ............................................................. 61 Figure 7 All Telescopes: SD Error (using Counts) v Magnitude .............................................. 65 Figure 8 CKT Telescope: SD Error (using Counts) v Magnitude ............................................. 65 Figure 9 CKT Telescope: Absolute SD Error (%) (Using Counts) v Magnitude ...................... 66 Figure 10 CKT Telescope: Absolute SD Error (using Counts) (%) v Air Mass ........................ 66 Figure 11 All Telescopes: SD Error (using Catalogue Magnitude) v Magnitude..................... 67 Figure 12 CKT Telescope: SD Error (using Catalogue Magnitude) v Magnitude .................... 68 Figure 13 CKT Telescope: Absolute SD Error (%) v Magnitude ............................................... 68 Figure 14 CKT Telescope: Absolute SD Error (%) v Air Mass.................................................. 69 Figure 15 Comparison of Measured Transit Depth and Reference Transit Depths v Magnitude .................................................................................................................. 70 Figure 16 Light Curves For the Transit of WD 1145+017 Taken on 25/26.3.2016 Using TYC 272-650-1 as the Reference Star ...................................................................... 73 Figure 17 Aperture Slice For WD 1145+017 in Image 39486..................................................... 74 Figure 18 Histogram of Gradients with a Sample UX UMa Images .......................................... 89 Figure 19 Histogram of Gradients with a Sample V795-Her Images with 60s Exposure Time ........................................................................................................................... 90 Figure 20 Histogram of Gradients with a Sample