The Mōtū Kahawai Fishery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Critical Habitat for Canterbury Freshwater Fish, Kōura/Kēkēwai and Kākahi
CRITICAL HABITAT FOR CANTERBURY FRESHWATER FISH, KŌURA/KĒKĒWAI AND KĀKAHI REPORT PREPARED FOR CANTERBURY REGIONAL COUNCIL BY RICHARD ALLIBONE WATERWAYS CONSULTING REPORT NUMBER: 55-2018 AND DUNCAN GRAY CANTERBURY REGIONAL COUNCIL DATE: DECEMBER 2018 EXECUTIVE SUMMARY Aquatic habitat in Canterbury supports a range of native freshwater fish and the mega macroinvertebrates kōura/kēkēwai (crayfish) and kākahi (mussel). Loss of habitat, barriers to fish passage, water quality and water quantity issues present management challenges when we seek to protect this freshwater fauna while providing for human use. Water plans in Canterbury are intended to set rules for the use of water, the quality of water in aquatic systems and activities that occur within and adjacent to aquatic areas. To inform the planning and resource consent processes, information on the distribution of species and their critical habitat requirements can be used to provide for their protection. This report assesses the conservation status and distributions of indigenous freshwater fish, kēkēwai and kākahi in the Canterbury region. The report identifies the geographic distribution of these species and provides information on the critical habitat requirements of these species and/or populations. Water Ways Consulting Ltd Critical habitats for Canterbury aquatic fauna Table of Contents 1 Introduction ......................................................................................................................................... 1 2 Methods .............................................................................................................................................. -
(2013) Population Genetic Structures of Three Congeneric Species of Co
MURDOCH RESEARCH REPOSITORY This is the author’s final version of the work, as accepted for publication following peer review but without the publisher’s layout or pagination. The definitive version is available at http://dx.doi.org/10.1007/s10641-012-0105-3 Moore, G.I. and Chaplin, J.A. (2013) Population genetic structures of three congeneric species of coastal pelagic fishes (Arripis: Arripidae) with extensive larval, post-settlement and adult movements. Environmental Biology of Fishes, 96 (9). pp. 1087-1099. http://researchrepository.murdoch.edu.au/17252/ Copyright: © 2013 Springer Science+Business Media Dordrech. It is posted here for your personal use. No further distribution is permitted. 1 Population genetic structures of three congeneric species of coastal pelagic fishes (Arripis: 2 Arripidae) with extensive larval, post-settlement and adult movements. 3 4 G.I. Moore1,2 and J.A. Chaplin1 5 6 1 Centre for Fish and Fisheries Research, School of Biological Sciences and Biotechnology, Murdoch 7 University, South St, Murdoch, Western Australia, Australia, 6150. 8 2 Fish Section, Department of Aquatic Zoology, Western Australian Museum, 49 Kew St., Welshpool, 9 Western Australia, Australia, 6106. 10 11 Author to whom correspondence should be addressed: 12 G.I. Moore 13 e-mail: [email protected] 14 phone: +61 08 9212 3744 15 1 16 Abstract 17 18 The population genetic structures of three congeneric coastal pelagic marine fishes (Arripis trutta, A. 19 truttaceus and A. georgianus) were investigated to determine whether these structures were consistent 20 with the apparently high gene flow life histories of these species. -
Checklist of Serranid and Epinephelid Fishes (Perciformes: Serranidae & Epinephelidae) of India
Journal of the Ocean Science Foundation 2021, Volume 38 Checklist of serranid and epinephelid fishes (Perciformes: Serranidae & Epinephelidae) of India AKHILESH, K.V. 1, RAJAN, P.T. 2, VINEESH, N. 3, IDREESBABU, K.K. 4, BINEESH, K.K. 5, MUKTHA, M. 6, ANULEKSHMI, C. 1, MANJEBRAYAKATH, H. 7, GLADSTON, Y. 8 & NASHAD M. 9 1 ICAR-Central Marine Fisheries Research Institute, Mumbai Regional Station, Maharashtra, India. Corresponding author: [email protected]; Email: [email protected] 2 Andaman & Nicobar Regional Centre, Zoological Survey of India, Port Blair, India. Email: [email protected] 3 Department of Health & Family Welfare, Government of West Bengal, India. Email: [email protected] 4 Department of Science and Technology, U.T. of Lakshadweep, Kavaratti, India. Email: [email protected] 5 Southern Regional Centre, Zoological Survey of India, Chennai, Tamil Nadu, India. Email: [email protected] 6 ICAR-Central Marine Fisheries Research Institute, Visakhapatnam Regional Centre, Andhra Pradesh, India. Email: [email protected] 7 Centre for Marine Living Resources and Ecology, Kochi, Kerala, India. Email: [email protected] 8 ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India. Email: [email protected] 9 Fishery Survey of India, Port Blair, Andaman and Nicobar Islands, 744101, India. Email: [email protected] Abstract We provide an updated checklist of fishes of the families Serranidae and Epinephelidae reported or listed from India, along with photographs. A total of 120 fishes in this group are listed as occurring in India based on published literature, of which 25 require further confirmation and validation. We confirm here the presence of at least 95 species in 22 genera occurring in Indian marine waters. -
River Gravel Extraction Compliance Report
River Gravel Extraction Compliance Report Wiki Mooney, Environmental Compliance Officer and Steve Pickles, Principal Compliance Officer Environment Bay of Plenty Environmental Publication2005/07 April 2005 5 Quay Street P O Box 364 Whakatane NEW ZEALAND ISSN 1175 - 9372 Working with our communities for a better environment Environment Bay of Plenty Contents Chapter 1: Introduction ....................................................................................... 1 Chapter 2: Methodology...................................................................................... 3 Chapter 3: Extraction Volumes and Compliance....................................... 4 Chapter 4: Summary and Conclusion............................................................ 7 Environmental Publication 2005/07 River Gravel Extraction Compliance Report 1 Chapter 1: Introduction This report has been prepared to indicate the level of compliance in respect of consented gravel extraction from rivers in the Bay of Plenty region. This report covers the period July 2001 to December 2004. An activity involving the disturbance of the bed of a river is controlled by section 13 of the Resource Management Act 1991 (RMA) and therefore requires consent. However, gravel extraction is normally undertaken away from waters edge so as to avoid any sediment contamination of the watercourse. In the Bay of Plenty region, the areas of high gravel concentrations are in the eastern Bay of Plenty rivers. In fact all of the resource consents for gravel extraction are for rivers located within the eastern Bay of Plenty. Individuals and companies who require large volumes of gravel for construction works and building foundations hold resource consents for such activities. Environment Bay of Plenty’s Operations and Rural Services Department also hold resource consents which enable them to remove gravel to prevent erosion and the exacerbation of flooding caused by build-up of the riverbed. -
Homosroma Crflfsa GEN
ON A NEW MONOGENETIC TREMATODE HOMOSrOMA CRflFSA GEN. ET SP. NOV. FROM THE MARINE FISH EUTHYNNUSAFFlfns (CANTOR) WITH A NOTE ON THE FAMILY HEXO&T()MATIDAE, PRICE, 1936 .. by R. VISWANATHANUNNITHAN* The new monogenetic trematode decribed in this paper "'ia~ collected during the course of studies on the parasites of marine food fi~hes from the south west and south east coasts of India. These studies Mr.ere carried out in the Marine Biological Laboratory, Trivandrum and at the Central Marine Fisheries Research Institute, Mandapam Camp. as r~i<:n~d in a previous work (UNNITHAN,1957).. .. Order MAZOCRAEIDEA BYCHOWSKY,1957. Family HEXOSTOMATIDAE PRICE, 1936. PRICE (1936) created the family with Hexostoma. RAFINESQUE,1815, as the type genus and he (1943) defined it under the superfamily Dicli- dophoroidea PRICE, 1936. SPROSTON(1946) revised the diagnosis of the family and accepted it in the superf'amily Diclidophoroidea on the basis of the similarity in the structure of the clamps between Hexostornatidae PRICE, 1936, and Chimericolidae BRINKMANN,1942. BRINKMANN(1952) how- ever, raised the family Chimer'icolidae, to the new superfamily Chimeri- coloidea and gave a detailed discussion on the group. UNNITHAN(1957) 'c removed Microcotylidae TASCHENBURG,1879, from the superfamily. Diclo- dophoroidea and erected the superfamily Microcotyloidea. In his new rationale for the systematic scheme on Monogenoidea, BYCHOWSKY(1957) included Hexostomatidae PRICE, 1936, in. the new order Mazocraidea, along with Mazocraeidae PRICE, 1936. P.RICE(1936) and SPORSTON(1946) included only one genus, Hexosiomo. RAFINESQUE,1815, in this family; the finding of a new species described below has necessitated the creation of a new genus which is named Homostoma. -
Congolli (Pseudaphritis Urvillii) and Australian Salmon (Arripis Truttaceus and A
Inland Waters and Catchment Ecology Diet and trophic characteristics of mulloway (Argyrosomus japonicus), congolli (Pseudaphritis urvillii) and Australian salmon (Arripis truttaceus and A. trutta) in the Coorong George Giatas and Qifeng Ye SARDI Publication No. F2015/000479-1 SARDI Research Report Series No. 858 SARDI Aquatics Sciences PO Box 120 Henley Beach SA 5022 September 2015 Giatas and Ye (2015) Diet of three fish species in the Coorong Diet and trophic characteristics of mulloway (Argyrosomus japonicus), congolli (Pseudaphritis urvillii) and Australian salmon (Arripis truttaceus and A. trutta) in the Coorong George Giatas and Qifeng Ye SARDI Publication No. F2015/000479-1 SARDI Research Report Series No. 858 September 2015 II Giatas and Ye (2015) Diet of three fish species in the Coorong This publication may be cited as: Giatas, G.C. and Ye, Q. (2015). Diet and trophic characteristics of mulloway (Argyrosomus japonicus), congolli (Pseudaphritis urvillii) and Australian salmon (Arripis truttaceus and A. trutta) in the Coorong. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2015/000479-1. SARDI Research Report Series No. 858. 81pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.pir.sa.gov.au/research DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. -
Biodiversity of the Kermadec Islands and Offshore Waters of the Kermadec Ridge: Report of a Coastal, Marine Mammal and Deep-Sea Survey (TAN1612)
Biodiversity of the Kermadec Islands and offshore waters of the Kermadec Ridge: report of a coastal, marine mammal and deep-sea survey (TAN1612) New Zealand Aquatic Environment and Biodiversity Report No. 179 Clark, M.R.; Trnski, T.; Constantine, R.; Aguirre, J.D.; Barker, J.; Betty, E.; Bowden, D.A.; Connell, A.; Duffy, C.; George, S.; Hannam, S.; Liggins, L..; Middleton, C.; Mills, S.; Pallentin, A.; Riekkola, L.; Sampey, A.; Sewell, M.; Spong, K.; Stewart, A.; Stewart, R.; Struthers, C.; van Oosterom, L. ISSN 1179-6480 (online) ISSN 1176-9440 (print) ISBN 978-1-77665-481-9 (online) ISBN 978-1-77665-482-6 (print) January 2017 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 1.1 Objectives: 3 1.2 Objective 1: Benthic offshore biodiversity 3 1.3 Objective 2: Marine mammal research 4 1.4 Objective 3: Coastal biodiversity and connectivity 5 2. METHODS 5 2.1 Survey area 5 2.2 Survey design 6 Offshore Biodiversity 6 Marine mammal sampling 8 Coastal survey 8 Station recording 8 2.3 Sampling operations 8 Multibeam mapping 8 Photographic transect survey 9 Fish and Invertebrate sampling 9 Plankton sampling 11 Catch processing 11 Environmental sampling 12 Marine mammal sampling 12 Dive sampling operations 12 Outreach 13 3. -
Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus .................................................................................................. -
Rediscovering the Species in Community-Wide Predictive Modeling
Ecological Applications, 16(4), 2006, pp. 1449–1460 Ó 2006 by the the Ecological Society of America REDISCOVERING THE SPECIES IN COMMUNITY-WIDE PREDICTIVE MODELING 1,3 2 2 JULIAN D. OLDEN, MICHAEL K. JOY, AND RUSSELL G. DEATH 1Center for Limnology, University of Wisconsin–Madison, 680 N. Park Street, Madison, Wisconsin 53706 USA 2Institute of Natural Resources–Ecology, Massey University, Private Bag 11 222, Palmerston North, New Zealand Abstract. Broadening the scope of conservation efforts to protect entire communities provides several advantages over the current species-specific focus, yet ecologists have been hampered by the fact that predictive modeling of multiple species is not directly amenable to traditional statistical approaches. Perhaps the greatest hurdle in community-wide modeling is that communities are composed of both co-occurring groups of species and species arranged independently along environmental gradients. Therefore, commonly used ‘‘short-cut’’ methods such as the modeling of so-called ‘‘assemblage types’’ are problematic. Our study demonstrates the utility of a multiresponse artificial neural network (MANN) to model entire community membership in an integrative yet species-specific manner. We compare MANN to two traditional approaches used to predict community composition: (1) a species-by-species approach using logistic regression analysis (LOG) and (2) a ‘‘classification-then-modeling’’ approach in which sites are classified into assemblage ‘‘types’’ (here we used two-way indicator species analysis and multiple discriminant analysis [MDA]). For freshwater fish assemblages of the North Island, New Zealand, we found that the MANN outperformed all other methods for predicting community composition based on multiscaled descriptors of the environment. -
New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E. -
Table of Fishes of Sydney Harbour 2019
Table of Fishes of Sydney Harbour 2019 Family Family/Com Species Species Common Notes mon Name Name Acanthuridae Surgeonfishe Acanthurus Eyestripe close s dussumieri Surgeonfish to southern li mit Acanthuridae Acanthurus Orangebloch close to olivaceus Surgeonfish southern limit Acanthuridae Acanthurus Convict close to triostegus Surgeonfish southern limit Acanthuridae Acanthurus Yellowmask xanthopterus Surgeonfish Acanthuridae Paracanthurus Blue Tang not included hepatus in species count Acanthuridae Prionurus Spotted Sawtail maculatus Acanthuridae Prionurus Australian Sawtail microlepidotus Ambassidae Glassfishes Ambassis Port Jackson jacksoniensis glassfish Ambassidae Ambassis marianus Estuary Glassfish Anguillidae Freshwater Anguilla australis Shortfin Eel Eels Anguillidae Anguilla reinhardtii Longfinned Eel Antennariidae Anglerfishes Antennarius Freckled Anglerfish southern limit coccineus Antennariidae Antennarius Giant Anglerfish close to commerson southen limit Antennariidae Antennarius Shaggy Anglerfish southern limit hispidus Antennariidae Antennarius pictus Painted Anglerfish Antennariidae Antennarius striatus Striate Anglerfish Table of Fishes of Sydney Harbour 2019 Antennariidae Histrio histrio Sargassum close to Anglerfish southen limit Antennariidae Porophryne Red-fingered erythrodactylus Anglerfish Aploactinidae Velvetfishes Aploactisoma Southern Velvetfish milesii Aploactinidae Cocotropus Patchwork microps Velvetfish Aploactinidae Paraploactis Bearded Velvetfish trachyderma Aplodactylidae Seacarps Aplodactylus Rock Cale -
Giant Boarfish
148 analis (Waite) and P.compressa (White). Family Kyphosidae - sea chubs and rudderfishes This family contains about a dozen widespread species. They are thickly built, oval shaped fish which frequent coral reefs and rocky shores in most tropical and subtropical seas. In general, kyphosids are herbivorous, feeding on algae and other marine growth, although some species are planktivorous. The jaws possess incisor-like teeth at the front. These may be serrated, loosely attached and movable, or may be fixed. There are no molars. Other characteristics of this family are the complete, slightly arched lateral line and the single dorsal fin. Many of these fish will often follow ships, hence the common name !rudderfish1. Six species occur in New Zealand. Those found in the Reserve, parore, Girella tricuspidata, silver drummer, typhosus Sydney onus, sweep, Scorpis aequipinnis and blue maomao, S.violaceus, are common northern New Zealand species. The other two, the mado, Atypichthys striagatus, and the bluefish, Girella oyanea, are commonly found around the north-east offshore islands, but are rare on the coast. There is some argument surrounding the classification of the sweep, S.aequipinnis, and blue maomao, 5.violaceus. Many consider them to be different morphs of the same species. Others distinguish them as two different species. The two are similar in appearance and in meristic characteristics such as the numbers of fin rays and lateral line scales. Recently, Smith et al (1979) suggested that they should be treated as two separate species on the basis of electrophoretio analysis, body colour, head shape and the characteristic number of gill rakers.