Performance Evaluation of an IC Engine Using Oxyhydrogen As a Fuel Supplement

Total Page:16

File Type:pdf, Size:1020Kb

Performance Evaluation of an IC Engine Using Oxyhydrogen As a Fuel Supplement Journal of Scientific & Industrial Research Vol. 74, March 2015, pp. 176-179 Performance evaluation of an IC Engine using Oxyhydrogen as a fuel supplement R Abhilash2, K Gopalakrishna1* and K Venkatesh3 *1,2 & 3Centre for Emerging Technologies, Jain University Jain Global Campus, Jakkasandra Post, Kanakapura Taluk, Ramanagara District, Karnataka State, India Received 20 August 2014; revised 27 November 2014; accepted 22 January 2015 Commonly used fuels such as petrol and diesel have definite energy values and the extent of energy retrieval is limited due to the operating principle of the IC engine. Water upon electrolysis dissociates into hydrogen and oxygen, both the gases together in a common duct called as oxyhydrogen is used to increase the overall energy content of the primary fuel with a proportionate increase in efficiency. In the present investigation, this method is used to generate oxyhydrogen and feed it as a supplement fuel into the air intake manifold of a four stroke diesel engine test rig coupled to a rope brake dynamometer. The performance of the engine is monitored with the supply of oxyhydrogen intake at different electrolyte concentrations. Tests were also done with an accelerometer installed on the engine block to verify the effect of oxyhydrogen fuel on the engine vibration. The results indicate increase of 4% in brake thermal efficiency with the use of sodium hydroxide electrolyte and the efficiency peaked at 75% of rated load on the engine. Keywords: Oxyhydrogen, efficiency, I.C.Engine testing, manifold, electrolysis Introduction fuel gets negated at low engine speeds. The present Availability of Hydrogen in the atmosphere is very investigation aims at fabricating a wet type scarce and is commercially synthesized from oxyhydrogen generator9,10 setup, which can safely hydrocarbons and also by the dissociation of water into generate oxyhydrogen (HHO Gas) and adopt it to work its primitive states, ie. Hydrogen and water. The fuel is with a commercially available diesel engine test setup. highly combustible with an energy density of 121 Oxyhydrogen is generated by the electrolytic MJ/kg1,2 and does not emit harmful components into dissociation of water and to make water conductive, an the atmosphere making Hydrogen one of the main electrolyte of known concentration is added to water. contenders for a cleaner and environment friendly fuel. The generation rate is mainly dependent on the A widely adopted way to generate oxyhydrogen is by concentration of the electrolyte and hence tests to applying a constant voltage potential across the determine the best electrolyte for maximum efficiency electrode in the electrolyser cell. This method was used were conducted. The flame propagation rate of my Milind et al.3 to study the effect of oxyhydrogen on oxyhydrogen is very high and the chances of IC engines utilising petrol or diesel as a fuel and a flashbacks into the generator system is prevented by comparison of the same is done with a producer gas4. using a flashback arrestor which acts as a barrier Similar tests were done by Samuel and McCormick5 to between the engine and the generator cell. understand the diesel engine performance and emission characteristics with a blend of oxyhydrogen with the Materials and Methods air fuel mixture. Tests were conducted to study the NOx The setup used in all the experiments were emissions in exhaust gases of diesel engines by Lilik et fabricated, tested and checked for compatibility with al.6. Saravanan and Nagarajan7 observed a 15% the test engine. The effect of oxyhydrogen on the increase in brake thermal efficiency at 75% load while performance of a diesel Engine was studied using a operating with oxyhydrogen supplement. Tests custom made wet type generator cell which is simple conducted on a four cylinder four stroke compression and easy to fabricate, making it suitable for a compact ignition engine by Yilmaz et al8 show that the system which was important in the present setup. advantages of using oxyhydrogen as a supplementary Generator Shell and Electrodes A generator container was machined out of a —————— *Author for correspondence polyoxymethylene (commonly known as Delrin) billet. E-mail: [email protected] The material is commonly used in precision parts that GOPALAKRISHNA et al.: NANOEMULSION BASED HYDROGELS FOR DRUG DELIVERY 177 require high stiffness, low friction and excellent Tests were conducted on the rig by changing the dimensional stability. With a density of 1.42 g/cm3 the electrolyte concentration. The concentration of the material is light, making it suitable for a portable electrolyte determines the volume of oxyhydrogen setup. Using a lathe, a commercially available stock generated. The concentration of the electrolyte of delrin was machined into a hollow canister which determines the level of conductivity in water and in can contain 900 ml of the electrolyte-water mixture. turn reflects on the generation rate. The magnitude of The generator electrodes was made from a Stainless power generated by the engine at varying loads with steel wire of 2.6 millimeter diameter [Grade 304]. The different levels of oxyhydrogen intake is studied to wire was wound into two concentric coils with a radial understand the performance of the engine. Tests were offset of 2 millimeters. Spacers were used to separate conducted to find the time required for 10 CC of the two coils so that they donot short upon contact. fuel consumption at different loading conditions. Performance evaluation of the engine is done by Electrolyte comparing the brake power output with the thermal Electrolytes such as sodium hydroxide and efficiency and specific fuel consumption at different potassium hydroxide have little to no effect on engine loads. Experiments were conducted under the stainless steel and hence stainless steel Grade 304 was following conditions. used in fabricating the electrodes. An 800 ml. solution of 10 % (weight-volume ratio) Using Air fuel (A/F) mixture electrolytes were used in all the experiments. Both the Under normal conditions (no load condition), the reagents used in the present tests were obtained from time required for the engine to consume 10 cc of M/s Sigma Aldrich. diesel is determined. Consecutive tests were repeated Flashback Arrestor by loading the engine (40 N, 60 N and 100 N) and the A hybrid type flashback arrestor was fabricated time required for the consumption of 10 cc of diesel and used with the oxyhydrogen generator setup. in every condition is examined.Using this data the The arrestor is about half the size of the generator brake power (power output of the engine), specific shell and its outer shell is machined from delrin. fuel consumption and brake thermal efficiency were Inside the arrestor shell there is a hollow space, computed using the following equations: partially filled with water and the rest of the space is available to suppress the flashback. Safety devices Brake BP πNT /2,Power 60 , kW …(1) such as pressure reducing valves are added to release the high pressure generated inside the arrestor shell. where N is the crankshaft speed in revolutions per min, T is the loading torque on the crank shaft in kN-m Test setup The specific fuel consumption(SFC) is obtained Tests were done to record the performance of a from diesel IC (Internal Combustion) engine by comparing its performance with oxyhydrogen as a supplement MassSFC of fuel /)Kg/hr(consumed …(2) for the primary fuel. Performance evaluation of Brake power of the ,engine kW oxyhydrogen as a supplementary fuel is done by connecting the hydrogen generator setup with a diesel The Brake thermal efficiency (BTE) is given by engine test rig. The standard laboratory test rig BrakeBTE power, kW/Heat supplied,kW consisted of a Kirloskar diesel engine (type: AV1) connected to a rope brake dynamometer. BTE (BP/(m f CV). *) 100 % …(3) The details of the test setup are Diameter of Bore, Diameter of orifice, where mf is the mass flow rate (Kg/s) of fuel and D = 800 mm Do = 15 mm C.V is the calorofic value of the fuel, kJ/kg Stroke Length, Density of Diesel, 3 Using Air fuel and Oxyhydrogen mixture L = 110 mm d = 780 kg/m Diameter of brake drum, C.V. of Diesel = 43000 kJ/kg Tests with a 10% w/w concentration of the Db = 380 mm electrolyte were conducted with the oxyhydrogen Rope diameter, Compression ratio = 15:1 setup. Initial readings were taken with Zero load, dp =25 mm 40 N, 60 N and 100 N load on the rope brake 178 J SCI IND RES VOL 74 MARCH 2015 dynamometer. The concentration of the electrolyte is were repeated and the results were plotted by then changed by diluting the electrolyte concentration averaging five repeated tests. with distilled water. Performance tests are conducted in the decreasing order (10%, 8%, 6% and 4%) Results and Discussion w/w of the KOH and NaOH electrolyte concentrations At about 75 % of the rated load, there is a notable (represented in figures 1 and 2 as A/F + HHO change in the engines performance. This trend (10%KOH), A/F +HHO (10%NaOH) respectively) increases up to the maximum load capacity of the and the time required for consumption of 10 cc of fuel engine. With the air fuel mixture, the brake thermal in every case in examined. The above process was efficiency peaked at around 53 % with a repeated with both the electrolytes (potassium corresponding Specific fuel consumption (SFC) of hydroxide and sodium hydroxide).For comparison the 0.158 kg/kWh. The test setup showed remarkable test was repeated for A/F mixture only. A 2-axis changes in efficiencies when injected with accelerometer was mounted on the engine block to oxyhydrogen supplement into the fuel intake record any changes in the vibration resulting from the manifold.
Recommended publications
  • Oxyhydrogen Generator
    Oxy-hydrogen Generator ---From Okay Energy 1 Okay Energy Equipment Co.,Ltd 1.What is oxy-hydrogen generator Oxy-hydrogen Generator is also called Brown Gas Generator or HHO Gas Generator,it separates water (H2O) into mixed hydrogen and oxygen. The mixed Oxygen and Hydrogen gas has a wide range of applications, such as heating, welding, cutting, polishing,boiler combustion supporting etc. to replace LPG or other fuels in many industries. When burned, this gas only produces water and has no pollutants , and it can burn 100%.It’s a new energy in 21st century. 2. Why I use oxy-hydrogen generator? 2.1 Maximum Safety a. Steady, reliable fuel delivery. Fuel is available immediately after machine is switched on. No volatile fuel tanks which can rupture or explode. b. Multiple safety devices, including overheating and in-sufficient water cut-off switches, will automatically turn off power to ensure the safety of both equipment and user. 2.2 Environmentally Friendly a. The Fuel generated by our machines burns completely without creating pollutants, toxic fumes, or public nuisance. b. Does not generate hydrocarbons, carbon monoxide, or carbon dioxide. 2 Okay Energy Equipment Co.,Ltd 2.3 High Mobility a. Our generators are equipped with wheels for easy moving the generators to do the job. b. Our generator immediately can generates fuel as soon as you need it, no need of gas tank. c. Fuel can be used for continuous working for long time. 2.4 High Temperature & Calorific value a. Calorific value is 34000Kcal/kg b. The flame temperature is over 2800°, it can melt refractory metals and none-metals 2.5 Low Cost & Maximum Economy a.
    [Show full text]
  • 1. Exposure Data
    1. EXPOSURE DATA 1.1 Description of major welding are used as part of the welding process (e.g. the processes and materials shielding gas) (ISO, 2009). While there are many welding processes Welding is a broad term for the process routinely employed in occupational settings, the of joining metals through coalescence (AWS, most common arc welding processes are manual 2010). Welding techniques tend to be broadly metal arc (MMA, ISO No. 111), gas metal arc classified as arc welding or gas welding. Arc (GMA, ISO No. 13), flux-cored arc (FCA, ISO Nos welding uses electricity to generate an arc, 114 and 136), gas tungsten arc (GTA, ISO No. 14), whereas gas or oxyfuel welding (ISO 4063:2009 and submerged arc (SA, ISO No. 12) (Table 1.2 process numbers 3, 31, 311, 312, and 313) uses fuel and Table 1.3). Electric resistance welding (ER, gases such as acetylene or hydrogen to generate ISO Nos 21 and 22) is also commonly used for spot heat. Welding results in concurrent exposures or seam welding, and uses electric currents and including welding fumes, gases, and ionizing force to generate heat. In occupational settings, and non-ionizing radiation, and coexposures these processes are most commonly used to weld from other sources such as asbestos and solvents mild steel (MS, low carbon) or stainless steel (SS). (Table 1.1). Flame cutting (ISO No. 81), the process of using Welding fumes are produced when metals oxygen (O) and a fuel to cut a metal, is a closely are heated above their melting point, vapourize related process that is often grouped occupation- and condense into fumes.
    [Show full text]
  • Generation of Oxyhydrogen Gas for Internal Combustion of a Minor Vehicle, Chemical Engineering Transactions, 82, 445- 450 DOI:10.3303/CET2082075
    445 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 82, 2020 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Bruno Fabiano, Valerio Cozzani, Genserik Reniers Copyright © 2020, AIDIC Servizi S.r.l. DOI: 10.3303/CET2082075 ISBN 978-88-95608-80-8; ISSN 2283-9216 Generation of Oxyhydrogen Gas for Internal Combustion of a Minor Vehicle Shaibert Abrahan Veramendi Caicoa, Carlos Alberto Castañeda Oliveraa, Jhonny a,b a a Wilfredo Valverde Flores , Jorge Jave Nakayo , Verónica Tello Mendivil , Elmer a,* Benites-Alfaro aUniversidad César Vallejo, C.P. 15314, Lima 39, Perú bUniversidad Nacional Agraria La Molina, C.P. 15026, Lima 39, Perú [email protected] In the research, an oxyhydrogen gas generating system was built and installed for use in a smaller vehicle. The aim was to check the ability to use oxyhydrogen gas as ecological technology in a 0.2 L internal combustion engine. A linear motorcycle was used for the study and the experimental tests were carried out in parallel with both gasoline and oxyhydrogen gas to compare its efficiency. The results showed yields of 10 km / sol and 92 km / sol for gasoline and oxyhydrogen gas, respectively. Furthermore, with oxyhydrogen gas a favorable reduction in the emission of polluting gases into the environment was found. Finally, the research shows that there are strong reasons to opt for the use of oxyhydrogen gas as an alternative fuel, and it could easily be adapted in vehicle engines. 1. Introduction Air pollution and concern for the care of the environment encourage looking for new alternatives to find the best use of natural resources such as their use of energy for various human activities.
    [Show full text]
  • Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine
    sustainability Article Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine Muhammad Usman 1,* , Haris Hussain 1, Fahid Riaz 2 , Muneeb Irshad 3, Rehmat Bashir 1, Muhammad Haris Shah 1 , Adeel Ahmad Zafar 1, Usman Bashir 1, M. A. Kalam 4,* , M. A. Mujtaba 5,* and Manzoore Elahi M. Soudagar 6 1 Department of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan; [email protected] (H.H.); [email protected] (R.B.); [email protected] (M.H.S.); [email protected] (A.A.Z.); [email protected] (U.B.) 2 Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore; [email protected] 3 Department of Physics, University of Engineering and Technology Lahore, Lahore 54890, Pakistan; [email protected] 4 Center for Energy Science, Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 5 Department of Mechanical Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan 6 Department of Mechanical Engineering, School of Technology, Glocal University, Delhi-Yamunotri Marg, SH-57, Mirzapur Pole, Saharanpur 247121, Uttar Pradesh, India; [email protected] * Correspondence: [email protected] (M.U.); [email protected] (M.A.K.); [email protected] (M.A.M.) Citation: Usman, M.; Hussain, H.; Riaz, F.; Irshad, M.; Bashir, R.; Haris Abstract: The prevailing massive exploitation of conventional fuels has staked the energy accessibility Shah, M.; Ahmad Zafar, A.; Bashir, U.; to future generations. The gloomy peril of inflated demand and depleting fuel reservoirs in the Kalam, M.A.; Mujtaba, M.A.; et al.
    [Show full text]
  • Chemistry Ch-7 Hydrogen Short – Answer Questions 1. Name the Lightest Element and Lightest Gas Known. Hydrogen 2. in a Reacti
    Chemistry Ch-7 Hydrogen Short – answer questions 1. Name the lightest element and lightest gas known. Hydrogen 2. In a reaction , one element displaces another from its compound to form a new compound. What is such a reaction called? Displacement reaction 3. By which method is hydrogen gas collected? explain your answer. Hydrogen gas is collected by the downward displacement of water. it is not collected by downward displacement of air since a mixture of hydrogen and air is explosive. 4. Which gas is collected at the different electrodes in electrolysis of acidified water? At cathode – hydrogen At anode – oxygen 5. How many times lighter or heavier than air is hydrogen? Hydrogen is 14.6 times lighter than air. 6. When kindled, will hydrogen burn in oxygen? name the compound formed, if any and give the balanced equation for the reaction. When candid hydrogen burning in air or oxygen to form water 2H2O+ O2→ 2H2O 7. State the condition under which hydrogen is made to react with nitrogen in Habers process. Template- 500 degree Celsius Pressure- 200 atm Catalyst – Fe 8. Why is hydrogen considered as clean fuel? Hydrogen is considered as as clean fuel because it’s product of reaction is water which does not pollute the environment 9. Give reason why helium is preferred to hydrogen for filling the weather balloon helium is the next lightest gas and it is available in plenty and it does not catches fire that is why helium is preferred to hydrogen for filling weather balloon. Long -answer questions 1. Describe how hydrogen is prepared in the laboratory.
    [Show full text]
  • Using HHO Gas to Reduce Fuel Consumption and Emissions in Internal Combustion Engines
    Using HHO Gas to Reduce Fuel Consumption and Emissions in Internal Combustion Engines A thesis Submitted to the University of Khartoum in Partial Fulfillment for the Degree of M.Sc In Electrical Power Engineering BY: Ibrahim Mohamed Ahmed Ibrahim Fadul B.Sc in Mechenical Engineering, 2006 University of Khartoum Supervisor: Dr. Kamal NasrEldin Abdalla Co-Supervisor: Dr. Esam Elsarrag January 2010 I Dedicated to all those who came before us, To those who walk this journey with us, And to those who will follow. Personally dedicated to My family whose life stories I am blessed to share. May we learn from the successes and failures of our ancestors, as we try to lead the way for generations to come. II ACKNOWLEDGMENT I would like to express my great gratitude to my supervisor Dr. Kamal N. Abdualla for his invaluable help, comments, generous supply of information, and encouragements, my discussions with him have been most illuminating. I am also grateful to Dr. Esam. El-sarrag for generous supply of data, information, discussion, experimental devices, and time. He shared every bit of the stress,and joy that I experienced. I am indebted to thermal machines lap and the helpful staff there, namely thanks goes to Mr.Magbool and Mr.Bakry for their continuous contribution and support. I was greatly enhanced by the gracious assistance of my family, for their patience, understanding and support. Finally, thanks go to all FE lecturers, researchers, staff, and friends. Ibrahim January, 2010 III TABLE OF CONTENTS ACKNOWLEDGMENT ........................................................................................................... III TABLE OF CONTENTS ......................................................................................................... IV LIST OF FIGURES ................................................................................................................ VII LIST OF TABLES ................................................................................................................
    [Show full text]
  • Design and Development of an Oxyhydrogen Generator for Production Ofbrown’S (HHO) Gas As a Renewable Source of Fuel for the Automobile Industry
    International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 8 Issue 05 Series. II || May 2019 || PP 01-07 Design and Development of an Oxyhydrogen Generator for Production ofBrown’s (HHO) Gas as a Renewable Source of Fuel for the Automobile Industry Samuel Pamford Kojo Essuman*,Andrew Nyamful, Vincent Yao Agbodemegbe, Seth Kofi Debrah Department of Nuclear Engineering, Graduate School of Nuclear and Allied Sciences, University of Ghana. Date: March 28, 2018 Corresponding Author: Samuel Pamford Kojo Essuman Abstract: This research work seeks to design and develop an oxyhydrogen generator for HHO gas production. Key parameters consideredin this study includeelectrode area, electrodes spacing, electrodesurface conditioning, and electrode configuration as well as the efficiency of thegenerator. The constructed generator consisted of 26plates made up of 3 anodes, 3 cathodes and 20 neutral plateswitheach having dimension of 10cm x 10 cm. The adjacent plates was spaced at a distance of 2 mm. The efficiency of the constructed generator was evaluated using0.01 M-0.03 M strengths of KOHat a constantvoltage of 13 V.The Results showedan optimum efficiency of 11.9 % when the HHO generator was run using 0.02 M KOHat 13 V for 1 hour. Keywords: HHO gas, Rectifier, Stainless Steels (ST316), Electrolyte, Rubber gasket ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 01-05-2019 Date of acceptance: 13-05-2019 -------------------------------------------------------------------------------------------------------------------------------------- Highlights: 1. Designing an HHO generator 2. Development of an HHO generator 3. Determination of the efficiency ofan HHO generator using KOH as a catalyst I. Introduction Electrolysis of water for hydrogen production has been employed industrially since the 19th century (Barton & Gammon 2010).
    [Show full text]
  • The Magic Lantern Gazette
    ISSN 1059-1249 The Magic Lantern Gazette A Journal of Research Volume 29, Number 2/3 Summer/Fall 2017 The Magic Lantern Society of the United States and Canada www.magiclanternsociety.org The Editor’s Page 2 This double issue of the Gazette has two articles on As always, I am looking for more contributions to the magic lantern related topics. The first is my own arti- Gazette from researchers in North America and any- cle on the oxyhydrogen microscope, a sister to the where else in the world. Last year we had a series of magic lantern. I trace the origins of this instrument contributions from young European scholars, but back to the marriage of the solar microscope, an 18th that pipeline has temporarily dried up, and recent century instrument, and the oxy-hydrogen blowpipe, submissions have been scarce. Please consider sub- originally used for chemical analysis and secondarily mitting some of your research to the Gazette. for illumination. The oxyhydrogen microscope (variously spelled with or without a hyphen, or as the hydro-oxygen or gas microscope) was never really an Kentwood D. Wells, Editor instrument used for scientific research, but rather an 451 Middle Turnpike attraction for public amusement. Parts of this story Storrs, CT 06268 have been told by other scholars, but never in a com- [email protected] prehensive way, and the material on exhibitions of the 860-429-7458 oxyhydrogen microscope in the United States is en- tirely new. Particularly before the Civil War, audienc- es wondered at the appearance of fleas the size of ele- phants, fly eyes, and insect wings, or the feeding of live Water Tigers, the larvae of a type of aquatic bee- tle.
    [Show full text]
  • Origin Al Article
    International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN (P): 2249–6890; ISSN (E): 2249–8001 Vol. 10, Issue 3, Jun 2020, 9811–9824 © TJPRC Pvt. Ltd. MODELLING AND SIMULATION OF GASOLINE ENGINE AT DIFFERENT LOAD CONDITIONS USING OXYHYDROGEN BLEND SHRIKANT BHARDWAJ1 & ARVIND JAYANT2 1 Mechanical Engineering Department, Sant Longowal Institute of Technology, Longowal, India 2School of Engineering &Technology, ASIAN Institute of Technology (AIT), Bangkok, Thailand ABSTRACT The demand for fossil fuels is increasing regularly; therefore Researchers are facing the challenge of finding promising alternative fuels such as hydrogen, oxyhydrogen, alcohol, biodiesel fuels etc. Some of the adverse effects of the current fuel technology prevailing in internal combustion engines are poor air quality index, increased accumulation of greenhouse gases in the environment. The aim of present research was to generate the oxyhydrogen gas through the process of electrolysis and send the homogeneous mixture of gasoline and oxyhydrogen into the four cylinder four stroke spark ignition engine and then analyse emission and performance parameters. Oxyhydrogen gas was manipulated as a secondary fuel in spark ignited1298 cc engine. Results obtained conclude that by using oxyhydrogen and gasoline mixture the r.p.m increased by 9%, fuel consumption decreased by 10.80%, brake power increased by 8.61%, indicated power increased by 12.63% whereas indicated and brake specific fuel consumption decreased by 21.18% and 18.17% respectively, Original Article also the emission of hydrocarbon decreased by 8.25% and carbon monoxide decreased by 6.05%. The drawback of this research setup was the increase in frictional losses due to high heat generation which accompany the reduction in mechanical efficiency by 4.31%.
    [Show full text]
  • Experimental Investigation of the Effect of Oxyhydrogen on Spark Ignition Engines
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 16, Number 5 (2021) pp. 340-345 © Research India Publications. http://www.ripublication.com Experimental Investigation of the Effect of Oxyhydrogen on Spark Ignition Engines Dr. Vivekananthan R1 and Mr. Anil K.B2 1Associate Professor, Department of Mechanical Engineering, Government College of Engineering, Salem, India. 2PG Scholar, Department of Mechanical Engineering, Government College of Engineering, Salem, India. Abstract 2. LITERATURE REVIEW Oxyhydrogen is a gas which is formed during electrolysis of Researchers studied and found that increase in work output water. It is purely a mixture of oxygen and hydrogen. It can and reduction in exhaust emissions due to the addition of influence greatly in the combustion of fuels in Internal hydrogen. Mohammad Affan Usman et al [1] studied the use Combustion engines because of its comparatively better fuel of oxyhydrogen gas four stroke petrol engines and concluded characteristics than gasoline. Since it is a gas, it can diffuse that the exhaust emissions [2]. Shivaprasad K V et al [3] faster than other gasoline fuel. When both gasoline and studied the effect of Hydrogen on combustion performance oxyhydrogen is fed into engine simultaneously, Oxyhydrogen and emission characteristics of a high-speed spark ignition ignites first then gasoline and then spreads the flame faster. engine. Their prime aim of the study was to improve the Oxyhydrogen acts as an ignition catalyst here. From the combustion characteristics and reduce polluting emissions. experiments conducted, it can be concluded that by providing They concluded that an addition of Hydrogen to petrol engine oxyhydrogen in addition to a gasoline fuel in an IC engine improves Break thermal efficiency, also reduces HC and CO yields better combustion which diminishes HC emission and emissions [4-6].
    [Show full text]
  • Oxyhydrogen Generator for Management of COVID 19
    MaHTAS COVID-19 RAPID EVIDENCE UPDATES MaHTAS COVID-19 RAPID EVIDENCE UPDATES Oxyhydrogen Generator For Management Of COVID 19 INTRODUCTION Hydrogen gas is said to be a new and promising treatment option for variety of diseases. Its applications range from acute illness such as ischaemia–reperfusion injury, shock and damage healing to chronic illness such as metabolic syndrome, rheumatoid arthritis, and neurodegenerative diseases.1 There is a growing evidence obtained by animal model experiments 2-9 on molecular hydrogen (H2) as antioxidant, anti-inflammatory, antiapoptotic and antiallergic. The claimed benefits were demonstrated through various delivery methods including drinking hydrogen rich water, intra-peritoneal injection, infusion of hydrogen-rich saline and inhalation.5, 6, 10-13 However, inhalation of hydrogen gas has been established as the easiest and simplest route of administration. It also allows monitoring of the dose of hydrogen. As a biological gas, hydrogen has the ability to diffuse freely across biological membranes, acting in various functional capacities.14, 15 Oxyhydrogen generator is commonly used for engineering applications, transportation as well as for fuel and power generation (for domestic use such as cooking or industry applications such as welding and cutting).16 In recent years, alongside with the discovery of health and wellness benefits of molecular hydrogen, it has been developed as hydrogen inhalation device for health. The device produces hydrogen (66%) and oxygen (33%) gas mixture through water electrolysis method at a rate of 2-3L/min. The electrolysis process splits molecular water into its stoichiometric 2:1 hydrogen to oxygen ratio. The standard specification of the device comprises of an electrolysis unit (at least one positive and one negative plate), a filter unit and a control unit.
    [Show full text]
  • Pressure Versus Impulse Graph for Blast-Induced Traumatic Brain Injury and Correlation to Observable Blast Injuries
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Spring 2019 Pressure versus impulse graph for blast-induced traumatic brain injury and correlation to observable blast injuries Barbara Rutter Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Explosives Engineering Commons, and the Mathematics Commons Department: Mining Engineering Recommended Citation Rutter, Barbara, "Pressure versus impulse graph for blast-induced traumatic brain injury and correlation to observable blast injuries" (2019). Doctoral Dissertations. 2791. https://scholarsmine.mst.edu/doctoral_dissertations/2791 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. PRESSURE VERSUS IMPULSE GRAPH FOR BLAST-INDUCED TRAUMATIC BRAIN INJURY AND CORRELATION TO OBSERVABLE BLAST INJURIES BY BARBARA RUTTER A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY IN EXPLOSIVES ENGINEERING 2019 Approved by: Catherine E. Johnson, Advisor Kyle Perry Braden Lusk Paul Worsey Dimitri Feys 2019 Barbara Rutter All Rights Reserved iii ABSTRACT With the increased use of explosive devices in combat, blast induced traumatic brain injury (bTBI) has become one of the signature wounds in current conflicts. Animal studies have been conducted to understand the mechanisms in the brain and a pressure versus time graph has been produced. However, the role of impulse in bTBIs has not been thoroughly investigated for animals or human beings.
    [Show full text]